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ABSTRACT

In this study, a Poisson generalized linear regression model cast in the Bayesian framework is applied to
forecast the tropical cyclone (TC) activity in the central North Pacific (CNP) in the peak hurricane season
(July–September) using large-scale environmental variables available up to the antecedent May and June.
Specifically, five predictor variables are considered: sea surface temperatures, sea level pressures, vertical
wind shear, relative vorticity, and precipitable water. The Pearson correlation between the seasonal TC
frequency and each of the five potential predictors over the eastern and central North Pacific is computed.
The critical region for which the local correlation is statistically significant at the 99% confidence level is
determined. To keep the predictor selection process robust, a simple average of the predictor variable over
the critical region is then computed. With a noninformative prior assumption for the model parameters, a
Bayesian inference for this model is derived in detail. A Gibbs sampler based on the Markov chain Monte
Carlo (MCMC) method is designed to integrate the desired posterior predictive distribution. The proposed
hierarchical model is physically based and yields a probabilistic prediction for seasonal TC frequency, which
would better facilitate decision making. A cross-validation procedure was applied to predict the seasonal TC
counts within the period of 1966–2003 and satisfactory results were obtained.

1. Introduction

The tropical cyclone (TC) is one of the most destruc-
tive natural catastrophes that cause loss of lives and
enormous property damage on the eastern coast and in
the gulf states of the United States. Even located far
away in the central Pacific, Hawaii is not immune to
hurricane perils. For instance, the Hawaiian Islands
were directly struck by Hurricanes Iniki in 1992 and
Iwa in 1982. Estimates for damage were about $2.5 bil-
lion for Iniki and $250 million for Iwa. Given the soar-
ing property values in the past few years in Hawaii, the
damage would have been much higher if it were ad-
justed to the current value. After Iniki, a minimum cat-
egory-4 hurricane on the Saffir–Simpson scale, hurri-
canes continued to pose a threat to the islands. In 1994,

three intense, category-5 hurricanes tracked westward
just to the south of Hawaii; this is the first time that
such intense hurricanes were reported in the central
North Pacific (Fig. 1), let alone three in a single season.
Because of their profound socioeconomic repercus-
sions, understanding climate factors that are instrumen-
tal for the year-to-year TC variability, and developing a
sound and modern method for predicting seasonal TC
counts before the peak season are becoming increas-
ingly important.

Based on a two-sample permutation procedure, Chu
and Wang (1997) noticed that the mean annual number
of tropical cyclones in the vicinity of Hawaii is higher
during El Niño years than during non–El Niño years,
and this difference is statistically significant at the 95%
confidence level. Clark and Chu (2002) investigated
large-scale circulation patterns related to tropical cy-
clone genesis and development over the central North
Pacific in association with warm and cold El Niño–
Southern Oscillation (ENSO) events. One of the salient
findings is the marked enhancement of the 1000-hPa
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relative vorticity values just to the south of Hawaii dur-
ing an El Niño autumn relative to La Niña autumn.
Tropospheric vertical wind shear (VWS) to the south of
Hawaii also shows a two- to threefold reduction when
an El Niño composite is compared to a La Niña one.

The seasonal hurricane prediction enterprise using
regression-based linear statistical models was pio-
neered by Gray et al. (1992, 1993, 1994). They showed
that nearly half of the interannual variability of hurri-
cane activity in the North Atlantic could be predicted in
advance. Klotzbach and Gray (2004) have continued to
revise their forecasts as peak seasons approach, and
they operationally issue seasonal forecasts for the At-
lantic basin (more information available online at
http://hurricane.atmos.colostate.edu/Forecasts). Seven
parameters are routinely predicted at long lead times.
These include the number of hurricanes, number of
named storms, number of hurricane days, number of
named storm days, intense hurricanes, intense hurri-
cane days, and net tropical cyclone activity (NTC).
NTC is a combined measure of the aforementioned
other six parameters normalized by their climatological
averages. When verified for a 52-yr record (1950–2001),
hindcast skill is lowest for named storms but is better
for intense hurricanes and NTC if the forecast is issued
in early December, 6–11 month prior to the Atlantic
hurricane season (Klotzbach and Gray 2004). As an
example, assuming a climatological forecast of 100
NTC for each year, their statistical model exhibits a

27% reduction over climatology in errors for the test
period.

