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ABSTRACT

A relative measure of actual, rather than potential, predictability of a meteorological variable on the basis of
its past history alone is proposed. This measure is predicated on the existence of a parametric time series model
to represent the meteorological variable. Among other things, it provides an explicit representation of forecasting
capability in terms of the individual parameters of such time series models.

As an application, the extent to which the Southern Oscillation (SO), 2 major component of climate, can be
predicted on a monthly as well as a seasonal time scale on the basis of its past history alone is determined. In
particular, on a monthly time scale up to about 44% of the variation in SO can be predicted one month ahead
(zero months lead time) and about 35% two months ahead (one month lead time), or on a seasonal time scale
about 53% one season ahead (zero seasons lead time) and about 31% two seasons ahead (one season lead time).
In general, the degree of predictability naturally decays as the lead time increases, with essentially no predictability
on a monthly time scale beyond ten months (nine months lead time) or on a seasonal time scale beyond three
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seasons (two seasons lead time).

1. Introduction

Prediction of the weather and climate has always
been a challenge to atmospheric scientists, especially
when attempts have been made to forecast atmospheric
behavior (e.g., the position and intensity of troughs at
500 mb level) beyond a few days. Because certain ap-
proximations are made in numerical model initializa-
tion schemes, the error associated with predictions
based on such models inevitably increases as the lead
time increases. As an alternative approach for monthly,
or seasonal, or longer-range climate prediction, statis-
tical techniques often offer promising results (e.g.,
Hastenrath, 1986; Namias, 1985). In particular, they
provide a standard of comparison for dynamical
methods.

One way to assess predictability, especially on time
scales of a year or more, is by means of an indirect
approach that produces estimates of “potential” pre-
dictability. Actual climatic variability (e.g., interannual
variance derived from monthly or seasonal means),
consisting of natural variability possibly confounded
with a signal, is compared to an estimate of natural
variability (or climatic “noise”) obtained from the level
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of short-term weather fluctuations, regarded as unpre-
dictable on a climatic time scale (e.g., Madden, 1976;
Shukla and Gutzler, 1983; Trenberth, 1985). Although
the potential predictability approach is able to detect
the presence of low frequency signals, it does not ex-
plicitly identify the source of these signals (e.g., climatic
trends). In particular, this approach does not provide
a means of predicting future values.

In view of the disadvantages inherent in the potential
predictability approach, the primary goal of this paper
is to consider an alternative method to assess what
couid be termed “actual” predictability. Our approach
is predicated on the availability of a statistical model
to represent the temporal behavior of the meteorolog-
ical variable under study. It involves an explicit esti-
mate of how well, in a relative sense, such a time series
model is able to forecast the future behavior of the
meteorological variable.

It should be noted that Davis (1978) proposed a
somewhat related measure of “intrinsic” predictability,
and applied it to the forecasting of monthly pressure
anomalies over the North Pacific Ocean from previous
monthly anomalies for both pressure and sea surface
temperatures. His approach was based on regression
analysis and expressions were obtained for intrinsic
predictability in terms of autocorrelations and cross
correlations. Our approach involves the derivation of
expressions for predictability in terms of the formal
parameters of time series models and could be viewed
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as a theoretical extension of certain aspects of Davis’
work.

As an example of the application of this approach
to actual data, a simple Southern Oscillation Index
(SOI) will be used. This index is defined as the Tahiti
(17.5°S, 150°W) minus Darwin (12.4°S, 130.9°E)
normalized monthly (or seasonal) mean sea level pres-
sure series. The SOI is regarded as a prime indicator
for the strength and variation of the large-scale Walker-
type circulation involving atmospheric mass exchanges
between the Pacific and Indian Oceans. Normalization
is achieved by taking the difference between raw
monthly (seasonal) mean data and the long-term
monthly (seasonal) average, and then by dividing this
departure by the standard deviation for each month
(season) at these two stations (see Chu and Katz, 1985;
hereafter referred to as CK). This method of normal-
ization implies that monthly and seasonal SOI time
series both have zero mean.

