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Abstract 

 With an expectation-maximization (EM) algorithm solving model pa-
rameters, a clustering method built on a mixture Gaussian model is applied to the 
Joint Typhoon Warning Center (JTWC) best-track records to objectively classify 
historical tropical cyclone (TC) tracks (1945-2007) over the western North Pacific 
into eight types.  The first three types are labeled as straight movers (A, B, and C), 
followed by four recurved types (D, E, F, and G), and one mixed straight-recurved 
type (H).  For each type, a log-linear regression model is then applied to detect ab-
rupt shifts in the time series of TC attributes including frequency, lifespan, inten-
sity, and accumulated cyclone energy (ACE). Results indicate that the major cli-
mate shift in 1976/1977 may have affected storm’s counts for two track patterns 
(types F and H). All eight types exhibit at least one abrupt shift in their duration 
since 1945, with three types (A, C, and H) showing a common shift in 1972.  For a 
majority of the eight types, the storms’ mean lifetime became longer after the 
shift.  TC intensity shows a prevalence of abrupt shifts in the 1970s.  For type D, 
its intensity has undergone several changes (1972, 1988, and 1998) with stronger 
intensity since the last shift.  Because of its proximity to the East Asian land-
masses and its abundance in numbers, the increasing intensity of type D since 
1998 is a concern for Taiwan, the east China coast, the Philippines, Japan, and Ko-
rea.  For ACE, the signal is mixed.  To draw more definitive conclusions, a consis-
tency check with another best-track record is called for. 
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1.  Introduction 

 There is a growing interest in knowing the impact of climate change on 
tropical cyclone (TC) activity.  This interest stems from the fact that tropical 
storms are among the most destructive of natural disasters.  As the world becomes 
warmer, it is conceivable that the intensity, frequency, tracks, and location of oc-
currences of tropical storms will be altered from the present-day climate.  Using 
the Joint Typhoon Warning Center (JTWC) best-track records or satellite data, 
Emanuel (2005), Webster et al. (2005), and more recently Elsner et al. (2008) 
demonstrated that historical storm intensity has increased dramatically in the 
western North Pacific (WNP) as well as the North Atlantic.  In particular, Webster 
et al. (2005) noted a large increase in the frequency for the strongest TC categories 
(4 and 5) in the WNP over the last 30 years: 25 such storms were found in the first 
15 years (1975-1989) but the 41 strongest storms occurred during the second 15 
years (1990-2004). However, this large trend has been questioned due to large in-
terdecadal variations in the number of intense TCs (Chan, 2006) or possible meas-
urement errors in the dataset (Knaff and Zehr, 2007).  In addition, based on the 
best-track records over a more recent 20-yr (1986-2006), Klotzbach (2006) found 
small or no trends using alternative analysis methods. Besides the variation in in-
tensity, TC induced rainfall in the WNP also appears to have undergone long-term 
variations with decadal signatures (Kim et al., 2006; Lau et al., 2008).  

 Given this dramatic increase over the entire basin as noted by Webster et 
al. (2005), it is of interest to examine whether there is any change in TC activity at 
the regional level within the WNP as this is a huge basin and TCs have preferred 
tracks.  Some of them form over the Philippine Sea and track westward to the 
South China Sea, southern China, and/or Vietnam.  Others form over the tropical 
Pacific and move northwestward toward Taiwan and/or China’s coast or recurve 
toward Japan and Korea (Tu et al., 2009).  This study examines the temporal 
changes in regional typhoon activity over the WNP during the past 60 years using 
the 6-h best track data from the JTWC.  A mixture Gaussian model is built for 
WNP typhoon tracks based on which historical typhoon tracks are categorized us-
ing a clustering algorithm.  Eight track patterns are identified and the TC fre-
quency, intensity, lifespan, and ACE of these eight patterns are individually exam-
ined for temporal changes over the last 60 years. 
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2.  Methods 

2.1 Clustering methodology 

 Our TC track clustering method is based on the mixture Gaussian model. 
A key feature of the mixture Gaussian model is its ability to model multimodal 
densities while adopting a small set of basic component densities.  Finite mixture 
models have been widely used for clustering data in a variety of areas such as 
large-scale atmospheric circulation (Camargo et al., 2007).  In this study, we as-
sume that there are a few distinct path track types characterizing TC tracks in the 
WNP.  For each TC track path, we model it as a second-order polynomial function 
of the lifetime of this TC.  The basic assumption we impose here is that for each 
specific track type, the set of coefficient of this polynomial function is jointly 
Gaussian distributed.  Each TC track type has its unique distribution parameter.  
Therefore, the space spanned by the parameters of this track type model is a linear 
combination of a set of Gaussian distribution, or a mixture Gaussian distribution 
model. 