Elsner and Schmertmann (1993) considered a differ-
ent approach to predict intense annual Atlantic hurri-
cane counts. Specifically, the annual hurricane occur-
rence is modeled as a Poisson process, which is gov-
erned by a single parameter, the Poisson intensity. The
intensity of the process is then made to depend upon a
set of covariates such as the stratospheric zonal winds
and the west Sahel rainfall via a multiple regression
equation. Parameters of the regression are estimated by
maximum likelihood. Recently, Elsner and Jagger
(2004) introduced a Bayesian approach to this Poisson
linear regression model so that the predicted annual
hurricane numbers could be cast in terms of probability
distributions. This is an advantage over the determin-
istic forecasts because the uncertainty inherent in fore-
casts is quantitatively expressed in the probability state-
ments. They especially addressed the issue regarding
the unreliable records by introducing an informative
prior for the coefficient parameters of the model via a
bootstrap procedure. With a similar Bayesian regres-
sion model, more recently Elsner and Jagger (2006)
attempted to predict annual U.S. hurricane counts. The
model includes predictors representing the North At-
lantic Oscillation (NAO), the Southern Oscillation
(SO), the Atlantic multidecadal oscillation, as well as
an indicator variable that is either 0 or 1 depending on
the time period specified. As a baseline for comparison,

FIG. 1. Orientation map for the CNP.
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a climatology model is used, which contains only the
regression constant (i.e., intercept) and the indicator
variable. In an out-of-sample cross-validation test, the
Bayesian model appears to have a lower mean-squared
error relative to climatology for years in which there
are exactly zero, three, five, or more hurricanes ob-
served.

Chu and Zhao (2004) applied a Bayesian analysis to
detect changepoints in the TC series over the central
North Pacific (CNP). More recently, Zhao and Chu
(2006) developed a more advanced method for detect-
ing multiple changepoints in hurricane time series for
the eastern North Pacific. In both of these two studies,
the annual TC counts are described by a Poisson pro-
cess where the Poisson intensity is conditional on a
gamma distribution. A hierarchical Bayesian approach
is applied to make inferences, in terms of the posterior
probabilities, for shifts in the TC time series. In view of
the probabilistic nature of the Bayesian paradigm, this
study will apply the similar Bayesian framework advo-
cated by Elsner and Jagger (2004, 2006) to forecasting
the seasonal TC activity over the CNP prior to the peak
hurricane season. To complete the Bayesian model, we
apply noninformative priors to the model parameters.

The structure of this paper is as follows. The data
used and the mathematical model of the TC counts are
covered in sections 2 and 3, respectively. The key con-
cepts of the Markov chain Monte Carlo (MCMC) and
Gibbs sampler are introduced in section 4, based on
which algorithm is developed to fulfill the Bayesian in-
ference of our proposed probabilistic model. Section 5
describes the procedure to select the appropriate pre-
dictors for the TC count series in the CNP case. Results
are presented in section 6. The conclusions are found in
section 7.

2. Data

The tropical storm (maximum sustained surface wind
speeds between 17.5 and 33 m s�1) and hurricane (wind
speed at least 33 m s�1) records over the CNP from the
National Hurricane Center’s best-track data are used
(Chu 2002). Here TC refers to only tropical storms and
hurricanes. The period of analysis is 1966–2003. The
records prior to 1966 are thought to be less reliable
because satellite observations were not in sufficient
quantities. The domain of the CNP coincides with the
area of responsibility of the Central Pacific Hurricane
Center, an entity of the National Weather Service in
Honolulu, Hawaii. Two types of TCs appear in the
CNP. The TC counts include storms that form within
the CNP as well as those that form in the eastern North
Pacific and subsequently propagate into the CNP.

Monthly mean sea level pressure (SLP), wind data at
the 1000-, 850-, and 200-hPa levels, relative vorticity
data at the 850-hPa level, and total precipitable water
(PW) are derived from the National Centers for Envi-
ronmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) reanalysis dataset
(Kistler et al. 2001). The horizontal resolution of the
reanalysis dataset is 2.5° latitude–longitude. Tropo-
spheric VWS is computed as a square root of the sum of
the squared difference of the zonal wind component
between 200 and 850 hPa and the squared difference of
the meridional wind component between 200 and 850
hPa (Clark and Chu 2002). The monthly mean sea sur-
face temperatures (SSTs) over the North Pacific are
taken from Reynold’s reconstruction of the Compre-
hensive Ocean–Atmosphere Data Set, as detailed in
Smith et al. (1996). SST data are available on a 2° lati-
tude–longitude resolution. Chu (2002) used the re-
analysis and the reconstructed SST datasets to investi-
gate circulation features associated with decadal varia-
tions of tropical cyclone activity over the central North
Pacific.

3. The Bayesian regression model for TC counts

The Poisson process is a proper probability model for
describing independent, rare event counts. Given the
Poisson intensity parameter � (i.e., the mean seasonal
TC rates), the probability mass function (PMF) of h
TCs occurring in a unit of observation time (e.g., one
season) is (Epstein 1985)

P�h|�� � exp����
�h

h!
, where

h � 0, 1, 2, . . . and � � 0. �1�

The Poisson mean is simply �, thus, so is its variance.
In the context of building a regression model,

through which one can develop the relationship be-
tween the target response variable, the seasonal TC
counts, and the selected predictors, the Poisson rate � is
usually treated as a random variable that is conditional
on the predictors.

