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ABSTRACT

A Poisson generalized linear regression model cast within a Bayesian framework is applied to forecast the

seasonal tropical cyclone (TC) counts in the vicinity of Taiwan. The TC season considered is June–November

and the data period used for model development is 1979–2007. A stepwise regression procedure is applied for

predictor selection. Three large-scale climate variables, namely, relative vorticity at 850 hPa (Vor850), ver-

tical wind shear, and sea level pressure over the western and central North Pacific from the antecedent May,

are selected as predictors. Leave-one-out cross validation is performed and forecast skill is thoroughly

evaluated. The skill level of the Bayesian regression model is better than what can be achieved by climatology

and persistence methods. Most importantly, the Bayesian probabilistic inference can provide an uncertainty

expression in the parameter estimation. Among the three predictors, Vor850 is found to be the most im-

portant because it reflects the variation of the ridge position of the westward extension of the western Pacific

subtropical high. The model shows negative bias during the years with successive TCs, which are generated by

easterly waves before approaching Taiwan. Recommendations for real-time operational forecast and future

development are discussed.

1. Introduction

A tropical cyclone (TC) is one of the most devastating

weather systems because it can involve multiple hazards

over the course of 1 or 2 days. One striking example was

Tropical Cyclone Nargis in 2008, which killed 138 366

people in Myanmar and ranks as the second deadliest

disaster of the decade of the 2000s according to the

Center for Research on Epidemiology of Disasters

(Rodriguez et al. 2009). In addition to high winds and

heavy rain, tropical storms can result in life-threatening

floods and mudslides. High quality seamless forecasts,

from nowcasting to seasonal forecasts, are needed to

mitigate human and property losses.

Seasonal forecasting of TC activity was pioneered by

Nicholls (1979) and Gray (1984a,b) in the early 1980s for

the Australian and North Atlantic regions, respectively.

For the western North Pacific (WNP), issuing seasonal

forecasts of the annual number of tropical cyclones and

typhoons was first attempted by J. Chan and his col-

leagues in 1997 (Camargo et al. 2007a). The large-scale

atmospheric and oceanic conditions incorporated into

their statistical forecast model (Chan et al. 1998, 2001)

are El Niño–Southern Oscillation (ENSO), the extent of

the Pacific subtropical ridge, the intensity of the Indian–

Burma trough, the polar vortex, and the frequency of

cold-air intrusions in China. Different predictors are

used for the Pacific and South China Sea (Liu and Chan

2003). Recently, various forecast models were devel-

oped for specific TC-prone areas in East Asia such as

Taiwan (Chu et al. 2007), Korea (Choi et al. 2009), and

the East China Sea (Kim et al. 2010). In the meantime,
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new approaches to predictor selection procedures (Lee

et al. 2007; Kwon et al. 2007; Fan and Wang 2009) were

proposed. Recent studies (Ho et al. 2009; Kim et al.

2010) have shown that better forecast skill can be ach-

ieved by Poisson regression than linear regression when

the method was applied to forecasting seasonal TC

frequency over the East China Sea.

The WNP TC activity is known to possess several

kinds of variations that differ in their time scales. The

interannual variations are related to ENSO (Chan 1985,

2000; Chan et al. 1998; Wang and Chan 2002), the bi-

ennial variations are related to stratospheric quasi-

biennial oscillation (Chan 1985), and the interdecadal

variations are related to the Pacific decadal oscillation

(Ho et al. 2004) and the Antarctic Oscillation (Ho et al.

2005). ENSO and TC relationships for various ocean

basins are reviewed by Chu (2004). Intraseasonal vari-

ations have also been reported and related to the

Madden–Julian oscillation (MJO; Harr and Elsberry

1995; Nakazawa 2006; Kim et al. 2008; Hsu et al. 2008)

and 10–30-day waves (Ko and Hsu 2006, 2009).

The predictability of TC frequency in a limited area

relies on factors that control TC trajectories. Over the

WNP region, influential large-scale features in the low

levels include the western Pacific subtropical anticy-

clone and monsoonal flow (Harr and Elsberry 1995; Kuo

et al. 2001; Liu and Chan 2002), and in the upper-level

tropical upper-tropospheric troughs (TUTTs) (Sadler

1978; Montgomery and Farrell 1993). Camargo et al.

(2007b,c) found that WNP TC trajectories can be grouped

into seven clusters. The clusters are sensitive to both

genesis location and trajectory patterns. Three of the

clusters are ENSO related (Camargo et al. 2007c). During

El Niño years, the preferable location of TC genesis

shifted southeastward, while during La Niña years the

preferable location shifted northwestward. The type of

highly populated cluster, wherein more recurving trajec-

tories are observed, tends to occur more often during

La Niña years.

Taiwan is located in an area that frequently experi-

ences TCs. On average about 60% of the annual rainfall

totals in Taiwan are associated with TCs. Thus, the sea-

sonal forecasting of TC activity in the vicinity of Taiwan is

of extreme importance to drought mitigation and water

resources management for the island. Figure 1a shows the

tracks of TCs affecting Taiwan from 1979 to 2007 and

most of the storms are formed in the warm pool of the

western Pacific and the Philippine Sea. After formation,

these storms either move northwestward and make

landfall in Taiwan or South China; move northwestward

then recurve near 258N and approach eastern China,

Korea, and Japan; or move to the open ocean of the

North Pacific. The climatological distribution of the

corresponding monthly TC frequency is presented in

Fig. 1b. A seasonal contrast is evident, with no activity

from January to March, an extended active season from

June through December, and a peak in August.

