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ABSTRACT

A Bayesian framework is developed to detect multiple abrupt shifts in a time series of the annual major
hurricanes counts. The hurricane counts are modeled by a Poisson process where the Poisson intensity (i.e.,
hurricane rate) is codified by a gamma distribution. Here, a triple hypothesis space concerning the annual
hurricane rate is considered: “a no change in the rate,” “a single change in the rate,” and “a double change
in the rate.” A hierarchical Bayesian approach involving three layers—data, parameter, and hypothesis—is
formulated to demonstrate the posterior probability of each possible hypothesis and its relevant model
parameters through a Markov chain Monte Carlo (MCMC) method.

Based on sampling from an estimated informative prior for the Poisson rate parameters and the posterior
distribution of hypotheses, two simulated examples are illustrated to show the effectiveness of the proposed
method. Subsequently, the methodology is applied to the time series of major hurricane counts over the
eastern North Pacific (ENP). Results indicate that the hurricane activity over ENP has very likely under-
gone a decadal variation with two changepoints occurring around 1982 and 1999 with three epochs char-
acterized by the inactive 1972–81 epoch, the active 1982–98 epoch, and the inactive 1999–2003 epoch. The
Bayesian method also provides a means for predicting decadal major hurricane variations. A lower number
of major hurricanes are predicted for the next decade given the recent inactive period of hurricane activity.

1. Introduction

It is well known that climate states are often charac-
terized by different regimes lasting for a decade or
longer. Examples of this can be found in the Pacific
decadal oscillation index series and the major Atlantic
hurricane series during the last century (e.g., Mantua et
al. 1997; Goldenberg et al. 2001). Because the change of
a climate basic state affects many facets of society (e.g.,
agriculture, water resources, environment), it is desir-
able to know when the change is likely to have occurred
and possibly develop a means for predicting its future
variation once a shift can be identified from a sound
statistical analysis. Furthermore, many diagnostic stud-

ies are rooted on the basis of comparing active and
inactive (or positive and negative) phases of climate
states when the knowledge of a regime shift in the sys-
tem is given (e.g., Deser et al. 2004).

Based on a log–linear regression model, Chu (2002)
identified the shifts in the annual rates of tropical cy-
clone (TC) frequency over the central North Pacific for
the period 1966–2000. More recently, Chu and Zhao
(2004) applied an hierarchical Bayesian changepoint
analysis to this set of data with two hypothesis models.
The first hypothesis assumes no changepoint while the
second hypothesis considers a single shift in the TC
rates. Under a single changepoint hypothesis, the pos-
terior probability of a shift around 1982 is high. Be-
cause the TC activity over the central North Pacific is
related, to a large extent, to variations in TCs over the
eastern North Pacific (Clark and Chu 2002), a question
arises as to whether the major hurricane series over the
eastern North Pacific (ENP) has also undergone a simi-
lar decadal variation. The ENP hurricanes sometimes
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wreak havoc on Central America and/or the southwest
United States, bringing heavy rainfall, strong winds,
and coastal storm surges.

When dealing with the changepoint analysis in
Bayesian context, it is often difficult to analytically
evaluate complex integral quantities of posterior distri-
butions. One efficient way to overcome difficult poste-
rior quantities is through the use of the Markov chain
Monte Carlo (MCMC) approach (e.g., Lavielle and La-
barbier 2001; Gelman et al. 2004). Applications of
MCMC to climate research are emerging. For instance,
Berliner et al. (2000) used a MCMC approach to update
distribution parameters of their physically based statis-
tical model for predicting the Pacific sea surface tem-
peratures. Elsner et al. (2004) successfully applied a
MCMC approach to detect shifts in the Atlantic major
hurricane series.

Strictly speaking, the method employed in Chu and
Zhao (2004) is only applicable to detecting a single
change in the tropical cyclone time series. For detecting
more than one shift, a more elaborate algorithm is
needed. In fact, when analyzing a climate time series
even as short as 30 years, it is not unusual to find more
than one phase shift in the records. To address this
issue, the major objective of this study is to develop a
method for detecting and quantifying the finite number
of shifts in a series of hurricane activity within the
framework of hierarchical Bayesian models.