In this study, we adopt the Poisson linear regression
model. Assume there are N observations and for each
observation there are K relative predictors. We define
a latent random N-vector Z, such that for each obser-
vation hi, i � 1, 2, . . . , N, Zi � log�i, where �i is the
relative Poisson intensity for the ith observation. Here
N denotes the sample size, which is 38 in this study
(1966–2003). The link function between this latent vari-
able and its associated predictors is expressed as Zi �
Xi� � �i, where � � [�0, �1, �2, . . . , �K]	 is a random
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vector; noise �i is assumed to be identical and indepen-
dent distributed (IID) and normally distributed with
zero mean and 
2 variance; Xi � [1, Xi1, Xi2, . . . , XiK]
denotes the predictor vector. In the vector form, the
general Poisson linear regression model can be formu-
lated as below:

P�h|Z� � �
i�1

N

P�hi|Zi�, where hi|Zi � Poisson�hi|e
Zi�

Z|�, 
2, X � Normal(Z|X�, 
2IN), where, specifically
X	 � [X	1, X	2, . . . , X	N], IN is the N 
 N identity matrix,
and Xi � [1, Xi1, Xi2, . . . , XiK] is the predictor vector
for hi, i � 1, 2, . . . , N

� � ��0, �1, �2, . . . , �K��. �2�

Here, Normal and Poisson stand for the normal distri-
bution and the Poisson distribution, respectively. In Eq.
(2), �0 is referred to as the intercept.

It is worth noting that the Poisson rate � is a real
value while the TC counts h is only an integer. Accord-
ingly � contains more information relative to h. Fur-
thermore, because h is conditional on �, � is subject to
less variations than h. Taken together, � should be pre-
ferred as the forecast quantity of the TC activity than h
for decision making. We also notice the fact that this
hierarchical structure essentially fits well for Bayesian
inference.

4. MCMC approach to the Bayesian inference

a. General idea of MCMC and Gibbs sampler

In general, we assume the model is given and denote
the set of parameters of this model by the vector �. The
data for training analysis is symbolized by h. Thus, the
basic Bayesian formula is described as

P�� |h� �
P�h |��P���

�P�h |��P��� d�

� P�h |��P���, �3�

where “�” means “proportional” since � in the denomi-
nator is only a dummy variable. In Eq. (3), P(h|�) is the
conditional distribution of data h given the model pa-
rameters � (i.e., the likelihood) and P(�) is a prior dis-
tribution. Equation (3) provides the inference for pos-
terior distribution P(� |h), the probability of � after the
data h are observed. It is clear that data affect the pos-
terior distribution only through the likelihood function
P(h|�). To make predictive inference, we rely on the
posterior predictive distribution:

P�h̃ |h� � �P�h̃|��P��|h� d�, �4�

where h̃ denotes the prediction (Gelman et al. 2004).
Here P(h̃|h) is the posterior predictive distribution
since it is conditional on the observed data h and pro-
vides a prediction for the unknown observable h̃. This
formula is at the heart of Bayesian analysis.

The MCMC approach is one of the efficient algo-
rithms for Bayesian inference. The general Bayesian
analysis method described above essentially involves
integrating the posterior expectation:

E �a|h� � �
�

a���P��|h� d�,

where a(�) can be of any function conditional on the
model parameters �. This expectation, however, is very
difficult to integrate in most models. Alternatively, a
numerical way to calculate such an expectation is to use
Monte Carlo integration by

E �a|h� �
1
L �

i�1

L

a�� �i��,

where � [1], �[2], . . . , �[L] are independently drawn from
P(� |h). When the sample size L is large enough, this
approximation will converge to its analytical integral.

This method is straightforward, but practically it is
often infeasible to generate such an independent series
�[1], �[2], . . . , �[L] when P(� |h) is complicated. None-
theless, in many applications, it may be possible to gen-
erate a series of dependent values by using a Markov
chain (MC) that has P(� |h) as its stationary distribu-
tion. The MC is defined by giving an initial distribution
for the first state of the chain �[1] and a set of transition
probabilities for a new state �[i�1] that is conditional on
the current state �[i]. Under very general conditions
(i.e., the MC is ergodic), the distribution for the state
will converge to a unique stationary distribution. Obvi-
ously, if this stationary distribution is P(� |h), the Monte
Carlo integration described above still gives an unbi-
ased estimate for E[a|h] (Ripley 1987).