Figure 1 displays the time series of seasonal SOI from
spring 1935 to fall 1984, with the large negative anom-
alies between summer 1982 and spring 1983 being most
evident. Note that this diagram is an updated version
of that shown in CK. Since the 1982-83 anomalies
were associated with profound socioeconomic conse-
quences such as severe drought in some areas and un-
usually heavy rainfall in other regions (Glantz, 1984;
Glantz et al., 1987), it is important to determine the
extent to which skillful predictions of the Southern Os-
cillation (SO) can be made. In view of the readily avail-
able pressure observations at Tahiti and Darwin
through the global telecommunication systems, it be-
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comes increasingly imperative to know a priori the de-
gree of predictability of such a large-scale circulation
phenomenon.

Chu and Katz (1985) were primarily concerned with
the identification of the best fitting autoregressive-
moving average (ARMA) processes for the monthly
and seasonal SOI time series. Some attention was also
devoted to the degree of predictability of the 1982-83
extreme SOI anomalies (in conjunction with an intense
El Nifio event). The present paper extends this work
by considering the overall degree of predictability of
the SO associated with the ARMA models selected in
CK. First, measures of predictability for general ARMA
processes are discussed in section 2, and then their ap-
plication to the SOI is treated in section 3. A summary
and conclusion are found in section 4.

2. Measures of predictability
a. Definition

Attention is restricted to stationary stochastic pro-
cesses, although there is some evidence that even time
series derived from normalized data, such as the SOI,
are phase-locked to the annual cycle (e.g., Wright,
1985). For simplicity, only a particular class of sta-
tionary models known as ARMA processes is actually
considered. A stationary stochastic process, X;, with
mean zero (without loss in generality) and variance ¢?
is an ARMA(p, q) process if it can be expressed as

p q
X=2 ¢ Xita,— 2 0;a, ;.

i=1 Jj=1

(1)
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FIG. 1. Time series of seasonal SOI from spring 1935 through fall 1984.
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Here the ¢ and 8 are called autoregressive (AR) and
moving average (MA) parameters, respectively. In (1),
it is assumed that the g, are uncorrelated random vari-
ables, each of which has a Gaussian distribution with
mean zero and variance ¢,2. It should be noted that
certain constraints must be placed on the ¢ and @ in
order for the X,-process to actually be stationary. See
Katz and Skaggs (1981) or CK for a more detailed
discussion of the application of ARMA processes to
meteorological data.

To define our measures of predictability, properties
of the forecasts at time origin ¢ for / time steps ahead
(=1,2,--.), Xi(I), produced by ARMA processes
are examined. From (1), this forecast can be written
as

P q
X(D=2 ¢ Xprrmit = 2 0jat+1~j-

i=1 Jj=1

¢))

In (2), forecasted values (zeroes) are substituted for X’s
(a’s) that have not yet been observed. To simplify the
discussion, we assume for now that the parameters of
the ARMA process (¢, 0, ¢,2 and ¢%) are known. This
assumption implies that the present and past error
terms (a,, a,-1, a;-2, . . .) are also known. In section
2c, this assumption will be relaxed.
We let .
e(l)=Xi— X, () 3

denote the /[-step ahead forecast error and V(/)
= var|e,(/)] denote its variance. An ARMA(p, g) pro-
cess has an equivalent representation as an infinite-
order MA process; namely,

X= 2V, “)

=0
with ¥, = 1 (Box and Jenkins, 1976, p. 47). Using (4),
it is straightforward to show that the forecast error
variance can be expressed as

y(1)= Uaza

-1
Vi=(1+ Z¥Pes, 1=2,3,-- &)
=1

j=

One relative measure, A;, of how well the ARMA
process forecasts / time steps ahead would involve
comparing the variance of the /-step ahead forecast er-
rors to the variance of the X,-process (namely, ¢*). Spe-
cifically, the proportion of variance “explained” by the
Istep ahead forecasts is

©6)

Itis convenient to define Ay = 1. Using the relationship
between the process and error variances, the /-step
ahead predictability for any ARMA process can be ex-
pressed as solely a function of the Y-weights. If we define

MONTHLY WEATHER REVIEW

VOLUME 115
AD=39p, 1=0,1,- -+, ™
=i
then (6) becomes
A= A()/A0). (8)

The stationarity constraint on the ARMA parameters
(¢ and 6) implies that (7) is a finite sum.