The seasonal outlook for typhoons affecting Taiwan

is an important forecast item routinely issued by the

Central Weather Bureau (CWB) since 2006. The forecast

is based on information generated by a least absolute

deviation (LAD) multivariate linear regression model

(Chu et al. 2007), where the median of the residual term

is minimized. In the LAD model, the predictand is the

regional count of the total number of tropical cyclones

entering into an area encompassing Taiwan and its vi-

cinity during the 5-month period from June through

October. Five antecedent environmental parameters,

namely, sea surface temperature, sea level pressure, pre-

cipitable water, low-level relative vorticity, and vertical

wind shear in key locations of the tropical WNP, are

identified as predictors. Results from cross validation

FIG. 1. (a) The tracks and (b) the monthly distribution of all TCs

affecting Taiwan based on data during the period of 1979–2007.

The box (218–268N and 1198–1258E) in (a) delineates the area used

to define TCs affecting Taiwan.

DECEMBER 2010 L U E T A L . 1781



suggest that the statistical model is skillful in predicting

regional TC activity. When the sea surface temperatures

over the Philippine Sea are warm and anomalous low-

level cyclonic circulation coupled with low-latitude west-

erly winds across the South China Sea and the Philippine

Sea appear in the antecedent May, the TC activity near

Taiwan tends to be more active in the following typhoon

season.

Although the LAD model can produce skillful fore-

casts, it does not provide information on the likelihood of

the range of tropical cyclone counts that may be realized.

This specification of likelihood is needed for risk man-

agement in estimating a range of potential disaster losses

or vulnerability before the commencement of the ty-

phoon season. Another drawback in the LAD approach

is that the predictand used is seasonal TC counts, which

would be properly represented by a discrete distribution

such as a Poisson process because the occurrences of ty-

phoons in a small region are rare and discrete events.

Chu and Zhao (2007) used the Bayesian probabilistic

forecast models to predict the seasonal tropical cyclone

activity in the central North Pacific. The Bayesian prob-

abilistic models have also been used to predict the trop-

ical cyclone activity in the North Atlantic (Elsner and

Jagger 2004, 2006). Given the advantage of the probabi-

listic approach, we will adopt the Bayesian regression

method for predicting the seasonal TC activity near

Taiwan. As the objective of the present study is to de-

velop a forecast procedure for operational centers, the

data and computation environments need to be avail-

able in real time. The forecast skill of the forecasting

system also needs to be evaluated thoroughly. From the

long-term risk management and general public interest

point of view, it is desirable to have the forecast infor-

mation of annual total TC counts before the beginning

of a year, preferably by January of the target year.

However, at present it would be very difficult to obtain

a skillful forecast for the Taiwan area based on predictors

prior to May, probably due to the chaotic monsoon in-

fluences on TC activity. The interannual variability in the

air–sea coupled climate system over the tropical Pacific

and Asian monsoon region shows a strong quasi-biennial

nature with the changes of signs during northern spring

(Yasunari 1991). Instead of using the period from June to

October, an alternative approach for operational fore-

casts at present is to modify the predictand period from

20 June to 30 November and issue the forecast on 15 June.

The differences in the predictands with and without the

TC counts before 20 June and a real-time forecast ex-

ample will be discussed in the last section.

The structure of this paper is as follows. The data and

data preprocessing are described in section 2. The

Bayesian regression model of the TC counts is presented

in section 3. Correlation of large-scale variables and TC

activity is presented in section 4. The predictor selection

procedure and prediction results are presented in sec-

tion 5, and a discussion and our conclusions appear in

section 6.

2. Data and data processing

The tropical cyclone series in the vicinity of Taiwan

from 1979 to 2007 are taken from the Regional Specialized

Meteorological Center (RSMC) best-track data prepared

by the Japan Meteorological Agency (information online

at http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-

pub-eg/trackarchives.html). This series covers an area

between 218–268N and 1198–1258E, a fairly limited geo-

graphical domain of 58 latitude and 68 longitude.

Monthly mean sea level pressure, wind data at the 850-

and 200-hPa levels, relative vorticity data at the 850-hPa

level, and total precipitable water over the western North

Pacific (08–308N) are derived from the National Centers

for Environmental Prediction–Department of Energy

(NCEP–DOE) Reanalysis-2 dataset [information avail-

able online at http://www.cpc.noaa.gov/products/wesley/

reanalysis2/index.html; see also Kanamitsu et al. (2002)].

These variables are the same as those used in Chu et al.

(2007).

The horizontal resolution of the reanalysis dataset

is 2.58 latitude–longitude. Tropospheric vertical wind

shear is computed as the square root of the sum of the

square of the difference in the zonal wind component

between the 850- and 200-hPa levels and the square of

the difference in the meridional wind component be-

tween the 850- and 200-hPa levels (Clark and Chu 2002).

The monthly mean sea surface temperatures, at 28 hor-

izontal resolution, are taken from the Extended Re-

constructed Sea Surface Temperatures (ERSST) dataset

prepared by the National Climate Data Center (NCDC)

and downloaded from the Web site of the National Oce-

anic and Atmospheric Administration (NOAA) Physical

System Division of the Earth System Research Labora-

tory in Boulder, Colorado (information online at http://

www.cdc.noaa.gov/). After examining the correlation

between large-scale environmental parameters and TC

counts, only the parameters for the month of May are

derived as predictors.