One of the most widely used MCMC algorithms is
known as the Gibbs sampler. Suppose there are p com-
ponents of the model parameter vector, defined as � �
[�1, �2, . . . , �p]	. (Note that �i could be a vector.) Pre-
sumably, directly sampling from the posterior distribu-
tion P(� |h) is unlikely; however, we can generate a
value from the conditional distribution for one part of
the � given the values of the rest of other parts of �. In
detail, Gibbs sampling involves successive drawing
from the complete conditional posterior densities
P(�k|h, �1, . . . , �k�1, �k�1, . . . , �p) for k from 1 to p.
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The Gibbs sampling algorithm is described as fol-
lows:

1) Choose arbitrary starting values: �[0] � [�[0]
1 , �[0]

2 , . . . ,
�[0]

p ].
2) Start at j � 1 and complete the single cycle by draw-

ing values from the p distributions given by
3) Set j � j � 1 and go back to step 2 until meeting the

required number of iterations.

�1
�j� � P��1|h, �2

�j�1�, �3
�j�1�, . . . , �p�1

�j�1�, �p
�j�1��,

�2
�j� � P��2|h, �1

�j�, �3
�j�1�, . . . , �p�1

�j�1�, �p
�j�1��,

�3
�j� � P��3|h, �1

�j�, �2
�j�, . . . , �p�1

�j�1�, �p
�j�1��,

. . .

�p�1
�j� � P��p�1|h, �1

�j�, �2
�j�, . . . , �p�2

�j� , �p
�j�1��,

�p
�j� � P��p|h, �1

�j�, �2
�j�, . . . , �p�2

�j� , �p�1
�j� �. �5�

Once convergence is reached, we can approximate
E[a|h] by (1/L)�L

i�1a(�[i]) with a large enough sample
size L, where �[i] is the ith sample drawn from the
Gibbs sampler descried by (5) within each iteration af-
ter convergence.

b. Gibbs sampler for the Bayesian inference of the
TC count model

Let us first derive the posterior distribution for the
model given by (2). Since we do not have any credible
prior information for the coefficient vector � and the
variance 
2, it is reasonable to choose the noninforma-
tive prior. In formula, it is (Gelman et al. 2004, p. 355)

P��, �2� � ��2. �6�

This is not a proper distribution function; however, it
leads to a proper posterior distribution.

Equation (A2) in the appendix implies that, the pos-
terior distribution of any hidden variable Z is condi-
tionally independent from each other given the model
parameters � and 
2. Therefore, with the newly ob-
served predictor set X̃ � [1, X̃i1, X̃i2, . . . , X̃iK], the
predictive distribution for the latent variable Z̃ and TC
counts h̃ will be

P�Z̃|X̃, X, h� � ��
�,�2

P�Z̃|X̃, �, �2�P��, �2|X, h�d�d�2,

�7a�

P�h̃|X̃, X, h� � �
Z̃

exp��eZ̃ � Z̃h̃�

h̃!
P�Z̃|X̃, X, h�dZ̃.

�7b�

Even with the noninformative prior, the posterior dis-
tribution for the model parameter set (�, 
2) in (7) is
still not standard and directly sampling from it is diffi-
cult. In this section, we will design a Gibbs sampler,
which has P(�, 
2|X, h) as its stationary distribution,
and then we can use an alternative approach to inte-
grate (7) by

P�Z̃|X̃, X, h� �
1
L �

i�1

L

P�Z̃|X̃, ��, �2��i��, �8a�

P�h̃|X̃, X, h� �
1
L �

i�1

L exp��eZ̃�i�
� Z̃�i�h̃�

h̃!
, �8b�

where (�, 
2)[i] is the ith sampling from the proposed
Gibbs sampler after the burn-in period, Z̃[i] is sampled
from Z̃[i]|X̃, (�, 
2)[i] � Normal(Z̃[i]|X̃�[i], 
2[i]) subse-
quently, and L is a large enough number.

Based on the inference analysis derived in the appen-
dix, our proposed Gibbs sampler yields the following
sequence:

1) Select proper initial value for Z[0], �[0], 
2[0] and set
i � 1.

2) Draw Z[i]
j from Z[i]

j |h, �[i�1], 
2[i�1] for j � 1, 2, . . . ,
N via (A3).

3) Draw �[i] from �[i]|h, Z[i], 
2[i�1] via (A6).
4) Draw 
2[i] from 
2[i]|h, Z[i], �[i] via (A7).
5) Set i � i � 1 then go back to step 2 until meeting the

required number of iterations. (9)

With the observation data h and following the algo-
rithm presented in (9), after the burn-in period, one can
sample set Z, �, 
2 within each iteration, which will
have the desired posterior distribution that facilitates
the numerical computation of (8a) and (8b).

A practical issue in the step 2 of algorithm (9) is that
the distribution governed by Eq. (A3) is not standard.
We resort to the Metropolis–Hasting algorithm in this
study, which is relatively computationally expensive.
Some other approaches can be considered here. For
example, based on our simulation results, the estimated
posterior PDFs for the hidden variables are all Gauss-
ian like, which theoretically can also be easily proven
log-concave. Therefore, using Laplace approximation
in this context should also be a sound choice.