From this representation of the /-step ahead pre-
dictability in terms of the y-weights (7)~(8), it is clear
that 0 < N\; < 1, with A\; = O for the case of no predict-
ability /-steps ahead and \; = 1 for the case of perfect
predictability /-steps ahead. Moreover, A; necessarily
tends to zero as / tends to infinity. For meteorological
variables, one should naturally expect a value of \;in-
termediate between zero and one for relatively short
lead times /.

This measure of predictability (for the case of / = 1)
has been proposed by Box and Tiao (1977) and is the
time series analogue of the so-called R? (or coefficient
of multiple determination) in regression analysis. It has
also been proposed as the appropriate standard of
comparison when dealing with multiple time series;
that is, when forecasts of the future behavior of the X,-
process are made on the basis of not only its own past
history, but on the past history of other time series as
well (Pierce, 1979). One by-product of this approach
is that it provides an explicit representation of fore-
casting capability in terms of the parameters (¢ and 8)
of an ARMA process.

b. Expressions

In this section, the general definition of predictability
(6) is applied to special cases of ARMA processes. We
first note that A; can always be expressed as a function
of the ¢’s and 6’s alone. This result follows because the
Y-weights in (4) can be calculated by means of a re-
cursion that involves only the ¢ and 8 (Box and Jenkins,
1976, p. 134).

1) \; FOR AR(p) PROCESS

For an AR(p) process, the one-step ahead predict-
ability (6) reduces to

p
A= 2 pidi.

i=1

&)

Here p; denotes the theoretical ith-order autocorrela-
tion coeflicient for an AR(p) process. As such, the p
are related to the ¢ by the so-called Yule-Walker equa-
tions, implying that A, can be determined from the ¢
alone. In fact, for very low-order AR processes, ana-
lytical expressions for A; that involve only the ¢ can
be obtained.

For an AR(1) process, (9) reduces to

’ )\1 =¢12. (10)
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Hence the single parameter ¢; plays precisely the same
role as the correlation coefficient in simple linear
regression. For an AR(2) process, (9) reduces to

M=o %[(1+¢2)/(1 - d2)] + 657 (11)

An analytical expression for A; in the case of an AR(3)
process, which, incidentally, was found by CK to pro-
vide a good fit to the seasonal SOI time series, can also
be derived [see (A3) in the Appendix].

2) N (I > 1) FOR AR(p) PROCESS

As an example, consider the case of predictability
two steps ahead. Using (9) and the fact that ¥, = ¢,
for an AR(p) process (Box and Jenkins, 1976, p. 134),
(8) reduces to

?
AN=(1+¢2) 2 pidi— i

i=1

(12)

For an AR(1) process, the predictability / steps ahead
can be expressed in closed form as

AI=¢1213 I= 192,' MY (13)

indicating that in this case predictability decreases at
a geometric rate towards zero as the lead time increases.

3) A\, FOR ARMAC(1, 1) PROCESS

Analytical expressions for the predictability of gen-
eral ARMA processes, involving the simultaneous use
of both autoregressive and moving average terms, are
somewhat more difficult to derive. We present the re-
sults of only one special case, namely an ARMAC(1, 1)
process, which, incidentally, was found by CK to be
the simplest model that provided a relatively good fit
to the monthly SOI time series. For an ARMA(I, 1)
process, the one-step ahead predictability (6) reduces
to

A =(¢1—0:/(1 46>~ 2¢,0)). (14)

4) \; (> 1) FOR ARMAC(I, 1) PROCESS

Using the closed form expression for the y-weights
of an ARMAC(1, 1) process (Box and Jenkins, 1976, p.
154), the predictability at higher lead times is given by

A=, (15)

where A, is specified by (14). (15) indicates that the
predictability for an ARMA(], 1) process decays at a
geometric rate toward zero for higher lead times, the
only difference from the result (13) for an AR(1) process
being that the starting value involves both of the pa-
rameters ¢; and 6.

