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ABSTRACT

An index consisting of the difference of normalized sea level pressure departures between Tahiti and Darwin
is used to represent the Southern Oscillation (SO) fluctuations. Using a time-domain approach, autoregressive-
moving average (ARMA) processes are applied to model and predict this Southern Oscillation Index (SOI) on
a monthly and seasonal basis. The ARMA process which is chosen to fit the monthly SOI expresses the index
for the current month as a function of both the SOI one month and seven (or nine) months ago, as well as the
current and previous month’s random error. A purely autoregressive (AR) process is identified as representative
of the seasonal SO fluctuations, with the SOl for the current season being derived from the index for the
immediate past three seasons and a single random disturbance term for the current season. To allow for the
phase locking of the SOI with the annual cycle, ARMA processes with seasonally varying coefficients are also
considered. .

As one example of how these models could be used, seasonal SO variations have been forecast. When SOI
observations from 1935 through the summer of 1983 are employed, the seasonal model indicates forecasts of
positive SOI from fall 1983 through fall 1984. Forecasts based only on SOI observations from 1935 through
spring 1982 show a low predictive skill for the SOI values from summer 1982 through winter 1984, whereas

. one-season-ahead forecasts starting with summer 1982 agree reasonably well with the actual SOI observations.

These examples help illustrate the degree to which the future behavior of the SOI is predictable on the basis of
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its past history alone,

1. Introduction

An increased interest in the study of the Southern
Oscillation (SO) in recent years reflects the important
socioeconomic implications of short-term climate
variability (e.g., Glantz and Thompson, 1981). In a
compact expression, the SO is mainly a large-scale
phenomenon in which atmospheric masses are ex-
changed between centers in the Pacific and Indian
Oceans (Walker and Bliss, 1932, 1937). More specifi-
cally, pressure variations near the eastern South Pacific
subtropical high tend to vary more or less inversely
with those in the Indonesian low pressure zone. Owing
to this appearance of the standing wavelike pattern in
the zonal direction across two southern oceans, the
term SO was coined. Important meteorological vari-
ables which are indicative of the SO fluctuations are
sea level pressure, sea surface and air temperature,
wind, geopotential height, rainfall, and cloudiness. Cli-
mate variability in low as well as midlatitudes over
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both Northern and Southern Hemispheres is intimately
related to the SO. The El Nifio phenomenon, as man-
ifested in the occasional warmings of the east equatorial
Pacific Ocean, is also linked with the SO, and both
events are labeled ENSO.

Fluctuations in the SO have been monitored in terms
of several indices. Recently, these indices have been
based on the difference between monthly mean sea level
pressures at a pair of stations (Quinn and Burt, 1972;
Trenberth, 1976, 1984; Horel and Wallace, 1981; Chen,
1982; Rasmusson and Carpenter, 1982). These stations
are generally located near regions of the South Pacific
high pressure center and the Indonesian low. The pairs
of stations include Easter Island (27.2°S, 109.4°W)-
Darwin (12.4°S, 130.9°E); Easter Island-Djarkarta
(6.11°S, 106.5°E);, Tahiti (17.5°S, 150°W)-Darwin;
and Rapa (28°S, 144°W)-Darwin. In addition, Wright

- (1975) devised an index from a combination of several

stations located in the SO regime. As noted by Tren-
berth (1976, 1984), extreme caution must be exercised
in the selection of an appropriate index for further in-
vestigation. This is necessary because apparent tem-
poral lead and lag linkages exist among several pairs
of the stations aforementioned, and these oblique phase
relationships may render the index questionable.
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Moreover, missing observations and inhomogeneity at
several stations present a further challenge to the con-
struction of an index. Given these considerations, an
index consisting of the pressure difference of Tahiti-
minus-Darwin should be close to optimal, since pres-
sure variations in Tahiti are approximately out of phase
(180°) with those in Darwin (Chen, 1982; Trenberth,
1984). Furthermore, both stations have long-term
complete observations since 1935. It is this particular
SO index (SOI) that will be used throughout the paper.

The spectral characteristics of the SO, based on the
Tahiti-minus-Darwin normalized index, have been
explored by Trenberth (1976) and Chen (1982). A
broad frequency band of the spectral peak is revealed
in the range of 2-10 years. More recently, Trenberth
(1984) studied the signal versus noise in the SO. Al-
though some month to month persistence is apparent
in the SOI, the monthly index does not behave like a
red noise (or first-order autoregressive) process (Tren-
berth, 1984). This conclusion is supported by the slow
decaying of the autocorrelation functions with increas-
ing lags and negative values at higher lags.

Although the SO fluctuations cannot be simply de-
scribed by a first-order autoregressive process, it re-
mains interesting to see whether it would be possible
to model, in a statistical sense, the SO variations. If so,
what would be the optimal statistical model to describe
the behavior of the SO fluctuations? Furthermore, to
what extent can future values of the SOI be predicted
from its past history alone based on this optimal model?
The purpose of the current study thus focuses on the
stochastic modeling and forecasting of the SO from a
time-domain approach. Autoregressive-moving aver-
age (ARMA) processes, a class of models which allow
for dependence over time of a more complex nature
than that for a red noise process, will be applied to the
monthly as well as seasonal SOI.

Section 2 reviews some basic properties of ARMA
processes. Data source and treatment are described in
Section 3. Modeling of the monthly and seasonal SOI
and forecasting of the seasonal SOI are presented in
Section 4. A summary and conclusions are found in
Section 5.