3. The Bayesian regression model for TC counts

A Poisson process describes the probability distribu-

tion for the seasonal count of TCs. Given the Poisson

intensity parameter l (i.e., the mean seasonal TC rates),

the probability mass function (PMF) of h TCs occurring

in a unit of observation time (e.g., one season) is
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P(hjl) 5 exp(�l)
(l)h

h!
, where h 5 0, 1, 2, . . .

and l . 0. (1)

The Poisson mean is simply l; thus, so is its variance.

The relationship between the target response vari-

able, seasonal TC counts, and selected predictors can be

established using a Poisson linear regression model. The

Poisson rate l is usually treated as a random variable

that is conditional on the predictors. We assume that

there are N observations and for each observation there

are K relative predictors. We define a latent random

N-vector Z, such that for each observation hi, i 5 1, 2, . . . ,

N, Zi 5 logli, where li is the relative Poisson intensity for

the ith observation. Here, N denotes the sample size,

which in this study is 29 (1979–2007). The link function

between this latent variable and its associated predictors

is expressed as Zi 5 Xib 1 «i, where b 5 [b0, b1, b2, . . . ,

bK]9 is a random vector, the noise «i is assumed to be

identical and independently distributed (IID) and nor-

mally distributed with zero mean and s2 variance, and

Xi 5 [1, Xi,1, Xi,2, . . . , Xi,K] denotes the predictor vector. In

vector form, the general Poisson linear regression model

can be formulated as below:

P(h Zj ) 5P
N

i51
P(h

i
Z

i

�
� ), where h

i
Z

i

�
� ; Poisson(h

i
eZ

i

�
� )

Z b, s2, X
�
� ; Normal(Z Xb, s2I

N

�
� ).

where, specifically, X9 5 [X91, X92, . . . , X9N], IN is the N

identity matrix and Xi 5 [1, Xi,1, Xi,2, . . . , Xi,K] is the

predictor vector for hi, i 5 1, 2, . . . , N, where

b 5 [b
0
, b

1
, b

2
, . . . , b

K
]9. (2)

Here, normal and Poisson stand for the normal distri-

bution and Poisson distribution, respectively. In Eq. (2),

b0 is referred to as the intercept.

It is worth noting that the Poisson rate l is a real value

while the TC count h is only an integer. Accordingly, l

contains more information relative to h. Furthermore, h

is conditional on l, which is subject to smaller variance

than h. Taken together, for decision-making purposes l

should be used as the forecast quantity of the TC activity

rather than h. We also note the fact that this hierarchical

structure essentially fits well for Bayesian inference. For

the details on the Bayesian analysis procedure, readers

are referred to section 4 of Chu and Zhao (2007). The

Bayesian inference requires posterior distribution, which

involves a complex integration of high-dimensional

functions. We use a Gibbs sampler and Matlab software

to solve the integration. The Gibbs sampler is a widely

used Markov chain Monte Carlo (MCMC) method that

solves complex integrals by expressing them as expec-

tations for some distribution and then estimating this

expectation by drawing samples from that distribution.

An explanation of a Gibbs sampler and how it may be

used to generate the samples of the coefficient param-

eters bi and evaluate the quality of the generated sam-

ples are detailed in Chu and Zhao (2007).

The development procedure of the forecast model is

summarized in Fig. 2. The first step is to identify the pre-

dictors, which will be described in the next section. Then,

data from 29 yr (1979–2007) of TC counts in the area of

Taiwan and its vicinity are used to build the Bayesian re-

gression model using the Gibbs sampler. The forecast skill

is evaluated using a cross-validation procedure.

4. Correlation of large-scale variables and
TC activity

Chu et al. (2007) found that the seasonal tropical cy-

clone activity around Taiwan and its vicinity modulated

by large-scale conditions in May represented by five

environmental variables. The same variables are chosen

as predictor candidates in the present study. In this

section we will describe the geographic locations of the

predictor candidates determined by correlation analysis.

Our predictor selection procedure will be discussed in

next section.

The variables of the predictor candidates are sea surface

temperature (SST), sea level pressure (SLP), precipitable

water (PWAT), 850-hPa relative vorticity (Vor850), and

vertical wind shear (VWS). The present paper uses

NCEP–DOE Reanalysis-2 data during the period of

1979–2007, while Chu et al. (2007) used NCEP–National

Center for Atmospheric Research (NCAR) reanalysis

(Kalnay et al. 1996) during a longer period (1970–

2006). The predictors are formed by the five variables

averaged at the grid points where the variable and trop-

ical cyclone activity are correlated at the 95% confidence

level. Correlation analysis between the seasonal TC oc-

currences and the environmental parameters in the pre-

ceding May over the tropical WNP is used to identify

their physical relationships. If correlations over a par-

ticular area of the WNP are found to be statistically

significant, the parameter over this critical region is

identified as a predictor candidate. For a sample size of

29, this critical value is 0.37 when a two-tailed t test is

applied. A similar analysis was also applied to other

months earlier than the preceding May, but very few

grid points show significant correlation. Therefore, the

predictors are limited to the variables in the preceding

May only.
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a. SST

The contour plot for the correlation between TC

counts and SST is shown in Fig. 3a, where a large area

with significant positive correlations is found in the

Philippine Sea and the tropical western Pacific warm pool

marked by filled circles. The average of the SST series

over the critical regions is chosen as a predictor. Signifi-

cant correlations are also noted near Taiwan. For the sake

of simplicity this area is not included in the predictor.