I>1,

c. Estimation

Strictly speaking, all of the expressions for the mea-
sures of predictability (6) that have been presented so
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far are actually only valid when the parameters of the
ARMA process are known. In practice, it is necessary
to estimate these parameters on the basis of a finite
sample of observations for the meteorological variable.
Standard techniques, many based on least squares or
approximate least-squares criteria, are available to pro-
duce such parameter estimates (e.g., Box and Jenkins,
1976, pp. 495-516). The simplest approach to esti-
mating predictability would be to substitute these es-
timated values in place of the corresponding ¢ and 6
that appear in the expressions for predictability. We
term such estimates as theoretical predictability. One
potential drawback to this approach is the possibility
of introducing a bias into the predictability estimates.
Namely, because the uncertainty inherent in these pa-
rameter estimates is ignored in the expression (5) for
the forecast error variance, the predictability estimates
are positively biased (Akaike, 1969).

On the other hand, if unbiased estimates of the actual
level of predictability that has been achieved on the
basis of the finite samples currently available are de-
sired, then adjustments could be made to remove this
positive bias. One approximate procedure is based on
the concept of Finite Prediction Error introduced by
Akaike (1969). The approximate effect of estimating
the s = p + g parameters of an ARMA(p, g) process
is to inflate the variance V(/) of prediction errors / steps
ahead (5) by the factor 1 + s/n, where n denotes the
total number of observations on which the parameter
estimates are based (Jones, 1983). If we let A} denote
the adjusted estimator of predictability / steps ahead
that takes into account this inflation factor, then (6)
becomes :

s
7\7=>\1—;(1—>\1)- (16)

Davis (1978) also attempted to correct for this so-called
“artificial skill” in a similar manner.

An alternative technique for estimating predictability
would simply be to compute \; on the basis of actual
I-step ahead prediction errors observed for an inde-
pendent sample. Specifically, the definition (6) for A
suggests that observed predictability A; be calculated

by
T

1 .
72K X DY
N=1— T‘ = , (17)

— —_v\2

T_I[E(Xt X)]

where
_ 1T
X—-I-,EX,. (18)

=1

Here X, denotes an independent observation not em-
ployed in estimating the parameters of the time series
model, and X,_,(/) denotes the corresponding forecast
based on the fitted model and (2), =1, 2,- - -, T. We
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term such estimates as observed predictability. Such an
exercise is useful for verifying whether the appropriate
form of stochastic model has been fit to the data. How-
ever, from the perspective of assessing predictability,
this approach has the disadvantage that it is no longer
possible to specify the manner in which the individual
model parameters contribute to the predictability es-
timates that are obtained.

3. Application to SOI

a. Observed monthly and seasonal predictability

We will first consider the degree of observed pre-
dictability for the monthly and seasonal SOI. For the
sake of comparison, both AR(1) and ARMAC(l, 1) pro-
cesses are used to forecast the monthly SOI and both
AR(1) and AR(3) processes to forecast the seasonal
SOI Keep in mind, nevertheless, that it was found in
CK that the fit of an AR(1) process to the SOI was
inferior to that of an ARMA(1, 1) process in the
monthly case and to that of an AR(3) process in the
seasonal case.

To illustrate the application of (17), we restrict con-
sideration to the observed predictability one-step and
two-steps ahead. In a way similar to the one-step ahead
forecasts produced in CK, two-step ahead forecasts are
computed at various time origins. For instance, a fore-
cast for June 1982 is produced using ARMA parameter
estimates based on monthly SOI observations from
January 1935 through April 1982, and a forecast for
July 1982 is made using parameter estimates based on
observations through May 1982, and so on.

For an AR(p) process, the expression (2) for /-step
ahead forecasts at time origin ¢ is equivalent to

r
Xt(l) = Z Di(DX i1 (19)

=

For one-step ahead forecasts, the weights are simply
o:(1)=¢;,i=1,2,-+ «, p. For two-step ahead forecasts,
the weights are given by

6:2y=¢1;+ biry, i=
$5(2) = ¢19,.

This result demonstrates how any /-step ahead forecast
based on an AR(p) process can be expressed as a
weighted sum of a finite number of current and past
observations.