2. Time series modeling and forecasting
a. Modeling

A parametric time series modeling approach is taken
in this study. A stationary stochastic process X, with
mean zero is an ARMA(p; ¢) process if it can be ex-
pressed as:

Xi=p X+ o0 +,X, ,+a

—0ha — - — 04 (1)

where the a, constitute a white noise process consisting
of a series of uncorrelated random variables, each of
which has a Gaussian distribution with mean zero and
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variance ¢,2. The ¢ and 6 values are parameters related
to an AR process and a moving average (MA) process,
respectively, that need to be estimated. Equation (1)
can be written simply as .

®(B)X, = O(B)a, 2)

where ®(B) and O(B) are polynomials of degree p and
g in B, and B is the backward shift operator, defined
by BdX, = X;_d.

To identify an appropriate ARMA process, exami-
nation of the autocorrelation and partial autocorrela-
tion functions is most crucial. For example, in the case
of a simple AR(1) process, the autocorrelation function
(acf) decays exponentially to zero, whereas the partial
autocorrelation function (pacf) cuts off after the first
lag (Fig. 1). The behavior of the acf and pacf for an
MAC(1) process is exactly reversed to that for an AR(1)
process. For an ARMA(1; 1) process, the acf and pacf
are dominated by a mixture of damped exponential
and/or damped sine waves starting from the first lag.
When higher orders of p and g are involved in the
mixed ARMA process, the behavior of the acf and pacf
is more complicated. In particular, a model as simple
as an AR(2) process can produce “pseudoperiodic” be-
havior (Box and Jenkins, 1976, p. 59), meaning that
this approach can, if necessary, allow for the quasi-
periodicities that the SOI has been claimed to possess.
Methods for computing the theoretical autocorrelation
function for a general ARMA process are given in Box
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FIG. 1. Theoretical autocorrelation and partial autocorrelation
functions for an AR(1) process, when ¢, = 0.70.
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and Jenkins (1976, p. 75) and some specific examples
are provided in the Appendix.

Constraints are ordinarily placed on the AR and MA
parameters (¢ and 6) so that the ARMA process will
be stationary and invertible. Stationarity means that
the joint distributions of the X are time invariant. Be-
cause of seasonal cycles, meteorological time series need
to be normalized in order for this assumption to be
reasonable. Invertibility means that the ARMA process
has an equivalent representation as an infinite-order
AR process, which is necessary for the model to be
physically sensible. An AR(1) process is stationary if
l¢1| < 1 and is, by definition, always invertible. In gen-
eral, an ARMA process is stationary if the roots of the
equation ®(B) = 0 all lie outside the unit circle and
invertible if the roots of the equation G(8) = 0 all lie
outside the unit circle (Box and Jenkins, 1976, p. 74).

As a final step, the model should be checked diag-
nostically to reveal any inadequacies. If the selected
model adequately fits the data, the residuals (i.e., es-
timators of the g,) should be approximately serially un-
correlated. This property can be checked by examining
the sample autocorrelations of the residuals.

In considering various stochastic models that are
approximately representative of the data. One impor-
tant factor is that the final model should contain as
few parameters as possible. This parsimonious consid-
eration in model building is important because simple
models frequently offer plausible physical interpreta-
tion. In addition, overparameterization (i.e., higher
values of p and ¢q than necessary) may lead to unstable
parameter estimates and thus result in less accurate
forecasts. In practice, it is difficult to select objectively
the appropriate orders of an ARMA process to repre-
sent the data. Katz and Skaggs (1981), Katz (1982),
and Brown et al. (1984) have employed an automatic
selection procedure to determine the orders of the pro-
cess. This procedure, introduced by Schwarz (1978), is
called the Bayesian Information Criterion (BIC). It is
expressed mathematically as

BIC(p; g) = N Iné*(p; g) + S InN, 3

where 6,2(p; q) denotes an estimator of the variance
o2 of the error terms (i.e., residual mean square) based
on fitting an ARMA(p; g) process to the data, N the
total number of observations, S the total number of
parameters required to be estimated (e.g., S=p + ¢
+ n), and n is the total number of additional parameters
[besides the p + g parameters of the ARMA(p; q) pro-
cess] that must be estimated. One estimator of o, is

N

5(p;q) = [N— SI”' ¥ a2~
' t=1

Here the residual 4, is an estimate of the error term q,.

Since normalized departures involving the mean and

standard deviation are used in the Tahiti and Darwin

series, the value of # in the monthly data turns out to
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be 24 (12 estimated monthly means and 12 estimated
standard deviations). Likewise, n is 8 for the sea-
sonal SOL

Looking back at (3), we note that the first term on
the right-hand side represents the model performance
and the second term is a penalty function for the S
parameters that need to be estimated when an
ARMAC(p; q) process is fit to the data. As more param-
eters are brought into the model, the first term will
usually decrease but the second term will necessarily
increase. In general, a model with the minimum BIC
value is preferred to others; however, this criterion
should not be rigidly followed. Hannan (1980) has
shown that selecting the orders p and ¢ that minimize
(3) leads to a consistent estimator of the true orders of
an ARMA process. Alternatively, other model selection
techniques, such as Akaike’s information criterion
(AIC) (Akaike, 1974) could be employed. The AIC in-
volves the same model performance term as the BIC,
but the penalty function term is of a somewhat different
form.

b. Forecasting

Once an appropriate model has been obtamed fore-
casting can be made, say, at time origin ¢ for lead time
I. From (1), we can write the forecast X,(/) in difference
form as

th(l) = ¢1X1+1——l + -0+ ¢pXt+/—p

+ Qe —

(%)

In (5), forecasted values are substituted for X values
that have not yet been observed and error terms that
have not yet been observed are set equal to zero.