b. Vor850

Figure 3b displays the correlation between the sea-

sonal TC counts and the antecedent low-level relative

vorticity at 850 hPa (Vor850). Critical regions with sig-

nificantly high positive correlations are found in a

southwest-to-northeast-oriented belt extending from

the southern Philippines to the western Pacific. Accord-

ingly, greater cyclonic vorticity anomalies in the pre-

ceding May over the critical regions were instrumental

for more TC activity around Taiwan.

c. PWAT

Figure 3c displays the correlation between the seasonal

TC count and the precipitable water in which the critical

regions are found mainly over the Philippine Sea. Note

that the critical regions in Figs. 3c and 3b approximately

coincide well to each other and are located to the north

of the positive correlations of the SSTs in Fig. 3a. The

approximately coincident critical region revealed in

Figs. 3a–c suggests the possibility that enhanced (sup-

pressed) low-level vortex and convective activity are driven

by the warm (cold) SST anomalies over the Philippine Sea

and the western Pacific warm pool. As a result, these cir-

culation features tend to contribute to greater (lesser) TC

frequency near Taiwan in the following season.

d. SLP

The contour plot for the correlation between the sea-

sonal TC frequency in the vicinity of Taiwan and the May

SLP is shown in Fig. 3d. A large area with significant

negative correlations is found in the Philippine Sea and

the warm pool. The negative correlation area coincides

well with the positive correlation area of SST in Fig. 3a. It

is noted that the center of the critical region in Fig. 3d is

near the equator while the center of the critical region in

Fig. 3a is to the north of the equator. This suggests the

possibility that the negative SLP might reflect the Rossby

wave response to the warm SST anomaly.

e. VWS

The contour plot for the correlation between the sea-

sonal TC frequency in the vicinity of Taiwan and the May

VWS is shown in Fig. 3e. Significant positive correlations

are observed over the Indonesia portion of the Maritime

Continent covering the area of the West Caroline Basin,

Sulawesi, and the Java Sea. The coincident relationship

between the positive correlation of VWS, negative

correlation of SLP over the western Pacific, and positive

correlation of Vor850 over the Philippine Sea suggests

FIG. 2. The schematic development procedure of the Bayesian regression forecast model.
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that if the convection over the low-latitude Philippine

Sea is strong in May, then seasonal TC activity near and

around Taiwan tends to be more active during the fol-

lowing months.

5. Predictor selection and prediction results

a. Predictor selection

The screening procedure of the five candidate pre-

dictors is similar to the stepwise regression method used

for multivariate linear regression models (e.g., Kim et al.

2010). For multivariate regression models, the impor-

tance of a predictor is mainly judged by the Pearson

correlation coefficient between the observed and pre-

dicted variables and the sum of their absolute errors. For

the Bayesian multivariate regression method, however,

in addition to the correlation coefficient, the importance

of a predictor is judged by the parameters of the mean,

standard deviation, and ratio of the number of samples

that lie to the left (right) of zero to the total number of

iterations if the predictor is expected to have a positively

FIG. 3. Correlation map between seasonal (June–November,

JJASON) TC count series in the vicinity of Taiwan and large-scale

variables in the preceding May over the tropical WNP. The large-

scale variables are (a) SSTs, (b) 850-hPa vorticity, (c) precipitable

water, (d) SLPs, and (e) vertical wind shear. Solid contours

(dashed) denote positive (negative) correlations. The contour in-

terval is 0.1. The points with correlations significantly different

from 0 at the 95% level (.0.37) are marked by dots.
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(negatively) oriented impact on the forecast variable

(e.g., SST). The ratio is referred to as the Bayesian

p value. In the regression model a predictor with a smaller

p value is more important. The posterior probability

density functions (PDFs) for the model parameter set

are solved using a Gibbs sampler. For simplicity, for all

the simulations in this study, we take the first 2000 sam-

ples as burn in and use the following 10 000 samples as

the output of the Gibbs sampler. We have the PDFs of

all of the predictors besides the intercept term.

The correlation coefficient is calculated based on the

forecasts obtained from leave-one-out cross validation

(LOOCV). The cross-validation (CV) test is a general

way to verify the effectiveness of a regression method.

LOOCV is a forecast procedure in which a target year is

chosen and a model is developed using the remaining

28 yr of data as the training set. The observations from

the selected predictors for the target year are then used

as inputs to forecast the missing year. This process is

repeated successively until all 29 forecasts are made.

The relative importance of the predictor candidates

determined by the stepwise predictor screening pro-

cedure is summarized in Table 1. For each step there are

three rows listed under each variable. For each variable

the following identification numbers are given: 1) Vor850,

2) VWS, 3) SLP, 4) SST, and 5) PWAT. The first row is

the correlation between the observed and the median

values of the predicted probability distribution, indicated

as ‘‘50% 2 r’’ in Table 1. Higher correlation reflects a better

prediction. The Bayesian p value, mean, and standard

deviation of the predicted probability distribution are

presented in the third row under columns p, m, and s,

respectively. As shown in Table 1, we first use the

forecast model, which has only one predictor, to perform

the prediction. It turns out that the Vor850 has the highest

correlation 50% 2 r (0.65) with TC counts in Taiwan,

a perfect p value (0), and small standard deviation s (0.1).