For a general ARMA(p, q) process, the expression
for I-step ahead forecasts is more complex because noise
terms are also involved. Nevertheless, a forecast still
can be expressed as a weighted sum of current and past
observations, with the sum now being infinite. From
the representation of an ARMA(p, g) process as an
infinite-order AR process, the expression (2) for /-step
ahead forecasts at origin ¢ is equivalent to

1,2’. ¢ .,p_—l,
(20)
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Xt(l) = Z LE () (R (1) -

i=1

Because the w-weights constitute a convergent series,
this sum can be treated as finite for operational pur-
poses. For the case of an ARMAC(1, 1) process, the 7~
weights used to obtain the one-step ahead forecast are
given by

Wi(1)=(¢l~01)01i_la i= 1’29' t . (22)

Similarly, the w-weights for the two-step ahead forecasts
are given by

w(2) = ¢\(d1 — 00,7, (23)

Table 1 contains the estimates of one- and two-
month ahead observed predictability of the monthly
SOI time series (space does not permit individual
monthly forecasts to be listed). Note that, since SOI is
a time-averaged quantity, “one-month ahead” forecasts
actually have zero months lead time and “two-month
ahead” forecasts actually have one month lead time.
The time period for which monthly SOI is forecast has
been chosen in order to mask the onset of the large,
negative SOI values that persisted from Junée 1982 until
April 1983. The estimate of one-month ahead observed
predictability is slightly greater for an ARMA(L, 1)
process than for an AR(1) process, whereas the estimate
of :two-month ahead observed predictability is sub-
stantially greater for an ARMAC(I, 1) process.

Table 2 gives seasonal SOI forecasts, based on AR(1)
and AR(3) processes, as well as the actual SOI seasonal
observations from summer 1982 through fall 1984. For
both models, the one-season ahead individual forecast
errors are usually smaller than the corresponding two-
season ahead errors. In general, except for their onset
in summer 1982, the major 1982-83 SOI anomalies,
together with the more recent minor anomalies in 1984,
could have been predicted with a considerable degree
of skill at least one season in advance (i.e., zero seasons
lead time) using an AR(3) process.

i=1,2’. ..,

TaBLE 1. Estimates of one- and two-month ahead observed
predictability of monthly SOI time series.

ARMA(I, 1)
AR(1) process® process®
Time period® A A2 A A2
Jun 1982-Nov 1984 51.1% 16.3% 52.1% 29.0%

® For which forecasts were made.

® Time period on which AR(1) and ARMA(1, 1) parameter esti-
mates are based ranges from January 1935 through May 1982 for
one-month ahead June 1982 forecast to January 1935 through Oc-
tober 1984 for one-month ahead November 1984 forecast; and from
January 1935 through April 1982 for two-month ahead June 1982
forecast to January 1935 through September 1984 for two-month
ahead November 1984 forecast.
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TABLE 2. One- and two-season ahead forecasts and estimates of
observed predictability of seasonal SOI time series.
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TABLE 3. Estimates of one- and two-month ahead theoretical
predictability of monthly SOI time series.

Forecast SOI

AR(1) process® AR(3) process®

Actual
Season =1 =2 I=1 1=2 SOI

Summer 1982 —0.311 0.435 —0.082 0.318 —4.08
Fall 1982 -2.628 —0.206 —3.059 -0.506 —4.73
Winter 1983 -3.093 —1.692 -3996 —2.921 —5.88
Spring 1983 ~3.898 —2.023 -3.732 -2.564 —3.57
Summer 1983 —2.445 —-2.585 -—2.362 -2.592 —0.62
Fall 1983 —0.427 —1.147 0.536 —0.528 1.17
Winter 1984 0.801 -0.293 1.741 1.613 0.53
Spring 1984 0.364 0.549 0.865 1.835 —0.55
Summer 1984 —0.377 0.249 -0.586 0.316 —0.38
Fall 1984 -0.260 —0.258 —0.568 —0.747 0.17

N 46.8% —15.1% 52.6% 1.7%

2 Time period on which AR(1) and AR(3) parameter estimates are
based ranges from spring 1935 through spring 1982 for one-season
ahead summer 1982 forecast to spring 1935 through summer 1984
for one-season ahead fall 1984 forecast; and from spring 1935 through
winter 1982 for two-season ahead summer 1982 forecast to spring
1935 through spring 1984 for two-season ahead fall 1984 forecast.

