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ABSTRACT

The theoretical spectra of certain parametric time series models with relevance to the Southern Oscillation
(SO) are determined and compared with those based on a frequency-domain approach. Consistent spectral
estimates are found for the two models selected in our earlier studies of the SO. All these results yield larger
power at low frequencies and a dominant peak around 3-4 yr. Some reasons are offered for the slightly different
behavior of the spectra as derived from the time-domain and frequency-domain approaches.

For the sake of comparison, the spectra of other simpler time series models are also calculated. While larger
power is found at low frequencies, no spectral peak exists in these simpler models. Some implications of the
quasi-periodic behavior found in the more complex models (i.e., an intermediate peak in the spectrum) are
discussed in the context of the persistence and forecasting of the SO.
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1. Introduction

The Southern Oscillation (SO) is the most dominant
mode in short-term climate variation over the globe,
particularly in the tropics and midlatitudes, accounting
for a significant portion of the variance in the global
climate system. The state of the SO is generally de-
scribed by an index (SOI), which is the normalized
sea level pressure difference between Tahiti and Dar-
win. Based on the Fourier transform of the autoco-
variance or autocorrelation function (hereafter referred
to as the frequency-domain approach), many studies
have found a broad range of large power in the spec-
trum of the SOI from 2-10 yr, with a peak around 3~
5 yr (e.g., Chen 1982). Similar spectral properties are
also revealed in the Darwin pressure series alone
(Trenberth 1976; Trenberth and Shea 1987). This
quasi-periodic behavior is also found in the sea surface
temperature over the tropical eastern Pacific (e.g.,
Rasmusson and Carpenter 1982) and is sometimes re-
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ferred to as the El Nifio-Southern Oscillation (ENSO)
“signal.”

Recently, Chu and Katz (1985; hereafter referred to
as CK1) showed that fluctuations in the SO can be
adequately represented by parametric time series mod-
els. For example, a third-order autoregressive [AR(3)]
model is representative of the seasonal SO fluctuations.
In brief, on the seasonal time scale, the current state
of the SO can be expressed in terms of its immediate
past three states and a current white noise input. Now
the question arises as to what sort of theoretical spec-
trum a parametric time series model can produce. In
particular, what would be the preferred spectral char-
acteristics as determined from the models such as se-
lected by CK1? Will their behavior be similar or dif-
ferent from those calculated from the frequency-do-
main approach? As noted by Jolliffe (1983) and
Koscielny and Duchon (1984) in modeling other cli-
mate time series, a low-order autoregressive (AR ) pro-
cess can produce time series with quasi-periodicities
(i.e., intermediate peaks in the spectrum), thus sug-
gesting that the models selected in CK1 might well
exhibit cyclic behavior consistent with that observed
for the SOI. However, in practice, this consistency is
not guaranteed, since the shape of the spectrum de-
pends on the specific parameter values of the model.

Given this complexity, the purpose of this note is to
assess whether the well-known quasi-periodic nature
of the SO also could be reproduced from a time-domain
approach using models such as those found in CK1.
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This approach provides another criterion by which to
assess the adequacy of the models in representing the
temporal behavior of the SO, recalling that these mod-
els were originally selected on the basis of a different
time-domain criterion, i.e., the Bayesian information
criterion. The theoretical spectra of parametric time
series models are formulated in section 2. Section 3
provides an application to the SOI, and section 4 con-
tains the summary and discussion.

2. Theoretical spectrum
a. General form

A stochastic process generated from a linear filter
¥(B) with input g, can be represented as the infinite-
order moving average [i.e., MA(co )] process:

Xi=a+ya-+vaq2+ -

@«
= 2 ¥ja-; = Y(B)a,

j=0
with Yo = 1. The Y(B) is a polynomial and B is the
backward shift operator, defined as B%q, = a,_,. The
input g, is a white noise process, implying a lack of
memory of prior states for this input process. The

spectrum of this linear process is (Box and Jenkins
1976, p. 50):

8))

p(f) =20 |We™®)|* 0<f<3, (2

where o, is the variance of the white noise process. It

Lol e

p(f) =
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is sometimes convenient to consider the spectral density
function

r(f)
2

(1

s(f) = (3

where ¢ is the variance of the X, process. This form
.of normalization makes the area under the curve from
f =0tof = 0.5 (i.e., the Nyquist frequency) equal to
unity.