Therefore, Vor850 is identified as the primary predictor.

In the second step, we repeat the prediction with two

predictors at a time while keeping the Vor850. From the

correlation values we cannot discern improvement by

the second predictors when comparing the correlations of

the second step with that of the first step Vor850. However,

VWS shows a small p value for both VWS and Vor850

and, therefore, is the best second predictor. In the third

step, we use three predictors while retaining the Vor850

and VWS. The prediction is improved slightly by in-

cluding SLP. It is interesting to see the drop in correla-

tion and increase in p and s when SST is included.

Therefore, Vor850, VWS, and SLP are finally selected to

formulate the Bayesian regression forecast model.

The predicted maximum and average probabilities of

the TC counts through a LOOCV are plotted together T
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with the actual observation for each year in Figs. 4a and

4b, respectively. The Pearson correlation between the

maximum probability of predictive TC counts and in-

dependent observations is 0.672. The correlation between

the average predictive TC counts and observations is also

0.672. The average TC predictive counts are computed as

the sum of the TC count weighted by its probability

density. The median and upper and lower quartiles (the

upper 75% and lower 25%) of the predicted TC counts

are plotted in Fig. 5. The distance between the upper and

lower quartiles determines the central 50% of the pre-

dicted TC variations. The correlation between the me-

dian of the predictive rate and independent observations

is 0.673. The skill of the deterministic forecast of the

current model is comparable to that of the LAD model

(0.673 versus 0.69). Out of a total of 29 yr, there are only

3 yr (2004, 2005, and 2007) in which the actual TC counts

lie outside the predictive central 50% boundaries. Pos-

sible reasons for prediction failure will be discussed in

the last section.

The reason the parameters p, m, and s in Table 1 can

be used to select predictors can be understood by

showing the posterior PDFs of the predictors in Fig. 6.

The kernel-estimated marginal PDF for the parameter

set, b and s, is calculated for all the samples by con-

volving the resulting frequency of the target samples

with a smoothing filter. Figure 6 shows that the posterior

PDF of Vor850 has the largest mean value m (0.21) and

the smallest Bayesian p value (0.02), which measures the

ratio of the number of samples that lie to the left of zero

to the total number of iterations. Both Vor850 and VWS

show clear positive correlation, while SLP shows clear

negative correlation with the TC counts. SLP has the

largest p value (0.16).

b. Forecast skill assessment

The accuracy of a probabilistic forecast method can be

measured by its reliability, sharpness, and resolution.

Reliability measures the agreement between forecast

probability and mean observed frequency. Sharpness

measures the skill of forecasting probabilities near 0 or

1. Resolution measures the ability of the forecast to re-

solve the set of sample events into subsets with charac-

teristically different outcomes. Only resolution can be

evaluated in the present study due to the nature of the

small sample size of the observed seasonal TC counts.

We use the relative operating characteristic (ROC) di-

agram to evaluate resolution.

It is important to know the characteristics of TC counts

in terms of probability distribution before evaluating

probabilistic forecast skill. The relationship between the

TC counts and forecast probabilities is illustrated by the

histogram of the 29-yr TC counts and its cumulative

probability diagram presented in Figs. 7a and 7b, re-

spectively. The thin dashed line in Fig. 7b is used as a

threshold for distinguishing among groups in categorical

forecasts. Figure 7a shows that the TC count varies from 1

to 8 in the data from 1979 to 2007. The cumulative prob-

ability diagram in Fig. 7b shows that 3 counts are slightly

FIG. 4. Time series of the observed and LOOCV forecasts of the

predicted (a) maximum and (b) average probabilities of the trop-

ical cyclone counts.

FIG. 5. As in Fig. 4, but for the median (thick dashed line marked

by open circles) and upper 75% and lower 25% (thin dashed lines)

of the predicted TC counts.
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above the 30% cumulative probability and 5 counts are

slightly above 70%. To have near even members in each

category, as tercile classification implies, we set the below

normal category to be when the TC count is less or equal

to 3, and above normal as when the count is equal to or

larger than 6. The normal category has a very narrow band

that only includes counts of 4 and 5.

To construct the ROC diagram, the range of forecast

probabilities is divided into 10 bins (0%–10%, 11%–

20%, 21%–30%, etc.). The ROC diagram is constructed

by plotting the hit rate (HR) and false alarm rate (FAR)

against the accumulated probability at 10 bins jointly, as

in Fig. 8. The curve connected by the 10 dots in Fig. 8 is

called the ROC curve, which measures the ability of the

forecast model to discriminate between hits and misses

in terms of the occurrence probability. The ROC area is

defined as the ratio of the area below the ROC curve

with respect to the entire plotting area. If the ROC area

is less than 0.5, the forecast model cannot discriminate

between high and low occurrence probabilities. The ROC

area presented in Fig. 8 is 0.6, suggesting that the Bayesian

regression forecast model is moderately skillful in dis-

criminating high and low occurrence probabilities.

A biased forecast may still have good resolution. The

ROC curve is not sensitive to forecast bias and therefore

cannot provide a reliable representation. A good ROC

curve suggests that it may be possible to improve the

forecast through calibration. Therefore, the ROC can be

considered to be a measure of potential usefulness. The

model bias and a need for calibration can be seen in

Table 2, which shows the forecasted TC counts of maxi-

mum probability tabulated against the observed results.