It is also desirable to calculate the variance, V(l ) say,
of the errors of /-step ahead forecasts, which is given
by

V(1) = ¢

01a1+1—l cre _0qal+l—q-

(6)
V(l)—(1+z¢12)0a, l=2a3"'.
=1
Note that lim V(/) = ¢?, the variance of the process;
-

1.e., the predictive skill of forecasts based on an ARMA
process decreases to zero as the lag increases. The ¢
weights in (6) can be obtained by equating coefficients
of powers of B in

HBYL + B+ Y:B + .- )=6(B). (7

With X,(/) and V(/) given, we can calculate the 100(1
— a)% prediction limits for X,,; as (Box and Jenkins,
1976, p. 137)

Xoo(x) = X)) £ ZoplVIOI'?, ®

where Z,, is the unit deviate exceeded by a proportion
a/2 of the Gaussian distribution. In practice, the
ARMA parameter estimates (i.e., ¢ and @) are sub-
stituted for the unknown parameters in (5) to calculate
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a forecast and in (7) to determine the ¥ weights. This
substitution makes the prediction limits only approx-
imate, with the intervals being somewhat too short
when the ARMA parameter estimates are based on a
small sample size. Brown et al. (1984) includes an ex-
ample of the calculation of these prediction intervals
for the special case of an AR(2) process.

3. Data and processing

The monthly mean sea level pressure (SLP) obser-
vations at Tahiti and Darwin are obtained from the
Monthly Climatic Data for the World (National Cli-
matic Center, 1971-83) and World Weather Records
(ESSA, 1941-70). Early data (1935-40) are provided
by M.-C. Wu of the University of Wisconsin~-Madison.
The period of data used to develop the models runs
from January 1935 through August 1983 without any
missing observations. Since the annual cycle is apparent
in the data, as noted by Trenberth (1984), it is imper-
ative to remove this cycle before fitting ARMA pro-
cesses so that the assumption of stationarity could be
satisfied. Normalization is achieved by taking the dif-
ference between raw monthly mean data and the long-
term monthly average, and then by dividing this de-
parture by the standard deviation for each month at
these two stations. The Tahiti-minus-Darwin difference
in the corresponding month forms the monthly South-
ern Oscillation Index (584 values). Note that Trenberth
(1984) has argued that this method of normalization
is optimal. A similar index has been used at the Climate
Analysis Center (CAC) of NOAA for operationally
monitoring the SO. The quantitative value of the CAC’s
index differs somewhat, due to the normalization not
being based on the identical sampling period.

In this study, seasonal mean values (194 observa-
tions) of the SOI are also used. For the seasonal SOI,
winter is defined from December of the preceding year
to February of the following year (e.g., winter of 1981
runs from December 1980 through February 1981,
etc.). The raw, three consecutive monthly SLP data are
averaged to produce a seasonal value for each station.
In a way similar to the monthly data processing, nor-
malization has been applied to each individual seasonal
series and the Tahiti-minus-Darwin series form the
seasonal SOL This method of normalization implies
that monthly and seasonal SOI time series both have
mean zero. Histograms for the distributions of monthly
and seasonal data are found to be approximately
Gaussian. Due to the small number of yearly mean
observations (48 values), no attempt has been made to
model the yearly SOI.

4. Applications of stochastic models to the Southern
Oscillation Index
a. Modeling the monthly SOI

Figure 2 shows a time series plot of the monthly SOI
data, with rapid fluctuations about the mean value
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FIG. 2. Time series plot of the monthly SOI from January 1935
through August 1983.

(zero) being evident. Figure 3a shows the sample au-
tocorrelation function of the monthly SOI up to 24
lags, revealing a generally damped exponential fall off,
consistent with Trenberth’s analysis (1984). In Fig. 3b,
the sample partial autocorrelations exhibit a damped
sine wave and are small after the first lag. From the
general properties of ARMA processes discussed in the
preceding section, the plausible candidates involve
purely AR or mixed ARMA processes. The error vari-
ance a,° and BIC value for seven preliminary monthly
SOI models involving relatively small values of p and
g, as well as for an uncorrelated process, are listed in
the top part of Table 1. Among these candidate models,
an ARMAC(1; 1) process has the smallest BIC value.
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TABLE 1. Estimated error variance 6,2 and BIC value of ARMA
models for monthly SOI time series.

ARMA(p; q) models

» q 355 q) BIC(7; 9)
0 0* 2.789 751.9
1 0 1.683 463.4
2 0 1.591 436.8
1 1 1.546 420.0
1 2 1.548 427.2
3 0 1.539 423.8
2 1 1.550 4279
4 0 1.533 434.2
ARMA(1, p; g)
p** q a1, p; q) BIC(1, p; g)
3 1 1.532 421.1
4 1 1.535 4222
5 1 1.535 422.2
6 1 1.521 416.9
7 1 1.481 401.3
8 1 1.484 402.5
9 { 1.480 401.0
10 1 1.488 404.1
11 1 1.501 409.2
12 1 1.501 409.2

* Uncorrelated process.
** Single higher-order lag of AR pracess.

The theoretical autocorrelation function for this par-
ticular ARMAC(I; 1) process (Box and Jenkins, 1976,
p. 76) decreases toward zero at a geometric rate for
higher lags (never becoming negative), unlike the sam-
ple autocorrelation function.