Specifically, the annual major hurricane counts over
the ENP are modeled by a Poisson process where the
Poisson intensity is codified by its conjugate, gamma
distribution. As in Chu and Zhao (2004), a three-layer
hierarchical structure involving data, parameter, and
hypothesis space is espoused in this study. But, differ-
ent from Chu and Zhao (2004), a new scheme with
three possible hypotheses is entertained. These include
“a no change in the Poisson intensity,” “a single change
in the Poisson intensity,” and “a double change in the
Poisson intensity” hypothesis. Also new to the current
study is the use of the Gibbs sampler. After developing
a practical approach to approximately sampling from
an informative prior, we deliberately design an algo-
rithm to allow for calculation of the posterior probabil-
ity of each possible hypothesis and its relevant model
parameters, including the Poisson intensity and the
time of the abrupt shifts, through a MCMC approach.

Section 2 discusses the dataset, and section 3 outlines
the basic model for describing hurricane activity. In
section 4, we present a complete Bayesian analysis for
detecting up to two abrupt shifts in the hurricane series
through a MCMC approach. Two simulated examples
and the analysis results for annual major hurricane
counts in the eastern North Pacific are given in section

5. Section 6 provides the summary and conclusions,
where we also discuss a general concept about how to
detect any finite number of multiple shifts in a time
series under a given model.

2. Data

The annual major hurricane counts over the ENP
come from the National Hurricane Center in Miami,
Florida. Major hurricanes refer to Category 3 or higher
on the Saffir–Simpson destruction potential scale. This
corresponds to the maximum sustained wind speeds ex-
ceeding 50 m s�1. Whitney and Hobgood (1997) sug-
gested that reliable hurricane statistics over the ENP
began in the early 1970s, when the Dvorak scheme for
the estimation of the intensity of tropical cyclones was
operationally implemented. The year 1972 was chosen
as the starting year by Collins and Mason (2000) for
investigating interannual variation of local environmen-
tal conditions and TC activity over the ENP; thus, the
data from 1972 to 2003 are used in this study.

3. Mathematical model of hurricane activity

A Poisson process is a proper probability model for
describing independent rare event counts. Given the
intensity parameter � (i.e., annual rate of major hurri-
canes), the probability mass function (PMF) of h major
hurricanes occurring in T years is (Epstein 1985)

P�h|�, T� � exp���T�
��T�h

h!
, �1�

where h � 0, 1, 2, . . . and � � 0, T � 0. The Poisson
mean is simply the product of � and T, so is its variance.

In many cases, hurricane time series cannot be simply
described by a constant rate Poisson process (e.g., Els-
ner and Jagger 2004). Thus the Poisson intensity, �,
should not be treated as a determinant single-value pa-
rameter but as a random variable. This resulting hier-
archical feature also fits well with the Bayesian infer-
ence. A functional choice of � is a gamma distribution
(Epstein 1985) as expressed in the following form:

f��|h�, T�� �
T�h��h��1

��h��
exp���T��,

� � 0, h� � 0, T� � 0, �2�

where the gamma function is defined as �(x) � �	
0

tx�1e�t dt.
Given h TCs occurring in T years, if the prior density

for � is gamma distributed with parameters h
 and T
,
the posterior density for � will also be gamma distrib-
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uted with parameters h � h
 and T � T
; that is, the
gamma density is the conjugate prior for �. Referring to
(2), the conditional expectation with respect to � is
�[�|h
, T
] � h
/T
. Obviously, when h
 and T
 ap-
proach infinity, the model will converge to a constant
rate Poisson distribution. In the later part of this paper,
we will discuss how to properly estimate the prior in-
formation h
 and T
 given the observation.

Under the statistical model introduced above, the
marginal PMF of h TCs occurring in T years when the
intensity is gamma distributed with prior parameters h

and T
 is a negative binomial distribution (Epstein
1985; Elsner and Bossak 2001; Chu and Zhao 2004):

P�h|h�, T�, T� � �
0

�

P�h|�, T�f��|h�, T�� d�

�
��h � h��

��h��h! � T�

T � T��h�� T

T � T��h

� Pnb�h�h�,
T

T � T��, �3�

where h � 0, 1, . . . , h
 � 0, T
 � 0, T � 0, and Pnb(.)
stands for the negative binomial distribution.