A negative bias of the forecast model is clearly presented

in Table 2, which means that the forecasted TC counts

tend to be lower than the actual occurrences. The bias

inherent with the assumed Poisson distribution of TC

counts, which will be discussed in the last section, implies

that the probabilistic forecast results need to be cali-

brated and transformed to a categorical forecast. The

forecast skills associated with categorical forecasts are

easier to understand for most users.

A common practice in forecasting the seasonal out-

look of TC counts is to categorize typhoon activity as

above normal, normal, or below normal. In principle,

the empirical cumulative distribution function (ECDF)

corresponding to 33% and 67% in Fig. 7b should be used

as the reference values for categorizing the forecast results

when the outcome is expressed in a tercile. In the present

study, the TC counts that are closest to ECDF 5 33% are

3 or less (Fig. 7b) and this is classified as below normal

(BN). For the ECDF 5 67%, the corresponding counts

are equal to 5 or larger, which is considered to be above

normal (AN). To have near even samples in the tercile

categories, the normal category (N) should have TC counts

of 4 and 5; however, a count of 6 actually corresponds to

ECDF 5 87%. The uneven probability portion in AN

and BN implies that the occurrence probability of AN

is naturally less than BN when the observed TC counts

FIG. 6. Estimated marginal posterior PDFs for model parameter set and its corresponding Bayesian p value, given

the TC counts (JJASON) in the vicinity of Taiwan and the selected large-scale variables during 1979–2007. The large-

scale variables are 850-hPa vorticity, SLP, and vertical wind shear.
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are simulated by the Poisson distribution. The inconsis-

tency between the actual occurrence rate and the assumed

Poisson probability can be adjusted by a simple calibra-

tion procedure as follows.

The calibration is done on the basis of the cumulative

probability of the predictive categories based on the 29-yr

LOOCV forecasts. The cumulative probability of pre-

dictive counts is presented in Fig. 9. The cumulative

probability of the predictive BN (#3) and AN ($6) cat-

egories is represented by solid and long-dashed lines,

respectively, and the normal category N(4, 5) is repre-

sented by a short-dashed line. Figure 9 suggests that

based on the predictive probability derived from 29

LOOCV forecast experiments, the lowest probability of

BN is 0.11 (11%) and the highest probability of BN is 0.83

(83%), which refers to the points at which ECDF 5 0

and 1, respectively, in Fig. 9. For the BN category the

cumulative probability is 0.3151 when ECDF 5 33% and

0.5721 when ECDF 5 67%. Similarly, for category N the

ECDF 5 33% cumulative probability is 0.2622 and

ECDF 5 67% cumulative probability is 0.3042. For AN,

the ECDF 5 33% cumulative probability is 0.1402 and

ECDF 5 67% cumulative probability is 0.3536. The

cumulative probabilities of ECDF 5 33% and 67% are

used as reference values for determining the predictive

likelihood of a specific category. If the cumulative pro-

bability of a specific category is lower than the ECDF 5

33% reference value, then it is unlikely that such category

will occur. In contrast, a category is likely to occur when

the predictive cumulative probability of the category is

higher than its ECDF 5 67% reference value.

To further explain the calibration procedure, we

present the predictive PDFs of each year during 1979–

2007 in Fig. 10. The climatological PDF as presented in

Fig. 7a is shown in the background of Fig. 10 in gray.

The observed TC count in each year is marked by a

filled bar. Each year the predictive cumulative probability

of AN, N, and BN categories can be directly calculated

based on the PDF. Using the categorical reference values

at ECDF 5 33% and 67%, we can determine which

category is most likely to occur. Thus, the probabilistic

forecast result (the predictive PDF) can be converted

into a categorical forecast result (categories AN, N, or

BN). The contingency table for the category forecast

after calibration adjustment is presented in Table 3.

The zero number of false forecasts for the opposite

FIG. 7. (a) The histogram of the JJASON TC counts based on the 29-yr dataset of 1979–2007, and the PDF

approximated by the Poisson distribution. The thin vertical dashed lines mark the boundaries between the categories

of BN, N, and AN. The corresponding cumulative histogram and distribution function are presented in (b), where the

thin horizontal dashed lines are the 30% and 70% probabilities of the cumulative histogram and the thick dashed

lines are the 33% and 67% probabilities of the cumulative probability of the Poisson distribution.
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category clearly reflects the capability of the Bayesian

regression forecast for capturing the categorical forecasts

correctly.