5. Procedures for selecting predictors

One of the challenges in this study is to find appro-
priate predictors to be applied in the Bayesian regres-
sion model. For predicting the North Atlantic seasonal
hurricane counts, predictor variables such as the strato-
spheric zonal wind component, the El Niño index, and
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the west Sahel rainfall, among others, have been sug-
gested by many researchers (e.g., Gray et al. 1992;
Elsner and Schmertmann 1993; Klotzbach and Gray
2004). For the CNP, it is less clear as to which predic-
tors are vital. Without a priori knowledge of the infor-
mation needed, we resort to calculate the Pearson cor-
relation between the TC counts in the peak season (Ju-
ly–September) and the preseason environmental
variables, including SST, SLP, PW, low-level relative
vorticity, and VWS over the central and eastern North
Pacific (0°–40°N, 180°–90°W). Historically, there is not
a single TC occurrence on record over the CNP in May
or June.

For each of the candidate environmental variables,
we identify a critical region using the following proce-
dure. For any grid point over the eastern and central
North Pacific, if the Pearson correlation between the
predictor and the seasonal TC frequency is statistically
significant, this point is adopted. Based on the linear
regression theory, for a sample size of 38, the critical
value for a correlation coefficient is 0.38 at the 99%
confidence level (Bevington and Robinson 2003). Ac-
cordingly, a correlation coefficient with its absolute

value greater than 0.38 at a grid point will be deemed
locally significant and be selected as a critical region. To
keep the results robust, a simple average of the predic-
tor variable over the critical region is chosen.

a. SSTs

SSTs are known to be important for TC formation
and intensification. Warmer SSTs are expected to fuel
the overlying atmosphere with additional warmth and
moisture, thereby reducing atmospheric stability and
increasing the likelihood of deep tropical convection.
The isocorrelate map of seasonal TC frequency over
the CNP and SSTs during the antecedent May–June is
displayed in Fig. 2a, in which the area with strong posi-
tive correlations (with a maximum of 0.44) is found
over the tropical eastern North Pacific (near 14°N,
132°W) and the identified critical region is marked by
dots. Thus, the average of the SST series over this criti-
cal region is chosen as a predictor.

b. SLPs

The contour plot for the correlation between the TC
frequency and the SLPs during the precedent May–

FIG. 2. (a) Isocorrelates of seasonal tropical cy-
clone frequency in the CNP with May–June SSTs
over the eastern and central North Pacific from 1966
to 2003. The CNP is bordered between the dotted
line and the date line. The dotted area denotes the
critical region for which the local correlation is sta-
tistically significant at the 99% confidence level. (b)
Same as in (a), but for SLPs. (c) Same as in (a), but
for VWS. (d) Same as in (a), but for March–April
low-level relative vorticity. (e) Same as in (a), but
for March–April PW.
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June is shown in Fig. 2b, in which strong negative cor-
relations (with a minimum of �0.52 near 15°N,
132.5°W) are found over the tropical eastern Pacific.
That is, lower SLPs over the eastern Pacific in the pre-
ceding May–June correspond to high TC frequency
over the CNP. This result is physically reasonable.
Lower SLP implies decreased subsidence, which would
result in weaker trade wind inversion (Knaff 1997). Be-
cause the trade wind inversion acts as a lid to atmo-
spheric convection, weaker inversion would promote
deeper convection. The occurrence of deep convection
is important for TC formation because it provides a
vertical coupling between the upper-level outflow and
lower-tropospheric inflow circulations.

c. VWS

Strong VWS disrupts the organized deep convection
(the so-called ventilation effect) that inhibits intensifi-
cation of the TCs. Negative and significant correlations
(with minimum �0.38) exist between TC frequency and
May–June VWS in the low latitudes with a center near
12.5°N, 152.5°W (Fig. 2c).

d. Relative vorticity

Figure 2d shows the correlations between TC fre-
quency and the relative vorticity in the preceding
March–April. It displays positive and significant corre-
lations near the area 25°N, 140°W (with a maximum of
0.52). For May–June, the correlation between TC fre-
quency and relative vorticity at the aforementioned
area are dropped noticeably. Thus, only the March–
April predictor is used.

e. PW

In Fig. 2e, positive and significant correlations be-
tween TC frequency and PW in the antecedent March–
April are found in the eastern North Pacific, where the
correlation coefficient reaches as high as 0.51 at 25°N,
130°W. Collins and Mason (2000) also found strong
relationships between TC indices and PW in the west-
ern portion of the eastern North Pacific. Adequate
moisture in the atmosphere provides a fundamental in-
gredient for deep convection. Conversely, drier atmo-
sphere tends to suppress deep convection and inhibits
TC activity. Just like the vorticity, the correlation be-
tween TC counts and PW in May–June in the critical
region becomes much lower; therefore, the average of
the March–April PW over the identified critical area in
Fig. 2e is employed.