Table 2 also contains the estimates of one- and two-
season ahead observed predictability of the seasonal
SOI time series. The estimate of one-season ahead ob-
served predictability for an AR(3) process is somewhat
greater than that for an AR(1) process. Neither model
indicates any observed predictability two seasons
ahead. Because the time period for which seasonal SOI
is forecast has been intentionally chosen for its known
anomalous characteristics, any predictability two sea-
sons ahead might have been hidden.

b. Theoretical monthly and seasonal predictability

We now apply the expressions for the measure of
theoretical predictability defined in section 2 to the
monthly and seasonal SOI time series. For the monthly
SOI data, the theoretical predictability is estimated us-
ing (13) when an AR(1) process is assumed and using
(14) and (15) when an ARMAC(1, 1) process is assumed.
Table 3 gives estimates of one- and two-month ahead
theoretical predictability when the corresponding
ARMA parameter estimates are substituted into (13)-
(15). These ARMA parameter estimates are obtained
from fitting the monthly SOI data for the entire period
of record (i.e., January 1935 through November 1984)
and also for a somewhat shorter period (i.e., January
1935 through May 1982).

The estimates of one- and two-month ahead theo-
retical predictability with an AR(1) process using the
entire SOI database are about 39% and 15%, respec-
tively (see Table 3). In the case of an ARMAC(1, 1)
process, these estimates increase to 44% and 35%, re-
spectively. They are also larger than those derived from
the shorter database. A comparison of Tables 1 and 3

ARMA(I, 1)
AR(1) process process
Time period® A A A A,
Jan 1935-May 1982 34.9% 12.2% 40.9% 32.2%
Jan 1935-Nov 1984 39.0% 15.2% 44.1% 34.5%

2 On which AR(1) and ARMA(1,1) parameter estimates are based.

indicates considerable discrepancies among observed
and theoretical predictability estimates, although the
patterns are relatively consistent. There are several
possible explanations for these discrepancies. First,
theoretical predictability is derived directly from
ARMA parameter estimates based upon a relatively
large sample size (e.g., 1935 to 1982 or 1984), whereas
observed predictability is determined using forecasts
for only a relatively short time period (i.e., 1982 to
1984). Further, these independent SOI observations for
which forecasts were made constitute an extremely
anomalous period, not particularly representative of
the entire time series.

Figure 2 shows the estimates of theoretical predict-
ability as a function of / for both AR(1) and ARMAC(1,
1) processes based on parameter estimates obtained
from the entire period of record. It is evident that these
theoretical predictability estimates are systematically
larger, especially at higher lead times, when an
ARMAC(1, 1) process is assumed. Although the pre-
dictability is negligible beyond three months (i.e., two
months lead time) for an AR(1) process, it only be-
comes negligible beyond about 10 months (i.e., nine
months lead time) for an ARMA(I, 1) process.

100 T T T T T T T

x-—=x AR(I)
o—o ARMA(I, 1)

1

PREDICTABILITY (%)

L1 i 1

(o] e} 20
MONTHS AHEAD

FI1G. 2. Estimated theoretical predictability of monthly SOI based
on AR(1) and ARMAC(1, 1) parameter estimates obtained using data
from January 1935 through November 1984.



1548

For the seasonal SOI data, the theoretical predict-
ability of an AR(3) process is estimated by substituting
its parameter estimates into (A3) and (12). Table 4
gives estimates of one- and two-season ahead theoret-
ical predictability for AR(1) and AR(3) processes. The
estimates of one- and two-season ahead theoretical
predictability with an AR(3) process based on param-
eter estimates obtained from the entire database (i.e.,
spring 1935 through fall 1984) are about 53% and
31%, respectively. These theoretical predictability es-
timates are correspondingly larger than those obtained
using an AR(1) process. For an AR(3) process, a com-
parison of Tables 2 and 4 suggests that observed pre-
dictability is about the same as theoretical predictability
one season ahead, but considerably smaller two seasons
ahead. The same explanations provided for such dis-
crepancies in the monthly case are relevant here. Figure
3 shows the estimates of theoretical predictability as a
function of /, indicating that predictability becomes
negligible beyond three seasons (i.e., two seasons lead
time) whether an AR(1) or an AR(3) process is as-
sumed.