The advantage of presenting forecast results in cate-

gories is that we can apply the standard procedure rec-

ommended by Wilks (2006) and WMO (2002) to evaluate

forecast skill. The scores computed in this study include

accuracy (ACC), Heidke skill score (HSS), and Hanssen–

Kuipers discriminant (HK). ACC reflects the correspon-

dence between pairs of forecasts and the events they are

meant to predict. HSS measures the proportion of cor-

rect predictions; in a perfect forecast the HSS 5 1. The

HK is also known as the Peirce skill score, Kuiper’s

performance index, or the true skill statistic. HK is for-

mulated similarly to the HSS except that the reference

hit rate is for random forecasts that are constrained to

be unbiased. The computation formula of the scores is

presented on the Australian Bureau of Meteorology’s

Web site (http://www.bom.gov.au/bmrc/wefor/staff/eee/

verif/verif_web_page.html#Methods_for_multi-category_

forecasts):
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The computed forecast skill scores for the Bayesian

forecast model are ACC 5 0.52, HK 5 0.27, and HSS 5

0.27. The skill can be assessed in reference to climatol-

ogy and persistence forecasts. Here, climatology means

using the average TC counts in 29 yr as the predictive

result and persistence means using TC counts from pre-

vious year as the predictive result. For climatology, the

scores are ACC 5 0.45, HK 5 0, and HSS 5 0. For per-

sistence, the scores are ACC 5 0.39, HK 5 0.06, and

HSS 5 0.06. Clearly, the Bayesian regression forecast

model presented in this study can produce skillful fore-

cast results.

6. Discussion

Seasonal forecasts of tropical cyclone activity were

pioneered by Nicholls (1979) and Gray (1984a,b). For

the western North Pacific, Chan et al. (1998) have per-

formed seasonal forecasts of tropical cyclone activity.

FIG. 8. The ROC diagram based on the forecasted and observed

probabilities of TC counts divided into 10 probability bins. The

x axis is the false alarm or missing rate, and the y axis is the HR.

TABLE 2. Contingency table for the observed and forecasted TC

counts from 0 to 10. The forecasted counts presented here are the

counts that have the maximum probability in the forecasted

probability distribution.

Prediction

0 1 2 3 4 5 6 7 8 9 10 Total

Obs 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 2 0 0 0 0 0 0 0 0 2

2 0 1 1 2 0 0 0 0 0 0 0 4

3 0 0 0 1 2 0 0 0 0 0 0 3

4 0 0 2 1 1 2 0 0 0 0 0 6

5 0 0 2 2 3 0 0 0 0 0 0 7

6 0 0 0 0 2 0 1 0 0 0 0 3

7 0 0 0 0 0 1 2 0 0 0 0 3

8 0 0 0 0 0 1 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

Total 0 1 7 6 8 4 3 0 0 0 0 29
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Skillful forecasts are noted for some basin-wide pre-

dictands such as the annual number of typhoons. In the

past, while progress was made on forecasting basin-wide

seasonal or annual typhoon activity, little attention was

paid to forecasting regional activity. The lack of regional

information for particular typhoon-threatened, subbasin

regions poses problems for adequate long-term planning

of regional emergency management and hazard miti-

gation. In particular, prediction of the landfall frequency

on specific coastal areas is sorely needed, as many re-

gions in East Asia are vulnerable to typhoons. In this

paper, we present a probabilistic model that has been

proven to be skillful in predicting seasonal TC numbers

for a region. The categorical forecast skill from the

Bayesian regression model is better than that achieved

by climatology and persistence methods.

a. Physical interpretation of the predictability

Three climate variables (Vor850, VWS, and SLP) are

used in the prediction model. The predictor screening

procedure shows that the most important variable is

Vor850. The reason Vor850 stands out is probably be-

cause it captures the variations of the ridge position

of the westward extension of the western Pacific sub-

tropical high (WPSH) in May, which can be a precursor

signaling how WPSH will evolve in the following months.

This speculation is supported by the correlation maps of

the lag correlation of Vor850 in May and the low-level

wind fields over the Philippine Sea and western Pacific in

the following months (figures not shown). Note that the

correlation is higher during June–August, but lower in

later months.

Variations of WPSH were found to be influenced by

SST and convective activity over the tropical Indian

Ocean–western Pacific on the decadal time scale (Hu

1997; Gong and Ho 2002; Zhou et al. 2009). For in-

terannual variations, convection and SST over the Phil-

ippine Sea are major influential factors (Lu 2001; Lu and

Dong 2001). ENSO is not a major factor causing sys-

tematic interannual variations of WPSH. The outstanding

correlation between Vor850 and TCs affecting Taiwan

found in the present study suggests that the remote SST

variations such as ENSO cannot describe sufficient vari-

ances of the track anomalies that are important to Taiwan.

The potential SST predictor presented in Fig. 3a is less

important compared with Vor850, VWS, and SLP. It

suggests that SST is a secondary factor influencing the

seasonal tendency of TC tracks. However, SST can have

an indirect influence through affecting convection then

modulating the westward extension of WPSH (Tu et al.

2009). Such a process can be captured by the selected

predictors of the present prediction model. In summary,

WPSH is the key that modulates TC tracks over the

Philippine Sea and the west end of the WNP. Convection

and SST over the Philippine Sea near the equator cap-

tured by the VWS and SLP can significantly influence

WPSH, which influences the TC tracks affecting Taiwan.

b. 2008 and 2009 prediction results

The forecast model developed in this paper was applied

to 2008 and 2009 as an operational test. The data from

these 2 yr were not used in the model development and

evaluation. The forecast results are presented in Figs. 11a

and 11b. For 2008, prediction shows below normal TC

activity with the maximum probability of only one TC

affecting Taiwan (Fig. 11a). However, verification shows

normal TC activity with four TCs affecting Taiwan. For

2009, prediction shows normal TC activity with the

maximum probability of four TCs and verification also

shows normal TC activity with four TCs affecting Taiwan;

therefore, the prediction in 2009 is perfect.