f. An overall model

With the predictors selected through correlation
analysis, the overall regression model for this study can

be exactly specified. From (2), the predictor vector Xi

and the associated coefficient parameter vector � �
[�0, �1, �2, . . . , �K]	 is given by

Xi � �1, SSTi, SLPi, VWSi, Vorticityi, PWi�,

i � 1, 2, . . . , N and

� � ��0, �1, �2, �3, �4, �5��. �10�

In practical applications, it is desirable to normalize
each predictor series before further analysis to avoid
the scaling problem among the different predictors.

6. Results

As mentioned in section 2, there are a total 38 yr
(1966–2003) of TC counts in the CNP. We apply the
Gibbs sampler outlined in (9) to this dataset. For sim-
plicity, for all the simulations in this study, we take the
first 2000 samples as burn-in and use the following
10 000 samples as the output of the Gibbs sampler.

In all, we have five predictors (besides the intercept
term, which does not vary within different seasons). A
general way to verify the effectiveness of a regression
method is to apply a strict cross-validation (CV) test for
the relevant dataset. Considering the fact that the TC
variation is approximately independent from year to
year, it is proper to apply the leave-one-out cross vali-
dation (LOOCV) in this context. That is, a target year
is chosen and a model is developed using the remaining
37-yr data as the training set. The observations of the
selected predictors for the target year are then used as
inputs to forecast the missing year. This process is re-
peated successively until all 38 forecasts are made.

Because cross validation applied in the Bayesian re-
gression model is relatively novel (Elsner and Jagger
2006), it warrants more explanations. For a target year,
say the ith year, we use the other N � 1 yr’s observation
as the training data for the input of algorithm (9) and
obtain the output as the posterior sampling of the
model parameter � and 
2 for each iteration after the
burn-in period. Given the predictor set for the target
year, (SST, SLP, VWS, Vorticity, PW), we can sample
the corresponding latent variable Z, which is the natu-
ral logarithm of the relative TC rate �, from a normal
distribution with �0 � �1(SST) � �2(SLP) � �3(VWS) �
�4(Vorticity) � �5(PW).This leads to the posterior
sample of � � exp(Z). Subsequently, we use Eq. (8b) to
calculate the posterior predictive distribution of the TC
counts (i.e., h) for this target year.

With all the samples drawn, we can estimate any sta-
tistic deemed as important. To demonstrate this, the
median, upper, and lower quartiles (the upper 75% and
lower 25%) of the predicted TC rates, through a
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LOOCV, are plotted together with the actual observa-
tion for each year in Fig. 3a. The distance between the
upper and lower quartile locates the central 50% of the
predicted TC variations. The Pearson correlation be-
tween the median of predictive rate and independent
observations is 0.63. In Fig. 3b, the median, upper, and
lower quartiles of the predicted TC counts are plotted
together with the actual observation for each year. Out
of a total of 38 yr, there are only 9 yr in which the actual
TC counts lie outside the predictive central 50%
boundaries.

Furthermore, using all 38-yr observations as training
data, we run the proposed algorithm again. As an illus-
tration, we plot the first 5000 samples of the coefficient
parameters, �1, �2, �3, �4, �5, in Figs. 4a,c,e,g,i, respec-
tively; and their relative autocorrelations are displayed
in Figs. 4b,d,f,h,j, respectively. The autocorrelation of

the samples for each parameter reaches zero very
quickly, implying the output of the proposed Gibbs
sampler is the unbiased samples drawn from their joint
posterior distribution.

With all the samples, we also calculated the kernel
estimated marginal probability density function (PDF)
for the parameter set, � and 
, by convolving the re-
sulting frequency of the target samples with a smooth-
ing filter. The marginal posterior PDF for each model
parameter, as shown in Fig. 5, also yields some useful
information. The relative contribution of each regres-
sion coefficient in the Bayesian strategy can be judged
approximately by the so-called p value. This can be
evaluated by the ratio of the number of samples that lie
to the left of zero to the total number of iterations if the
predictor is expected to have a positively orientated
impact on the forecast quantity (e.g., SST). Conversely,

FIG. 3. (a) The median (solid line), upper, and lower quartiles (dotted line) of the LOOCV-predicted TC rate are plotted together
with the actual observed TC counts (dash–dotted line) during 1966–2003. (b) Same as in (a), but for the actual observations (dash–
dotted line) during 1966–2003.
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if the predictor is to have a negatively orientated impact
(e.g., SLP), the number of samples that lie to the right
of zero to the total number of iterations is of concern.
Graphically, the smaller the area to the left (positively
oriented predictors) or right (negatively oriented pre-
dictors) of zero in the PDF plots, the more important
this predictor is in the regression model. Figure 5 indi-
cates the SLP and, to a lesser extent, the vorticity as key
predictors.