In an attempt to determine whether a model with a
theoretical autocorrelation function in closer agreement
with that for the monthly SOI time series can be found,
more complex ARMA processes are also considered.
In keeping with the goal of parsimony and the general
characteristics of ARMA processes mentioned earlier,
a single higher-order AR term (i.e., lag 3, 4, ..., or
12) is added to the ARMA(l1; 1) process. The error
variance and BIC value for these ten additional models
[denoted by ARMAC(1, p; g)] are included in the bottom
part of Table 1. The models involving the addition of
a lag seven or nine AR term have the smallest error
variance and BIC value. Because all of these additional
models have three ARMA parameters, the BIC is not
particularly useful for discriminating among them. In-
stead, the more stringent criterion is followed that the
error variance be significantly reduced over that for the
ARMAC(1; 1) process, which is the case when either a
lag seven or nine AR term is added (i.e., significant at
the 1% level according to the partial F-test).

For simplicity, it is arbitrarily decided to adopt the
model that involves the addition of the lag seven, rather
than lag nine, AR term. Formally, this ARMA(1, 7; 1)
is given by [as a special case of (1)]

X, = ¢ Xom1 + $:X7 + 0, — Oya,., ®
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where the parameter estimates are ¢; = 1.011, ¢;
=—0.115, 6, = 0.680, and ¢,> = 1.481 [or about a 47%

- reduction in the variance from that for an uncorrelated

process; about a 12% reduction from that for an AR(1)
process; and about a 4% reduction from that for an
ARMA(1; 1) process (Table 1)]. The theoretical au-
tocorrelation function for an ARMAC(I, 7; 1) process
with these particular parameter values is also included
in Fig. 3a (see Appendix for a description of the method
by which this function is calculated). Unlike the case
of an ARMAC(1; 1) process, this theoretical autocor-
relation function starts taking on negative values at
virtually the same lag as the sample autocorrelation
function for the monthly SOI time series and shows
close overall agreement. This model is further sup-
ported by the relatively small magnitudes and lack of
patterns in the autocorrelations of the residuals
(Fig. 4).

For this ARMAC(1, 7; 1) process, we may regard the
present value of the monthly SOI as a linear combi-
nation of the one month and seven months ago ob-
servations as well as some random shocks. In other
words, the current month’s SOI depends not only on
the SOI one month and seven months ago, but also on
a random noise term for the current month and the
previous month’s noise term. The complexity of the
noise terms may be necessary to take into account some
abrupt changes which occur occasionally in the
monthly data. For example, a large positive index
(+1.22) is revealed in February 1979, but moderate,
negative values are observed in January (—0.68) and
March (—0.72) of the same year.

Although the origin of the random noises in the
monthly data is not clear, cold surge propagation dur-
ing the winter season and the 40-50 day oscillation in
tropical wind (Madden and Julian, 1971; Weickmann,
1983) appear to be important in perturbing the “nor-
mal” mode of operation of the SO. According to the
International Monsoon Experiment (MONEX) man-
agement center, there were eight active cold surges
identified over East Asia during the period 1 December
1978 to 28 February 1979. Out of the eight cases, only
one surge occurred in central China near the end of
January which was regarded as moderate/strong (Shaf-
fer et al., 1984). Since a surge with moderate strength
is effective in transporting lower-tropospheric mass
from central China to Borneo within a few days during
the northern winter (Chu and Park, 1984), the relatively
strong surge reported on 29 January in Hong Kong
may penetrate further southward to the Indonesian/
Australasian low pressure region by early February.
As a consequence, the mass field in the Indonesian
region would be adjusted instantly by this external
forcing. This adjustment should be reflected in the
Darwin normalized SLP, as seen by the change from
a small negative value in January to a small positive
value in February. In the meantime, the Tahiti nor-
malized SLP, which is influenced by the strength and
position of the South Pacific anticyclone, also under-
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went a similar but rather large change. Recent opera-
tional observations indicate that anomalously tropical
convection associated with the 40-50 day oscillation
did propagate eastward from the western Indian Ocean

to the equatorial central Pacific (Climate Analysis
Center, 1985). It may be due to these reasons that the
monthly SOI varied abruptly from January (—0.68) to
February (+1.22). In view of these observations, it is
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for the monthly SOI: January 1935 through August 1983.
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possible that strong midlatitude forcing, as manifested
in a cold surge, together with the eastward movement
of tropical convection, would perturb the large-scale
mass circulation in the SO regime on a short time basis.
Of course, the pressure variations in Darwin may also
be modulated by other factors such as tropical cyclones.

b. Modeling the seasonal SOI

Figure 5 displays the temporal variations of the sea-
sonal SOI, with the pattern being somewhat smoother
than the corresponding plot of monthly SOI (Fig. 2).
While an oscillatory feature is present throughout the
entire series, large negative anomalies in recent years
are particularly conspicuous. The four recent seasons
beginning with summer 1982 through spring 1983 are
marked by significantly negative values unprecedented
since 1935. A seasonal climatic summary related to
these extraordinary anomalies is described by Wagner
(1983), Krueger (1983), Quiroz (1983), and Chen
(1983).

The sample autocorrelations of the seasonal SOI tail
off toward zero (Fig. 6a) and the sample partial auto-
correlations are small after the first three lags (Fig. 6b).
This behavior suggests that the seasonal time series
might be described by purely AR or mixed ARMA
processes. The error variance and BIC value for eight
preliminary seasonal SOI models, as well as for an un-
correlated process, are listed in Table 2. An AR(3) pro-
cess appears to be the model with the smallest sum of
orders (p + g = 3) that has relatively low error variance.
In particular, an AR(3) process exhibits the lowest BIC
value. This model is of the form [as a special case of

(D]
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FIG. 5. Time series plot of the seasonal SOI from spring 1935
to summer 1983.