 We assume there are n  observed track records at 6-h intervals for a giv-
en TC. For each record, there will be three features reported—latitude, longitude, 
and the time.  We will denote the path record of a TC by 
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where latiz ,  and longiz ,  for ni ,..,1=  represent the i -th latitude and longitude 

record, respectively.  We then denote the relative observed time vector for the 
second order polynomial function by 
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where it  for ni ,..,1=  represents the time for the i -th records of this TC relative 

to the first record.  We further assume that there are K  distinct TC track types in 
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the WNP, where K  is assumed to be a constant throughout this study.  With defi-
nitions (1a) and (1b), provided that this TC is categorized as type k , Kk ≤≤1 , 
the linkage between the passage and relative time is governed by the following 
formula 

εTβz k += , where 
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In (1c), the parameter set kβ  is distinct from other TC types.  With the model 
given in (1) for type k , intuitively we can see that the zero-order coefficient dual 
provides the mean genesis location of this type; the first-order term features the 
characteristic direction of this path type; the second-order type will determine the 
recurving shape of the typical path of this type; and the covariance matrix (Σ) in 
(1c) determines the spread of a particular type.  The noise term in (1), iε , is mul-

tivariate Gaussian with zero mean and a 2 by 2 covariance matrix, kΣ . The co-

variance matrix kΣ  contains diagonal elements 2
.0 kσ  and 2

.1 kσ , which are the 
noise variances for each latitude and longitude observation, respectively, in the 
cluster k .  For simplicity the cross covariance of kΣ  is set to 0. 

 The conditional density for the ith cyclone, conditioned on membership 
in the cluster k , is thus defined as 

 

{ }2/])'()[(trexp)2(),|( 12/
kiikkii

n
k

n
kii

iiP βTzΣβTzΣθTz −−−= −−−π (2) 

 

In (2), we adopt the notation },{ kkk Σβθ = . This distribution leads to the mar-

ginal regression mixture model with K = 8 clusters, 
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In (3), kα  is the probability of cluster k , and 1
1

=∑
=

K

k
kα . If we let 

],...,,[' ''
2

'
1 NzzzZ =  be the complete set of all observed TC trajectories and 

],...,,[' ''
2

'
1 NTTTT =  be the associated measurement times, then the full probabil-

ity density of Z  given T , which is also known as the conditional likelihood, is 
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 Given a set of a total N TC records, { }Niii ,...,1|, =Tz , to derive the 
maximum likelihood estimation of all model parameters and class type, we resort 
to the Expectation-Maximization (EM) algorithm.  In the E-step, we calculate the 
membership probability of each type for each TC as follows 
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where αk = f(k) is the prior probability of type k.  Apparently, the membership 
probability of a TC in (5) is virtually the Bayes’ posterior probability of each track 
type given all model parameter sets.  If 

inkiki w 1w ,, = , where in  denotes the re-

cord length of the i -th TC and 
in1  represents the in  vector of ones, we define a 

new diagonal matrix ]),...,,([diag '
,

'
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,1 kNkk wwwWk =  for each track type 

k . In the M-step, we then calculate the following estimation for the model pa-
rameter set of each type. 
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In (6), ]',...,,[' 21 NzzzZ = , ]',...,,[' 21 NTTTT = , where z , T  are defined in 

(1) and the subscript represents the index of a TC; and ∑
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 is the total 

number of observations. 

 If the number of clusters, K , is provided, given an initial setting of the 
model parameters and with multiple iterations of (5) and (6), the proposed EM al-
gorithm will converge to a fixed set of parameter estimation. These convergence 
values are not necessarily the global best estimation and are determined by the ini-
tial starting values. Therefore, we apply multiple different initial values and 
choose the set of estimation with the maximum likelihood. It is also noteworthy 
that the cluster problem presented hereby is essentially a missing value problem in 
which the indicators of class identification are not available. 