b. Autoregressive models
For a pth-order autoregressive [i.e., AR(p)] process,

WB)=¢"'(B) 4
where ¢(B) =1 — ¢,B — ¢B*- -+ — ¢,B”. Using
(2) and (4), the generalized form of the theoretical
spectrum of an AR(p) process can be expressed as
p(f)
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In meteorology and physical oceanography, an
AR(1) (Markov or red-noise) process or an AR(2)
process often can provide a good approximation to the
data (e.g., Leith 1973; Shukla and Mo 1983; Moene
1986). Expressions for the power spectrum of an AR(1)
or AR(2) process can be easily derived from (5) and
are given by Jenkins and Watts (1968) or by Box and
Jenkins (1976, p. 58, p. 62). In modeling the seasonal
SOIL, an AR (3) process was found to be optimal (CK1).
For this particular process, (5) reduces to

20,2

1+ @2 + ¢ + ¢52 — 2(d1 — ¢1 b2 — 6203) cos2af — 2(dy — ¢1¢3) cosdnf — 23 cosbnf

(6)

This equation thus provides an explicit representation of the spectrum in terms of the individual parameters

of the AR(3) process.

¢. Autoregressive-moving average models

From (2), the generalized form of the theoretical spectrum of an autoregressive-moving average [ARMA (p,

q)] process is

|1 - ole—-i21rf_.. .. — oqe—inqflz

p(f) = 20/

|l _— ¢]e—i2rf_ « o 8 — ¢pe—i21rpf|2 *
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Here ¢’s and &s are the autoregressive (AR) ahd moving-average (MA) parameters, respectively; and p and ¢
denote the order of the AR and MA terms, respectively. The simplest form of a mixed model is the ARMA(1,
1) process, but this model does not adequately represent the monthly SOI. Instead, an ARMA(1, 7; 1) process
was found by CK1 to represent the monthly data more accurately. This process is defined as

X=Xy + 01X+ a— b1a,,. ®

From (7), the spectrum of this process is given by

1+ 6,>— 20, cos2zf

Y = 2
plf) = 20, 1+ ¢% + ¢7° — 2¢, cos2af — 2¢; cosldnf + 2¢,¢; cos12nf

®
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3. Spectrum of SOI
a. Frequency-domain approach

As a first step of the analysis, a smoothed estimate
of the spectral density function from a frequency-do-
main approach is obtained using the following formula:

m—1
> r(kYW (k) cos(2nfkAt)] At,
k=1

S()=201+2

(10)

where m, r(k), W(k), and At are the maximum lag
(i.e., truncation point), sample autocorrelation func-
tion, lag window, and time interval between observa-
tions (i.e., 1 month or 1 season), respectively. We em-
ploy the Parzen lag window (e.g., Jenkins and Watts
1968, p. 244) i.e.,

( k\2 1k \? m
1= 6() +o() e <2
- _ Lkly? m
mm_<41 m), 2 <kl <m
0, k| > m.
| : (1)

This window is used commonly to smooth the sample
spectrum of atmospheric time series.

The intelligent choice of the truncation point, m, is
a rather difficult task in spectral analysis and certainly
lacks a clear-cut criterion. Empirical rules indicate that
an appropriate value of » should be close to n/6 when
100 < n < 200, where n represents the total number
of observations used in the spectral analysis (Chatfield
1975). As n increases above 200, an appropriate value
of m should be correspondingly smaller than #/6. In
particular, for 1000 < n < 2000, a value of m should
be less than n/10. Keeping these rules in mind, we
choose m as 30 for the seasonal case (n = 194) and 60
for the monthly case (n = 584).