MONTHLY WEATHER REVIEW

VOLUME 113

Xi= 0Ximy + 92X + 93X, 3 + ay, (10)

" where the parameter estimates are é; = 0.6885, ¢,

= 0.2460, ¢3 = —0.3497, and ¢,> = 1.505 [or about a
54% reduction in the variance from that for an uncor-
related process and about an 11% reduction from that
for an AR(1) process (Table 2)]. The pattern of the
sample autocorrelations for the AR (3) residuals ap-
pears to be random and all autocorrelations are rela-
tively small (Fig. 7). The theoretical autocorrelation
function for an AR(3) process (Box and Jenkins, 1976,

. p. 54) with these particular values is also included in

Fig. 6a (see Appendix for the method of calculation).
Note that the theoretical autocorrelation function drops
below zero at lag four (like the sample autocorrelation
function) and then continues a damped oscillation
about zero. When higher-order AR terms are added to
the AR(3) model, the fit is not significantly improved.
Perhaps this result is attributable to the fact that a lag
three AR term in the seasonal model corresponds to
roughly the same time scale as a lag seven (or lag nine)
AR term in the monthly model, and thus the AR(3)
seasonal model is roughly consistent with an ARMA(],
7; 1) [or ARMAC(1, 9; 1)) monthly model.

This selected AR(3) model implies that the current
value of a seasonal SOI is a finite, linear aggregate of
three preceding seasonal values and a white noise term.
Since the seasonal data are smoother than the monthly
data due to the averaging effect, intraseasonal persis-
tence might be more dominant than the noise in the
seasonal SOI. We may interpret this model physically
as follows. Presumably, the SO is a large-scale phe-
nomenon in close connection with sea surface tem-
perature anomalies in the tropics involving heat trans-
fer between the ocean and atmosphere, trade wind
stress relaxation and, possibly, Kelvin wave propaga-
tion from the west equatorial Pacific to the Peruvian
coast (Wyrtki, 1975). The anomalous thermal forcing
of the tropical oceans in modulating the SO is a slow
but steady process. Horel and Wallace (1981) and Ras-
musson and Carpenter (1982) showed that the lifetime
of a typical warm episode associated with the SO in
the equatorial Pacific can last more than one year. The
need to consider three preceding seasonal SOI in the
seasonal model may be attributed to the large thermal
inertia in the oceans and its gradual change in time.

One statistical explanation of why a moving average
term appears in the selected model for the monthly
SOI time series, but not in the model for the seasonal
SOI, involves the presence of measurement error. It
can be shown that, if an underlying AR(p) process is
subject to measurement error, then the observed pro-
cess is ARMA(p; p) (Box and Jenkins, 1976, p. 121);
i.e., the presence of measurement error introduces p
moving average terms. This explanation is relevant be-
cause the single stations, Darwin and Tahiti, are em-
ployed to represent pressure patterns over large areas,
so that some measurement error is surely present. On
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FIG. 6. (a) Sample autocorrelation function of the seasonal SOI and the theoretical
autocorrelation (broken line) for AR(3) process. (b) Sample partial autocorrelation function
of the seasonal SOI: spring 1935 through summer 1983.

the other hand, such measurement error should be
smaller, and perhaps have negligible effects, when the
SOI is smoothed from monthly to seasonal values.
Although the SOI is normalized, this procedure only
removes seasonal cycles in the mean and standard de-
viation and ignores any seasonal patterns in the au-
tocorrelation function [or, equivalently, in the ARMA
parameters (¢ and #)]. On the other hand, there is
evidence that the SOI is phase locked to the annual
cycle (e.g., Philander, 1983), and thus the degree of its
persistence does vary seasonally. To investigate further
this issue, an AR(3) process with seasonally varying

TABLE 2. Estimated error variance ¢, and BIC value of
ARMA(p; ¢) models for the seasonal SOI time series.

D q 5, ) BIC(z; q)
0 0* 3.279 272.5
1 0 1.689 149.1
2 0 1.696 155.2
1 1 1.710 156.6
3 0 1.505 137.3
2 1 1.662 156.6
1 2 1.537 141.3
4 0 1.484 139.8
5 0 1.468 143.0

* Uncorrelated process.

parameters is fit to the seasonal SOI time series. This
model can be expressed [as a generalization of (10)] as
X = $1()Xi-y + d2A)Xi2 + $3(DXi3 + @, (11)

where variance (a,) = 0,%(?) and these parameters vary
periodically; i.e.,

¢l(t) = ¢l(t - 4)’ i= la 2’ 3;

0 (t) = ot — 4). (12)
The specific parameter estimates are given in Table 3.
It is evident that there is a substantial degree of seasonal
variation in the AR parameters, although the general
structure of the AR(3) processes is similar with the coef-
ficients for the first two lags always being positive and
those for the third lag always being negative. The one-
season-ahead forecasting skill, as measured by the es-
timated error variances which vary from a minimum
of 1.037 (70% reduction in variance) when making one-
season-ahead predictions of fall SOI to a maximum of
2.207 (44% reduction in variance) when making one-
season-ahead predictions of summer SOI, averages out
to about 1.638 or roughly the same as the error variance
for the AR(3) model (10) that does not vary seasonally
(i.e., 1.505).
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FIG. 7. Sample autocorrelation function of AR(3) residuals for the seasonal SOI:
spring 1935 through summer 1983.

¢. Forecasting the seasonal SOI since fall 1983

A useful way to interpret the properties of a given
ARMA model is to examine how it performs in fore-
casting future values of the time series analyzed. Al-
though techniques that include the use of other me-
teorological or. oceanographical variables would cer-
tainly be expected to produce more accurate forecasts
of ENSO events (e.g., Barnett, 1984), it is still of interest
to determine how well an individual time series can be
predicted on the basis of its own past history alone. To
illustrate the use of an ARMA process for forecasting,
the seasonal model outlined in the preceding subsection
will be used to forecast seasonal SOI from fall 1983
through fall 1984. Note that this predicted period does
not fall into the time interval which is used to construct
the seasonal model (i.e., spring 1935 through summer
1983), thus making these “genuine” predictions.