Further insight into the quantitative relationship be-
tween TC activity and environmental variables can be
gained by computing the TC rate changes given a unit
change in each of the predictors. From Eqs. (2) and
(10), the influence of the ith climate variable on TC rate
is indicated by the value of its coefficient parameter �i.
Because the latent variable Z is expressed as a natural
log of the TC rate �, a unit increase in the predictor
variable will marginally lead to an exp(�i) fold change
in TC rate. To illustrate this, we will consider the vari-
able SST. The sample mean of the SST predictor is
26.52°C and its sample standard deviation is 0.46°C

(Table 1). If the predicted SST is increased over the
mean by 1°C, the predictive TC rate will increase by
6.9%. Sometimes, one would like to consider the scale
of predictors as well, in which case the variation of a
predictor is preferably measured by its standard devia-
tion. For the SST predictor, an increase of the TC rate
by 3.1% is anticipated if the new observed SST predic-
tor is 26.98°C, which is one standard deviation over the
mean. Likewise, for SLP, an increase of 1 hPa over the
mean results in a 30.1% decrease in TC rates. Although
the 1-hPa change seems small, it is considerable when
viewed in the context of the seasonal mean condition in
the Tropics. As gleaned from columns 4 and 5 in Table
1, SST, relative vorticity, and PW are more likely to
appear as positive factors modulating the seasonal TC
frequency, while SLP and VWS act to affect the TC
activity in a negative way.

For operational settings, it is desirable to have pre-
dictors selected prior to May–June so decision makers
in relevant agencies could have longer lead times to
respond to potential hazards. In this regard, we have

FIG. 4. Plots of the first 5000 samples of (a),(c),(e),(g),(i) each coefficient parameter and (b),(d),(f),(h),(j) their
associated autocorrelation coefficients: (a), (b) SST; (c), (d) SLP; (e), (f) VWS; (g), (h) relative vorticity; and (i),
(j) PW.
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performed a separate analysis using only predictors of
March–April while keeping the July–September TC
frequency as the predictand. The Pearson correlation
between the median of predictive rate and independent
observations is 0.50. Out of 38 yr, there are 13 yr in
which the true observations lay outside the lower/upper
quartile bounds of the predictions. For both measures,
predictions using data only for March–April are not as
good as those that considering all predictors up to May–
June. This result is reasonable as predictors immedi-
ately preceding the peak hurricane season normally
yield more useful forecast skill.

7. Summary

Being able to forecast seasonal TC counts accurately
before its peak season is important. In this study, we
apply a Poisson generalized linear regression model to
the historical, seasonal TC counts over the central

North Pacific (CNP) and select the preseason SST,
SLP, PW, relative vorticity, and VWS as predictors.
Using a simple correlation analysis, critical regions over
the eastern and central North Pacific are identified for
each environmental variables. We then derive a Baye-
sian inference for this model by assuming a noninfor-
mative prior. An MCMC approach is adopted to nu-
merically analyze the data. Through a Gibbs sampler,
we are able to forecast the probabilistic distribution of
TC activity over the CNP prior to the peak season.
When tested for the period 1966–2003, the leave-one-
out cross-validation correlation test delivers satisfac-
tory results as seen in section 6.

The Bayesian regression model developed in this
study is valuable. First, it is physically based so it is
perhaps easier to interpret the success or failure of the
forecast. Second, forecasts of seasonal TC counts are
presented in probabilistic format, which is preferred
since it gives the uncertainty of the prediction. In addi-
tion, the proposed hierarchical probabilistic model can

FIG. 5. Estimated marginal posterior PDFs for model
parameter set (�,
) given the peak season TC counts in
the CNP and the selected predictors during 1966–2003.
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serve as the perfect platform for further researches be-
cause any probabilistic model can be treated as an in-
dependent modulo and seamlessly plugged into it under
Bayesian framework. For example, in this study we as-
sume the link function between the natural logarithm of
the TC rate and predictors be linear, which, however, is
not necessarily the best assumption. In principle, this
model can be extended to a nonlinear link function via
a proper nonlinear probabilistic model such as kernel-
based Gaussian processes. Obviously, the predictor se-
lection procedures are also needed to be revised ac-
cordingly in this regard. This promising approach, nev-
ertheless, is beyond the scope of this study.