In order to account for the fact that the time series
models were fitted on the basis of finite sample sizes,
it might be appropriate to apply a correction factor to
the estimated levels of predictability just cited. Using
(16) and parameter estimates obtained from the entire
SOI database, a more nearly unbiased estimate of pre-
dictability for one-season ahead forecasts based on the
AR(3) process is about 52.1%. In this case, because the
total number of observations is relatively large, the ad-
justment is quite small.

4. Summary and conclusion

In this paper, we have introduced a measure for
quantifying atmospheric predictability based on ex-
pressions for the relative prediction error of a para-
metric time series model. As a simple illustration, es-
timates of predictability of the monthly and seasonal
SOI have been obtained. Based on an ARMA(], 1)
process for the monthly data, it is found that the theo-
retical predictability for the next month (ie., zero
months lead time) is about 44% and about 35% for
two months ahead (i.e., one month lead time), with
essentially no predictability beyond ten months (i.e.,
nine months lead time). Based on an AR(3) process

TABLE 4. Estimates of one- and two-season ahead theoretical
predictability of seasonal SOI time series. )

MONTHLY WEATHER REVIEW

AR(1) process AR(3) process

Time period® A A2 A A2
Spring 1935-spring 1982  43.8% 19.2% 50.3% 30.0%
Spring 1935-fall 1984 46.9%  22.0% 52.8% 30.7%

*On whichAAR(l) and AR(3) parameter estimates are based.
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FiG. 3. Estimated theoretical predictability of seasonal SOI based
on AR(1) and AR(3) parameter estimates obtained using data from
spring 1935 through fall 1984.

for the seasonal data, it is found that the theoretical
predictability for the next season (i.e., zero seasons lead
time) is about 53% and about 31% for two seasons
ahead (i.e., one season lead time), with essentially no
predictability beyond three seasons (i.e., two seasons
lead time). If AR(1) processes are assumed as models
instead, then the predictability is underestimated at all
lead times for the monthly SOI and at small lead times
for the seasonal SOI. For comparative purposes, the
degree of observed predictability is also assessed on the
basis of a small but independent dataset.

Our method attempts to determine actual realized,
rather than potential, predictability. It is predicated on
the availability of a parametric time series model to
represent adequately the given meteorological variable.
In practice, the identification of such a model is not
necessarily straightforward. For simplicity, we have re-
stricted consideration to a class of stationary models
known as ARMA processes. However, nonstationary
models that allow for intra-annual differences in pre-
dictability might be more realistic for variables such as
the SOL

The type of SOI forecasts considered here could be
made operationally, since the pressure observations at
Tahiti and Darwin can be obtained on a timely basis.
Note that the Climate Analysis Center of the National
Oceanic and Atmospheric Administration uses a sim-
ilar index for operationally monitoring the SO fluc-
tuations. Due to the fact that pressure data are readily
accessible, forecasting models such as those described
in CK deserve further consideration as a practical tool.

However, if the goal is to achieve better predictability
than that currently demonstrated, other variables (e.g.,
surface winds over the tropical Pacific Ocean) certainly
need to be employed as additional predictors. In par-
ticular, certain precursors of changes in the SO have
been identified by van Loon and Shea (1985) and
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Wright (1986). To obtain this higher degree of pre-
dictability, the more sophisticated approach of multiple
time series analysis is necessary.
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APPENDIX
Predictability of an AR(3) Process

We demonstrate how the predictability A; of an
AR(3) process can be expressed as a function of the
autoregression coefficients (¢s) alone. The Yule-Walker
equations for this process (Box and Jenkins, 1976, p.
55) are

p1= @1+ dapy + h3ps,
p2=¢1py td2+ P3py,
p3= @102+ $apy + d3.

Solving the system of equations (A1) to express p;, p,
and p; in terms of ¢,, ¢, and ¢; gives

p1=(d1 + ¢203)/0,
p2= @2+ (P + d3)(d1 + d2093)/6,
p3= 192+ @3+ [d2+ di(d1 T+ ¢3)1(d1 + H203)/0,

(A1)

(A2)

where
6=1—(p2+ ¢193+ ¢3?).

Inserting (A2) into (9), a value of A, is obtained in
terms of only ¢,, ¢, and ¢5:
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=027+ 37+ d1dags + (@) + dag3)

X{py+ (¢1+ ¢3)(d2+ d13) + $231/6.  (A3)
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