In Fig. 8, the predicted values of the SOI obtained
using (5) and the 95% prediction limits are shown, to-
gether with the observed SOI for fall 1983 and winter
1984. (The original monthly mean data from Septem-
ber 1983 through February 1984 for Tahiti and Darwin
were obtained through the courtesy of W. H. Quinn.)
The prediction limits are interpreted as follows: Given
the information available at the starting point 7 (sum-
mer 1983), there is a 95% probability that the limits

TABLE 3. Parameter estimates for AR(3) model with seasonally
varying parameters of seasonal SOI time series.

SOI predictand
Parameter Spring Summer Fall Winter
estimates (t=1) (t=2) (t=23) (t=4)
@:(l) 0.5268 0.7832 0.8554 0.7736
oAt 0.1158 0.2568 0.1700 0.1971
(1) —0.2011 -0.3816 —0.0674 —0.1808
G2(t) 2.117 2.207 1.037 1.191
R 0.30 0.44 0.70 0.63

* Proportionate reduction in variance from an uncorrelated process.

will contain the actual value of X,.;; note that the width
of the prediction intervals increases until lag four and
then is roughly constant beyond that point, indicating
little or no forecasting skill four or more seasons in
advance. Figure 8 shows that the forecast and observed
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FIG. 8. Time series plots of forecast (long broken line) and observed
(solid line) values of the seasonal SOI from fall 1983 (FA 83) through
fall 1984 (FA 84). The forecasts are based on SOI observations through
summer 1983. The 95% prediction limits for the forecast values are
shown by short broken lines. Period of the analyzed model is spring
1935 through summer 1983.
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values are both positive since fall 1983, although some
slight differences in magnitude are found between the
two series. The negative SOI observed during the period
from spring 1982 through summer 1983 in Fig. 5, to-
gether with the successive positive values in Fig. 8, re-
flect a shift in the atmospheric masses across the two
Southern oceans in recent years.

d. Forecasting the seasonal SOI since Summer 1982

In this subsection, we perform seasonal forecasts with
a model based on a shorter record length. The period
used to fit the model is spring 1935 to spring 1982, and
we refer to this particular data set as SDS. Our partic-
ular interest is to see whether the “extreme” anomalies
that occurred between summer 1982 and spring 1983
are predictable. The ARMA model is fit to the SDS,
instead of the full data set, to again make these bona
fide predictions.

A comparison of the sample autocorrelations and
the sample partial autocorrelations for the SDS (figure
not shown) with Fig. 6 indicates that the behavior of
the acf and pacf of the SDS is virtually the same as
that for the AR(3) model using the entire record length.
These results suggest that even excluding the large
anomalies aforementioned, the AR(3) process would
still appear to be optimal. It is further supported by
the small sample autocorrelations of the residuals (not
shown). Accordingly, the estimated parameters of the
model based on this SDS are ¢, = 0.6388, ¢, = 0.2765,
¢3 = —0.3264, and 5,2 = 1.371. Since the “extreme”
anomalies are not included in the SDS, this AR(3) pro-
cess has, as expected, a somewhat smaller estimated
error variance than the previous seasonal model (Sec-
tion 4b).

Figure 9, derived from (5) and (8), displays the fore-
cast values and 95% prediction intervals of the seasonal
SO, starting from summer 1982 based on observations
through spring 1982, along with the actual observa-
tions. Although the SOI predictions are mainly nega-
tive, in accordance with the observations, a large dis-
crepancy in magnitude is noted between these two se-
ries during the “extreme” seasons. An unusual seasonal
evolution from spring (—0.47) to summer (—4.08) 1982
accounts for the large forecast errors in summer 1982
and the subsequent three seasons.

Since the large anomalies occurring in summer 1982
were unprecedented from 1935 onwards and since the
prediction error increases as the lag / increases, it is not
unexpected that such forecasts show little success. Al-
ternatively, one-season-ahead forecasts at various time
origins could be considered. Specifically, by means of
(5), a forecast for summer 1982 can be produced using
SOI observations through spring 1982; then a forecast
for fall 1982 can be produced using SOI observations
through summer 1982, and so on.

Figure 10 displays the one-season-ahead forecasts
and 95% prediction intervals along with the actual ob-
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FIiG. 9. As in Fig. 8, but for summer 1982 (SU 82) through winter
1984 (W1 84). The forecasts are based on observations through spring
1982. The 95% prediction limits for the forecast values are shown
by short broken lines. Period of the analyzed model is spring 1935
through spring 1982.

servations from summer 1982 through winter 1984,
Note that, because the forecasts in Fig. 10 are all for
only one season in advance, the widths of the prediction
intervals are smaller than those in Fig. 9 (other than
those for summer 1982 which are, of course, identical
in both figures). With the exception of summer 1982,
a close correspondence between these two series is
readily seen, both in the direction of variation and in
magnitude. In summary, because of the peculiar sea-
sonal evolution of general circulation anomalies from
spring to summer 1982 which then persisted for the
subsequent three seasons, the one-season-ahead fore-
casts (Fig. 10) of the SO variations are necessarily more
accurate than the forecast for more than one season in
advance (Fig. 9).