Although Taiwan was affected by four TCs in both

2008 and 2009, the temporal pattern of occurrence is

very different in these two years. In 2008, one TC oc-

curred in July and three in September. The September

cluster resulted from a strong easterly wave associated

with strong easterly trade winds. In 2009, the four TCs

occurred evenly in June, July, August, and October, re-

spectively. There is no obvious clustering phenomenon.

The contrast between these two years strongly suggests

that the Bayesian regression model is good at capturing

the temporally even distribution condition. We note in

Fig. 5 that the model performed poorly after 2000, par-

ticularly in 2004, 2005, and 2007. In 2004 there was strong

MJO modulation on TC activity (Nakazawa 2006; Hsu

et al. 2008). In 2005 and 2007, Taiwan saw successive TCs,

which were influenced by strong easterly waves, approach

FIG. 9. The ECDF based on the 29-yr LOOCV forecasted

probability of the TC counts converted to tercile categories. The

BN and AN categories are represented by solid and long-dashed

lines, respectively, and the normal category N (4, 5) is represented

by the short-dashed line.
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within 1 month. The results are consistent with what we

found for 2008.

Li and Fu (2006) pointed out that the Rossby wave

train in the wakes of preexisting TCs creates a favorable

condition for successive TCs to occur. In this case the

successive TCs that formed in the Pacific easterly and

Asian monsoon westerly confluent region (Lau and Lau

1990; Chang et al. 1996) cannot be considered inde-

pendent. This means such phenomenon is against the

assumption of a Poisson distribution of the TC counts

(i.e., the occurrence of TCs in a particular time period is

independent of previous occurrences) in the Bayesian

regression model, which may cause prediction failure.

c. Recommendation for real-time operational
forecast

In the practice of real-time operational forecasting

because the monthly mean reanalysis data from May

cannot be available before June, the presented model

cannot meet the strict requirements for an operational

forecast. Therefore, for operational practices we rec-

ommend issuing the forecast around 10 June to predict

the total TC counts during the period 20 June–30 No-

vember. We repeated the same model development pro-

cedure described in this paper and examined the forecast

skill. The recommended procedure can produce slightly

FIG. 10. The forecasted probability distribution of the TC counts of the 29-yr LOOCV dataset (1979–2007). The gray distribution in the

background is the histogram of the TC counts, as in Fig. 7a. The thin dashed lines mark the boundaries between the categories of BN, N,

and AN. The observed TC count in each year is represented by the filled bar.

TABLE 3. Contingency table for the tercile category forecasted

by the Bayesian model after calibration using the 29-yr LOOCV

forecast results.

Prediction

BN N AN Total

Obs BN 5 4 0 9

N 4 5 4 13

AN 0 2 5 7

Total 9 11 9 29
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better forecasts for the years with TCs affecting Taiwan

before 20 June.

At the Central Weather Bureau of Taiwan, May and

June are considered to be the mei-yu season. The mei-yu

front is usually associated with the northern rim of the

WPSH. Concurrent with the seasonal development of

the South Asian monsoon, the ridge of the western edges

of the WPSH starts to move northward, from the Phil-

ippine Sea (208N, 1358E) on pentad 31 (31 May–4 June)

to the latitudes of Taiwan (238N, 1298E) on pentad 35

(20–24 June) (Nagata and Mikami 2010). In other words,

Taiwan is less influenced by the tropical disturbances

from the western Pacific before mid-June. Therefore, the

recommendations we proposed for operational forecasting

can fit the large-scale climate conditions very well. Note

that additional deterministic prediction information can

be generated by a multivariate linear regression model

proved skillful by the standard verification procedure

(Chu et al. 2007).

For future development, in addition to exploring more

potential predictors such as Arctic sea ice and North

Pacific indices (Fan 2007; Wang et al. 2007), we plan

to expand the statistical forecast model to a hybrid

dynamical–statistical configuration similar to what is

done for the seasonal forecast of Atlantic hurricane ac-

tivity using NCEP dynamical seasonal forecasts (Wang

et al. 2009). Because the WPSH is the most influential

large-scale system that affects the interannual variations

of the TC activity near Taiwan, the dynamical forecast

system needs to produce reliable forecast information

about the WPSH. This is a challenging demand because

the variability of WPSH is strongly modulated by the

SST and convective activity in the region of the tropical

Indian Ocean, Philippine Sea, and western Pacific (Hu

1997; Lu 2001; Lu and Dong 2001; Gong and Ho 2002;

Zhou et al. 2009). The negative bias associated with

successive TCs suggests that accumulated cyclone en-

ergy (ACE) might be a better predictor than TC fre-

quency. Research in this direction is beyond the scope of

the current study.

While typhoons bring strong winds, storm surges,

and huge waves, they also result in beneficial rainfall to

Taiwan as a majority of the annual rainfall comes from

typhoons. If the number of landfalling typhoons is lower

than expected in a typhoon season, the likelihood of

drought in the following year would be high. Many other

tropical coastal areas or islands have problems similar

to those of Taiwan, namely, natural variability in tropical

cyclone activity from year to year and increasing demand

for freshwater resulting from typhoons as populations

have soared. It is hoped that the method demonstrated

here would also be of value to other areas in East Asia

(e.g., the Philippines, China) and Southeast Asia (e.g.,

Vietnam) in better predicting regional typhoon activity.

This could in turn be a vital tool for various government

agencies when doing long-lead-time disaster-mitigation

planning and water resources management.
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