The sea level pressure observations at Tahiti and
Darwin were obtained from the Monthly Climatic Data
Jor the World and the World Weather Records. As in
CK, the pressure series at each station is normalized
first and the Tahiti-minus-Darwin difference forms the
monthly or seasonal SOI. As shown in Fig. 1, the pre-
ferred period of the seasonal SOI based on the fre-
quency-domain approach is at time scales of more than
8 seasons; a large peak is present near 20 seasons (5
yr). Analyzing Tahiti and Darwin pressure series in-
dividually, Trenberth (1976) noted that a spectral peak
near 20 seasons is present for both stations. His peak
is statistically significant at about the 5% level relative
to red noise [i.e., an AR(1) process]. More recently,
Trenberth and Shea (1987) found a spectral peak cen-
tered around 60 months (or 20 seasons) for a detrended
Darwin pressure time series. This quasi-periodicity is
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FiG. 1. Spectral density function of the seasonal SOI from the
frequency-domain approach (broken curve) and time-domain ap-
proach (solid curve). Analysis period is from spring 1935 to summer
1983. Parzen lag window is used with a maximum lag of 30 seasons
(broken curve). Note that the scale on the ordinate is logarithmic,
whereas the scale on the abscissa is linear.

considered to be one of the major features of the ENSO
phenomenon.

b. Time-domain approach

As mentioned earlier, ARMA processes may possess
theoretical spectra with intermediate peaks under cer-
tain conditions. For example, the spectrum of an
AR(2) process contains a peak or trough if

[¢1(1 — @2)| < |442] (12)

(Jenkins and Watts 1968, p. 229). The spectrum con-
tains a peak if, in addition to (12), ¢, < 0.

1) SEASONAL SOI

From CK|1, the three parameter estimates and the
white noise variance for an AR(3) model of the sea-
sonal SOI data are ¢; = 0.6885, ¢ = 0.2460, o5
= —0.3497, and 5,2 = 1.505. Given these values, it is
possible to estimate the theoretical spectrum of an
AR(3) process by means of (6). Also shown in Fig, 1
is the spectrum of this AR (3) process. A large portion
of power is found in the lower frequency end, with a
peak somewhere near 4 yr (14.3 seasons). Moreover,
both spectra are marked by an increase in energy in
the high-frequency tail. Thus, the spectral estimates
from the time-domain and frequency-domain ap-
proaches are reasonably consistent.
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Nevertheless, one notices that the spectral peak as
determined from the time-domain approach does not
exactly match the peak from the frequency-domain
approach. One reason for this difference is that the
selected time series model in CK1 can only be regarded
as representative of the general behavior of the SO
fluctuations, but not representative -of its detail, since
to achieve parsimony and maximize predictability
(Chu and Katz 1987; hereafter referred to as CK2) it
involves only three parameters. For instance, the theo-
retical autocorrelation function of the selected model
behaves like the sample autocorrelation function of the
SOI, but only up to about lag-9 (see Fig. 6 in CK1).
In deriving the spectral estimates from the frequency-
domain approach, lags up to 30 seasons are used [see
(10)-(11)]. Although the autocorrelations after lag-9
are small, their cumulative contributions to the esti-
mated spectrum (10) will make a difference in such a
way that the energy distribution for the frequency- and
time-domain approaches will be slightly different. In
particular, the spectral density function estimated by
the time-domain approach will necessarily be smoother
in appearance than the same function estimated by the
frequency-domain approach. Another reason for the
difference between these two approaches is simply the
uncertainty in point estimates of the sample spectrum,
because the sample size is finite.

Now the question becomes whether a lower-order
model than AR(3) also produces a quasi-periodicity
such as the one shown in Fig. 1. The autocorrelation
function of an AR (1) process always decays exponen-
tially to zero, implying no intermediate spectral peak.
For the case of an AR(2) process, different parameter
estimates (i.e., different values of ¢, and ¢,) give rise
to various forms of spectra, either with a single inter-
mediate peak or trough or with no intermediate peak
or trough (Jenkins and Watts 1968, p. 229). For the
AR(2) model of the seasonal SOI, since ¢; = 0.670
and ¢, = 0.021, the inequality (12) is not satisfied.
Hence, the spectral density function has no interme-
diate peak. Keeping the estimate of ¢, fixed, the esti-
mate of ¢, would need to be less than —0.20 or more
than three standard errors less than its actual value to
produce an intermediate peak in the spectrum.