The questions arise as to whether the AR(3) model
produces forecasts that are any more accurate than a
simpler AR(1) model and as to whether the seasonally
varying AR(3) model would produce even more ac-
curate forecasts. For the same case of the one-step ahead
forecasts based on the AR(3) model (Fig. 10), forecasts
are also produced using AR(1) and AR(5) models. All
three sets of forecasts are listed in Table 4, along with
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F1G. 10. Time series plots of one-season-ahead forecast (long broken
line) and observed (solid line) values of the seasonal SOI from summer
1982 (SU 82) through winter 1984 (WI 84). The 95% prediction
limits for the forecast values are shown by short broken lines. Period
of the analyzed model is spring 1935 through spring 1982.

the root-mean-square error as a measure of the overall
forecast accuracy. For this limited set of cases, the
AR(3) model evidently produces forecasts that are
slightly more accurate than those produced by the other
two models. If the seasonally varying AR(3) model (11)
were employed instead, the major difference is that the
widths of the prediction intervals would vary with the
season, making the actual confidence levels more nearly
equal to the stated values.

5. Summary and conclusions

Fluctuations in the SO are monitored by the Tahiti-
minus-Darwin normalized sea level pressure index,
which covers the period since January 1935. A time-
domain approach is applied to model the long-term
SO variations on a monthly and seasonal basis. A po-
tential class of models is first suggested and parameters
of each possible model are estimated. Diagnostic
checking of model adequacies is made. To help identify
the appropriate model, an objective model selection
procedure is used which is based on the principle of
parsimony in model building approach.
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It is found that the monthly SOI can be adequately
modeled by a mixed autoregressive-moving average
process with lag one and seven (or nine) AR terms and
lag one MA term. For this particular process, the cur-
rent state of the SOI can be derived from its immediate
past state and its state seven (or nine) months ago plus
a random disturbance and its immediate past shock.
Strong midlatitude forcing as induced by the cold surge
during winter season, together with the tropical 40-50
day oscillation, may perturb the “normal” behavior of
the SO. As a result, the monthly index is occasionally
contaminated by some transient circulation features
which are not inherent in the large scale SO.

For the seasonal data, an AR(3) process is found to
be the most adequate time series model. For this model,
the current value of the SOI can be represented in terms
of its three immediate past values and a noise term.
The rather long carry-over effect (three seasons) is
suggestive of a pronounced signal reflected in the sea-
sonal data (Trenberth, 1984). Previous studies indicate
that the lifetime of an anomalous warm sea surface
temperature in the equatorial Pacific associated with
the SO may last more than one year. This slow change
in thermal forcing, together with large thermal inertia
in the tropical oceans, offers an explanation for this
long memory over at least three seasons. In this regard,
it turns out that the noise contributes slightly less to
the SO fluctuations on a seasonal basis than it does on
a monthly basis.

Forecasting of the seasonal SO variations has been
made using the spring 1935 through summer 1983 and
spring 1935 through spring 1982 data sets. For the first
data set, forecasts of the seasonal SOI from fall 1983
to fall 1984 are made based on SOI observations
through summer 1983. The forecast values of the sea-
sonal SOI are marked by positive values, in accordance
with the recent observations for fall 1983 and winter
1984 (see Fig. 8). For the second data set, two types of
forecasts are made to obtain values from summer 1982
through winter 1984. The forecasts based on SOI ob-
servations through spring 1982 show a large discrep-

TABLE 4. One-season-ahead forecasts for several AR models and
observed SOI from summer 1982 through winter 1984.

Forecast SOI
Observed
Season AR(1) AR(3) AR(5) SO1
Summer 1982 -0.312 —0.082 -0.183 -4.08
Fall 1982 -2.709 -3.059 -2912 —4.73
Winter 1983 . —3.141 -3.996 -4.054 —5.88
Spring 1983 -3.904 -3.732 -4.191 -3.57
Summer 1983 —-2.371 =2.362 -2.303 -0.62
Fall 1983 —-0.412 0.536 0.582 1.17
Winter 1984 0.777 1.741 2.109 0.53
Root-mean- .
square error 2.122 1.973 1.996
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ancy in magnitude compared to the actual observations
during the “extreme” seasons, although the direction
of variation is in line with the actual observations (see
Fig. 9). This discrepancy resulted from the extraordi-
narily abrupt seasonal variations of general circulation
anomalies from spring to summer 1982. On the other
hand, the one-season-ahead forecast values are in rea-
sonable agreement with the observed anomalies (see
Fig. 10 and Table 4).

Besides their use as a forecasting tool, these ARMA
models for the SOI have other potential uses. For in-
stance, the modeling of the autocorrelation structure
of the SOI can aid in developing rigorous statistical
tests of whether teleconnections are actually present
between the SOI and other atmospheric variables. The
ARMA models can also be used to produce simulated
time series of the SOI. Such simulations might aid in
studying the properties of statistical procedures that
are applied to SOI data (e.g., teleconnections studies).
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APPENDIX

Calculation of Theoretical Autocorrelation Function
ARMA(1, 7; 1) process

Using the general recursive relationship for the
theoretical autocovariance function of an ARMA(p;
g) process (Box and Jenkins, 1976, p. 75), we note that
the kth-order autocovariance coefficient v, for an
ARMAC(1, 7; 1) process is given by

Yo = $1v1 + ¢y + [1 — 0i(¢) — 0)]0’  (AD)
Y1 = 1vo + drv6 — 0105 (A2)
Yk = ¢17k—1 + ¢77k—7s k = 2, 3, DAY 7- (A3)

Equations (A1), (A2), and (A3) constitute a system of
eight equations that can be solved for the eight un-
knowns vo, ¥1, . . . , 'Y7. Then the theoretical kth-order
autocorrelation coefficient p, for an ARMA(I, 7; 1)
process is determined by :

pk=7k/70’ k= 1,2’ M) 7> (A4)
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Pr = $1Pk-1 + P1p—7, k=8,9,--+. (AS)

AR(3) process

Using the general recursive relationship for the
theoretical autocorrelation function of an AR(p) pro-
cess (Box and Jenkins, 1976, p. 54), we note

Pk = D1Pk-1 T D2pr—2 + D3p-3,
k=4953"'a (A6)

with py, p2, and p3 being set equal to the corresponding
sample autocorrelation coefficients if the so-called
Yule-Walker recursion is employed to estimate the AR

. parameters.