2.2 Change-point analysis 

 In this study we analyze the time series of annual TC counts, average life 
spans, average ACE, and average intensity to determine any abrupt shifts.  All 
these series are positive numbers and can be approximated by a gamma distribu-
tion.  On the other hand, it is well known that a logarithm of a gamma distribution 
can be well approximated by a Gaussian distribution.  In view of this fact, we 
adopt a (generalized) log linear regression model to determine abrupt shifts (or 
change-points) of the aforementioned time series (Elsner et al., 2000; Chu, 2002).  
More elaborately, change-point analysis can be cast in the Bayesian framework to 
explicitly provide the posterior probabilities of the change points as a function of 
time (e.g., Chu and Zhao, 2004; Zhao and Chu, 2006).  Assuming that a time se-
ries is denoted by iX , ni ,...,1= , we calculate the latent set )1log( ii XY += .  
We then define the following function 
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We thereby adopt the following linear regression model 
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 )()()()( 10 llSlclcY iii ε++= . (7b) 

For each l , we use a Least Square Error (LSE) algorithm to compute the intercept 
)(0 lc  and slope )(1 lc .  Subsequently we define t-ratio as follows. 

 ))(ˆ(/)(ˆ)( 11 lcselclt =  (7c) 

In (7c), )(1̂ lc  is the estimated slope term and ))(ˆ( 1 lcse  the estimated standard 
error of this term.  If }1,...,2),(max{)( −== nlltmt  is larger than a critical 
value, we set index m  as a change-point.  The critical value is obtained from a t-
distribution.  For example, this critical value is set as 2.65 for a 99% confidence 
level.  After finding the first change-point m , the process (7) is repeated with a 
new response series )()(1

* mSmcYY iii −= , which yields the second change-
point if there is any. We repeat this iterative process until no more change-points 
are found. 

 

3.  Data 

The TC data over the WNP come from the U.S. JTWC in Honolulu.  The data 
cover the period 1945 to 2007. The data sets contain measurements of TC center 
location in latitude, longitude, one-minute sustained maximum wind speed, and 
central pressure at 6-h intervals for all TCs in the WNP.  Here TC refers to tropi-
cal storms and typhoons.  Tropical storms are defined as maximum sustained sur-
face wind speeds between 17.5 and 33 m s-1, and typhoons are defined as wind 
speeds at least 33 m s-1. The ACE of a year is defined by summing the squares of 
the estimated maximum sustained velocity of every tropical storm or typhoon at 
six-hour intervals during the lifetime of a storm through the course of a year.  This 
summed value is then divided by the number of TCs in that year to get the ACE 
per storm for each year.  Because the original numbers are large, they are divided 
by 10,000 to make them more manageable.  ACE is related to storm kinetic en-
ergy. 
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4.  Results 

The methods presented in Section 2 are applied to the data outlined in Section 3.  
Using an empirical argument, Camargo et al. (2007) suggested that the optimum 
number of track patterns in the WNP varies from six to eight. Based on our own 
simulation results with longer data sets, it seems that eight clusters offer the best 
explanation for the data. 

Figure 1 shows eight major track patterns over the WNP and the South China Sea, 
with three straight movers (types A, B and C), four recurved ones (types D, E, F, 
and G), and one mixed pattern of both straight moving and recurved (type H).  
The type A and B clusters are similar in nature in that they both move more or less 
straight across Philippines to the South China Sea and/or Hong Kong, Hainan, and 
Vietnam.  The major difference is that type B storms tend to form farther eastward 
and southward than type A storms.  As a result, the mean track for type B storms 
is longer than that of Type A.   Type C cyclones form in the South China Sea and 
are landlocked by the Indochina peninsula and southern China’s coast, with very 
short path.  Similar to types A and B, type D and E systems form in the Philippine 
Sea but they follow a northward path and many of them made landfall on Taiwan, 
the eastern China coast, Japan, and Korea.  Type F storms tend to form in low-
latitudes and away from Asia.  Type G storms also form far away from the Asian 
continent but at higher latitudes (~15°N).  They move northwestward and then 
northward to the east of Japan over the open ocean.   Storms associated with type 
H are generally formed near the equator and to the east of 165°E, and have a long 
trajectory over the water.  In terms of the frequency of occurrence, Type D has the 
highest number (316 out of a total of 1621 cases).  This is followed by type C 
(270), E (231), and G (225).  Type H has the least number of occurrences (84) 
among eight types. 
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Fig.1. Eight TC track types identified by the mixture Gaussian model.  The num-
ber in each panel indicates the number of cases in each type.  Black circles denote 
the mean track for each type. 