2) MoNTHLY SOI

Given the parameter estimates and the white noise
variance for the ARMA (1, 7; 1) model of the monthly
.SOI as given in CK1, we can calculate the spectrum
of this model directly by means of (9). The theoretical
spectral density function is shown in Fig. 2, with a
preferred peak at approximately 40 months. This result
is consistent with the estimated spectral density func-
tion also shown in Fig. 2, in that a spectral peak occurs
near 50 months. The difference between these two
spectra, again, is in part due to the fact that the selected
ARMAC(1, 7; 1) model only mimics the general behav-
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FIG. 2. Spectral density function of the monthly SOI from the
frequency-domain approach (broken curve) and time-domain ap-
proach (solid curve). Analysis period is from January 1935 to August
1983. Parzen lag window is used with a maximum lag of 60 months
(broken curve).

ior of the monthly SO fluctuations. The uncertainty
in point estimates from the frequency-domain ap-
proach also contributes to this difference. In an attempt
to see whether a model simpler than the ARMA(], 7;
1) can produce quasi-periodicities that the SOI has been
claimed to possess, the spectral density function of the
simpler ARMA(1, 1) model of the monthly SOI has
been computed (not shown). While large power is
found at low frequencies for this ARMA (1, 1) model,
it is clear that there is no intermediate peak at around
40 or 50 months in its spectral density function.

4. Summary and discussion

The theoretical spectra of time series models which
are representative of the monthly and seasonal SO
fluctuations have been determined. Results indicate
that the two models selected by CK 1 and CK2 produce
a dominant spectral peak in the range between 3 and
4 yr and small power at high frequencies, features con-
sistent with those obtained from the frequency-domain
approach in this paper and previously by other re-
searchers. For the seasonal index, the spectra of red-
noise and AR(2) models are marked by large power
at low frequencies but no intermediate peak. This same
feature is also true for the monthly index when an
ARMA(1, 1) model is assumed.

The two stochastic models selected in CK1 and CK2
have some important implications. For instance, since
the AR(3) model involves three preceding seasonal
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SOI values and a random noise input, it implies that
only short-term memory (in the sense of conditional
independence) is sufficient to describe the current be-
havior of the SO fluctuations. As such, other complex
physical mechanisms such as extratropical atmospheric
forcing may become of secondary importance once the
ENSO has started to swing. This interpretation also
appears plausible when applied to' an independent
forecasting experiment as shown in CK1 and CK2, in
which the forecast skill is mainly derived from relatively
short-term “persistence” in the SOI This persistence,
however, is determined by its past three seasonal values
and the associated parameters which, loosely speaking,
can be regarded as specifying the decay rates of anom-
alies. It should be noted that our definition of persis-
tence is somewhat different from the more common
usage in which only the most recent value is employed.

But what causes the persistence in the SO? The at-
mosphere alone does not intrinsically have such a rel-
atively long time scale. The tropical Pacific Ocean,
though, may exhibit persistence on such a time scale,
but its anomalous heat content is intimately related to
the atmospheric forcings (e.g., Wyrtki 1975). Thus,
the persistence observed in the SO is possibly a man-
ifestation of positive feedback between ocean and at-
mosphere, since the SO is closely connected to sea sur-
face temperature anomalies in the tropical Pacific.

This feedback may involve surface westerly wind
bursts in the equatorial western or central Pacific, as
observed in the early phase of most ENSO events.
Through dynamic processes, these bursts result in warm
upper ocean waters located downstream from the wind
forcing region (e.g., McCreary 1976; Luther et al.
1983). Wright (1985) also stressed the importance of
positive feedback in the persistence of the SO, but his
interpretation is based on cloudiness and sea surface
temperature relationships in the eastern tropical Pacific.

The existence of a well-defined spectral peak as found
by many researchers (see Figs. 1 and 2) suggests that
the ENSO phenomenon is a recurrent one, with the
interval between events ranging from 2 to 10 yr. Ini-
tially, this kind of quasi-periodic feature offered some
hope for prediction until the next event. Nevertheless,
no successful stochastic climate prediction has been
made beyond the limits of the persistence of the SO
(Wright 1985). In fact, based on the SOI time series
itself, it is demonstrated in CK2 that the theoretical
predictability of the SO almost drops to zero beyond
10 months or 3 seasons ahead. Although the spectral
peak as derived from time series models is similar to
that obtained from a frequency-domain approach,
caution is warranted in the interpretation of the broad
peak in the context of SO prediction.
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