REFERENCES

Akaike, H., 1974: A new look at the statistical model identification.
IEEE Trans. Auto. Control, 19, 716-723.

Barnett, T. P., 1984: Prediction of the El Niiio of 1982-1983. Mon.
Wea. Rev., 112, 1403-1407.

Box, G. E. P., and G. M. Jenkins, 1976: Time Series Analysis: Fore-
casting and Control (rev.), Holden-Day, 575 pp.

Brown, B. G, R. W. Katz and A. H. Murphy, 1984: Time series
models to simulate and forecast wind speed and wind power. J.
Climate Appl. Meteor., 23, 1184-1195.

Chen, W. Y., 1982: Assessment of Southern Oscillation sea-level
pressure indices. Mon. Wea. Rev., 110, 800-807.

, 1983: The climate of spring 1983—A season with persistent
global anomalies associated with El Nifio. Mon. Wea. Rev., 111,
2371-2384.

Chu, P.-S., and S.-U. Park, 1984: Regional circulation characteristics
associated with a cold surge event over East Asia during Winter
MONEX. Mon. Wea. Rev., 112, 955-965.

Climate Analysis Center, 1985: Climate Diagnostics Bulletin, January
1985 (Available from NOAA/NWS Climate Analysis Center,
National Meteorological Center, Washington, D.C. 20233).

Environmental Science Service Administration, U.S. Weather Bureau,
1941-70: World weather records, 1941-70. Washington, DC,
20402.

Glantz, M. H,, and J. D. Thompson, Eds., 1981: Resource Manage-
ment and Environmental Uncertainty: Lessons from Coastal
Upwelling Fisheries, Wiley, 491 pp.

Hannan, E. J., 1980: The estimation of the order of an ARMA process.
Ann. Statist., 8, 1071-1081.

Horel, J. D, and J. M. Wallace, 1981: Planetary scale atmospheric
phenomena associated with the Southern Oscillations. Mon.
Wea. Rev., 109, 813-829.

Katz, R. W, 1982: Statistical evaluation of climate experiments with
general circulation models: A parametric time series modeling
approach. J. Atmos. Sci., 39, 1446-1455.

——, and R. H. Skaggs, 1981: On the use of autoregressive-moving
average processes to model meteorological time series. Mon. Wea.
Rev., 109, 479-484.

Krueger, A. F., 1983: The climate of Autumn 1982—With a discus-
sion of the major tropical Pacific anomaly. Mon. Wea. Rev.,
111, 1103-1118.

Madden, R. A,, and P. R. Julian, 1971: Detection of a 40-50 day
oscillation in the zonal wind in the tropical Pacific. J. Atmos.
Sci., 28, 702-708.

National Climatic Center, 1971-83: Monthly climatic data for the
world, 1971-83. Asheville, NC 28801.

Philander, S. G. H., 1983: El Nifio Southern Oscillation phenomena.
Nature, 302, 295-301.




1888

Quinn, W. H.,and W. V. Burt, 1972: Use of the Southern Oscillation
in weather prediction. J. Appl. Meteor., 11, 616-628.

Quiroz, R. S., 1983: The climate of the El Nifio winter of 1982-83—
A season of extraordinary climatic anomalies. Mon. Wea. Rev.,
111, 1685-1706.

Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical
sea surface temperature and surface wind fields associated with
the Southern Oscillation/El Nifio. Mon. Wea. Rev., 110, 354-
384,

Schwarz, G., 1978: Estimating the dimension of a model. Ann. Statist.,
6, 461-464,

Shaffer; A. R,, C.-P. Chang and R. L. Eisberry, 1984: Long wave
forcing of equatorial penetrating winter monsoon cold surges.
Proc. 15th Conf. on Hurricanes and Tropical Meteorology,
Miami, Amer. Meteor. Soc., 427-432.

Trenberth, K. E., 1976: Spatial and temporal variations of the South-
ern Oscillation. Quart. J. Roy. Meteor. Soc., 102, 639-653.

MONTHLY WEATHER REVIEW

VOLUME 113

, 1984: Signal versus noise in the Southern Oscillation. Mon.
Wea. Rev., 112, 326-332.

Wagner, A. J., 1983: A season with increasingly anomalous circulation
over the equatorial Pacific Ocean. Mon. Wea. Rev., 111, 590-
601. :

Walker, G. T., and E. W. Bliss, 1932: World Weather V. Mem. Roy.
Meteor. Soc., 4, 53-84.

——, and ——, 1937: World Weather 1V. Mem. Roy. Meteor. Soc.,
4, 119-139.

Weickmann, K. M., 1983: Intraseasonal circulation and outgoing
longwave radiation modes during Northern Hemisphere winter.
Mon. Wea. Rev., 111, 1838-1858.

Wright, P. B., 1975: An index of the Southern Oscillation. Climate
Res. Unit Rep. CRU RP4, Norwich, U.K., 22 pp.

Wyrtki, K., 1975: El Nifio—the dynamic response of the equatorial
Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5,
572-584.