 For each pattern, temporal variations of typhoon related attributes such as 
frequency, intensity, lifetime, and energy (ACE) are examined.  A change-point 
analysis is applied to detect abrupt shifts in the time series of such attributes.  For 
TC frequency (Fig. 2), five out of eight types (B, D, F, G, and H) show at least one 
step-like change since 1945. For types F and H, the abrupt shift occurs in 1976, at 
a time when major climate regime underwent a phase shift (e.g., Trenberth, 1990).  
After 1976, TCs became more active for both types F and H.  For type D storms, 
which are the leading pattern among all eight groups, typhoon activity has very 
likely undergone a decadal variation with two abrupt shifts occurring around 1987 
and 1998 with three epochs characterized by the active 1945-1986 epoch, the inac-
tive 1987-1997 epoch, and the active 1998-2007 epoch.  The reincreasing activity 
for type D since 1998 is a concern because storms associated with this type are 
formed near the eastern Asian landmass and their preferred tracks are likely to 
cause damage to Taiwan, east China coast, Japan, and Korea. 
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Fig. 2. Time series of annual tropical cyclone counts in the western North Pacific 
for eight track types.  Years in each panel indicate possible change-points or ab-
rupt shifts.  Dotted lines are time-mean for each sub-period.  The y-axis is the 
tropical cyclone number. 

 

In Fig. 3, six of the track types (A, B, C, D, F, and H) exhibit one abrupt 
shift over the last 60 years with the exception of type B, which experienced two 
shifts.  Interestingly, after the shift all five types (A, C, D, F, and H) show an in-
creasing level of storm days, indicative of longer mean storm days after the identi-
fied shifts.  It is possible that steering flows over the WNP become weaker, mak-
ing storms traverse more slowly and increasing the lifetime of the storms.  This 
possibility will be examined in future research.  Also noteworthy in Fig. 3 is the 
phase shift in 1972, which occurs in types A, C and H. 

 
The change in TC intensity is also quite interesting (Fig. 4), although this 

quantity from the JTWC is subject to larger uncertainty.  Over the last 60 years, 
seven (A, B, C, D, E, F, and G) out of the eight types exhibit abrupt shifts in the 
1970s.  For types B, C, D and G, the shift occurs in 1971-73 and for types E and F 
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in 1974.  For type D, which is not only the leading cluster but also bears threats to 
Taiwan, east China, Japan, and Korea, a step-like change also occurred recently 
(1998) with higher intensities, signifying stronger TC intensities in the last few 
years.   This increase in intensity, together with the concurrent increase in fre-
quency (Fig. 2), deserves further investigation.   

 
 

 

Fig. 3. Same as Fig. 2 but for tropical cyclone lifespan. The y-axis is number of 
days 

 

For ACE (Fig. 5), types C, E, and F do not show any apparent change in 
the past 60 years. The lifetime, intensity, and number of tropical cyclones all con-
tribute to the magnitude of ACE.  During El Niño and La Niña years, Camargo 
and Sobel (2005) found that the lifetime effect appears to be more important than 
the other two factors to ACE variations in the WNP.  This may be reflected by a 
shift in type H in the 1972 El Niño (Figs. 3 and 5), but not on other types (e.g., A 
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and C).   Emanuel (2005) noted a substantial increase in the power dissipation in-
dex (PDI) for the WNP since 1970s.  The PDI is similar to ACE, except that max-
imum wind speed is cubed over the storm’s lifetime.  Emanuel (2005) attributed 
this increase to the longer lifetime of the storm and greater storm intensities.  In 
our case, only five types show an increase in their lifetimes (Types A, C, D, F, and 
H) and there is a lack of general intensity increase.  These results are different 
from Emanuel which is based on the basin-wide values. 

 

Fig.4. Same as Fig. 2 but for tropical cyclone intensity.  The y-axis is knots. 
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5.  A suggestion for future research  

 It should be noted that the results presented in this study are based on the 
JTWC best-track dataset.  The veracity of JTWC data during the period prior to 
satellite observation (before 1970) is called into question (Knaff and Zehr, 2007; 
Lowry et al., 2009). While the track patterns, TC counts, and lifetime are probably 
reliable, TC intensity estimates and ACE may be subject to uncertainty.  There-
fore, extreme caution must be exercised in the intensity and ACE analysis and in-
terpretations. In the future, we plan to apply the same methodology outlined in 
foregoing section to other best-track data to check for consistency.   

 

 

 

Fig.5. Same as Fig. 2 but for the average ACE per storm (104 kt2).  
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