Currently, the National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center
(CPC) is issuing their central Pacific hurricane outlook
but the method is a mix based on guidance and expe-
rience (i.e., subjective). The Bayesian probabilistic

model outlined in this study could serve as an objective
and additional tool to forecasters at the CPC and the
NWS Forecast Office in Honolulu, Hawaii. This tool,
together with others, will enable operational forecast-
ers and researchers working together to finalize the of-
ficial NOAA outlook for the central Pacific hurricane
season. In the meantime, a close dialogue with forecast
users (e.g., State Civil Defense) is envisioned so re-
searchers may explain the limitations and challenges of
the predictive research to users. For example, would
the central 50% range of the predictive TC variations
shown in Fig. 3 be useful for users? If not, what would
be the alternative? Through this user involvement, it is
hoped that the utility of hurricane climate forecasts
could be enhanced by systematic efforts to bring scien-
tific research and users’ needs together.
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APPENDIX

Conditional Posterior Distribution for a Poisson
Regression Model

For the sake of simplicity, in the following derivation,
we will drop the notation of the predictor matrix X,
which is always given by default.

Based on Eqs. (3) and (2), it is obvious that

P�Z|h, �, �2� � P�h|Z, �, �2�P�Z|�, �2�

� P�h|Z�P�Z|�, �2�. �A1�

Substituting the probability model (2) into (A1) and
ignoring the constant part yields

P�Z|h, �, �2� �
1

�N�
i�1

N

exp��eZi � Zihi �
1

2�2 �Zi � Xi��2�. �A2�

This is not a standard density distribution, but we can
design a Gibbs sampler through which the output of
each of its iteration will be of the distribution given by
(A2).

From (A2), it is easy to see that Zi is conditionally

independent from each other for i � 1, 2, . . . N given �
and 
2; therefore, sampling from Zi|h, �, Z�i, 
2, where
Z�i � [Z1, . . . , Zi�1, Zi�1, . . . , ZN]	, is equivalently
sampling from Zi|h, �, 
2. We ignore the constant part
and obtain

P�Zi|h, �, �2� � exp��eZi � Zihi �
1

2�2 �Zi � Xi��2�, i � 1, 2, . . . N. �A3�

TABLE 1. Bayesian analysis results. The name of each predictor
is labeled in the first column. The second and the third columns
refer to the mean and the std dev of each predictor for the period
1966–2003, respectively. The fourth column (%/Unit) denotes the
percentage change in TC rates corresponding to change by one
unit relative to its mean for each predictor. Similarly, the fifth
column (%/Std dev) denotes the percentage change in TC rates
corresponding to change by one std dev for each predictor. The
positive (or negative) sign in the fourth and the fifth columns
refers to increasing (or decreasing) TC rates. The units for SST,
SLP, PW, relative vorticity, and VWS are °C, hPa, kg m�2, 10�6

s�1, and m s�1, respectively. For SLP, the raw values have been
subtracted by 1000 hPa.

Predictor Mean Std dev %/Unit %/Std dev

SST 26.52 0.46 6.9% 3.1%
SLP 14.17 0.54 �30.1% �17.5%
VWS 27.19 3.48 �3.0% �10.1%
Vorticity �8.66 1.94 9.1% 18.5%
PW 13.87 1.12 8.7% 9.8%

4012 J O U R N A L O F C L I M A T E VOLUME 20



To sample Zi from (A3), in this paper we apply the
Metropolis–Hasting algorithm. One can refer to Ripley
(1987), Gelman et al. (2004), or originally Hastings
(1970) for the details of this algorithm.

After the latent vector Z is obtained, the model is
exactly the same as the so-called ordinary linear regres-
sion and its Bayesian inference derivation is straight-

forward. The joint posterior distribution for (Z, �, 
2)
can be expressed as

P�Z, �, �2|h� � P�h|Z, �, �2�P�Z, �, �2�

� P�h|Z�P�Z|�, �2�P��, �2�. �A4�

With (A4) and under the noninformative prior for the
parameter given by Eq. (6), we have

P��, �2|Z, h� � P�Z, �, �2|h� � P�Z|�, �2�P��, �2� � ��2���N�2�1� exp��
�Z � X����Z � X��

2�2 �. �A5�

From (A5), if 
2 is given, the conditional posterior dis-
tribution for � obviously is multivariate Gaussian:

�|Z, h, �2 � Normal��|�̂, �X�X��1�2�,

where �̂ � (X	X)�1X	Z. (A6)
Alternatively, if � is given, the conditional posterior

distribution for 
2 is a scaled-inverse-�2 distribution.
That is,

�2|Z, h, � � Inv � 	2��2|N, s2�,

where

s2 �
1
N

�Z � X����Z � X��. �A7�

In (A7), Inv � �2 refers to the scaled-inverse-�2 distri-
bution. With (A3), (A6), and (A7), we have completed
the proposed Gibbs sampler, and its stationary output
within each iteration will be equivalently sampled from
the joint posterior distribution of set (Z, �, 
2) from the
model given by Eq. (2).
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