4. MCMC approach for detection of multiple
changepoints in the hurricane series

a. MCMC approach to Bayesian analysis and
Gibbs sampling

In general, let us assume � to be the set of model
parameters and h the data for the analysis. The funda-
mental Bayesian model can be described by the math-
ematical statement:

P��|h� �
P�h|��P���

�P�h|��P��� d�

� P�h|��P���,

where “” means “proportional.” Here P(h|�) is the
conditional distribution of data h given the model pa-
rameters � (or the likelihood with given model) and
P(�) is a prior probability. The Bayes formula provides
the posterior probability P(�|h), the probability of �
after the data h are observed. It is also clear that data
affects the posterior inference only through the likeli-
hood function P(h|�). To make predictive inference, we
rely on the posterior predictive distribution P(ĥ|h) �
�P(ĥ|�)P(�|h) d�, where ĥ denotes the prediction (Gel-
man et al. 2004). Here P(ĥ|h) is the posterior predictive
distribution since it is conditional on the observed data
h and provides a prediction for the unknown observ-
able ĥ. This formula is at the heart of Bayesian analysis.

The MCMC approach is one of the efficient algo-
rithms for Bayesian inference. The general Bayesian
analysis method described above essentially involves
calculating the posterior expectation

E�a|h� � �
�

a���P��|h� d�,

where a(�) can be any function conditional on model �.
This expectation, however, is very difficult to integrate
in most practical models. Alternatively, a numerical
way to calculate such an expectation is to use Monte
Carlo integration by

E�a|h� �
1
N �

i�1

N

a���i��,

where �[1], �[2], . . . , �[N] are independently sampled
from P(�|h). When N goes to infinity, this approxima-
tion will converge to its analytical integral under very
general conditions.

This method is straightforward, but it is often infea-
sible to generate such an independent series �[1], �[2],
. . . , �[N] when P(�|h) is complicated. Nonetheless, in
most applications, it may be possible to generate a se-
ries of dependent values by using a Markov chain (MC)
that has P(�|h) as its stationary distribution. The MC is
defined by giving an initial distribution for the first state
of the chain �[1] and a set of transition probabilities for
a new state �[i�1] given the current state �[i]. Under very
general conditions (the Markov chain is ergodic), the
distribution for the state will converge to a unique sta-
tionary distribution. As long as this stationary distribu-
tion is P(�|h), the Monte Carlo integration described
above still gives an unbiased estimate for E[a|h] (Rip-
ley 1987).

One of the most widely used MCMC algorithms is
known as Gibbs sampler. Suppose there are p param-
eters in the model, thus we define � � [�1, �2, . . . , �p]

as a p-dimensional vector of parameters. Presumably,
directly sampling from the posterior distribution P(�|h)
is unlikely; we assume we can generate a value from the
conditional distribution for any component of � given
values for the rest of the other components of �. In
detail, Gibbs sampling involves successive sampling
from the complete conditional posterior densities
P(�k|h, �1, . . . , �k�1, �k�1, . . . , �p), where k is from 1
to p.

The Gibbs sampling algorithm is briefly described
below.

1) Choose arbitrary starting values: �[0] � [�[0]
1 , �[0]

2 ,
. . . , �[0]

p ].
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2) Start at j � 1 and complete the single cycle by draw-
ing values from the p distributions given by

�1
� j� � P��1|h, �2

� j�1�, �3
� j�1�, . . . , �p�1

� j�1�, �p
� j�1��

�2
� j� � P��2|h, �1

� j�, �3
� j�1�, . . . , �p�1

� j�1�, �p
� j�1��

�3
� j� � P��3|h, �1

� j�, �2
� j�, . . . , �p�1

� j�1�, �p
� j�1��

�p�1
� j� � P��p�1|h, �1

� j�, �2
� j�, . . . , �p�2

� j� , �p
� j�1��

�p
� j� � P��p|h, �1

� j�, �2
� j�, . . . , �p�2

� j� , �p�1
� j� �.

3) Set j � j � 1 and repeat the second step until con-
vergence.

Once convergence is reached, the conditional distri-
butions from simulations contain sufficient information
to reach the true posterior distribution of interest.
Thus, we can approximately calculate E[a|h] by

1
N �

i�1

N

a���i��

with sufficiently large N, where �[i] is the ith sample
drawn from Gibbs sampling algorithm within each it-
eration after convergence.

b. Hypothesis model

In this study, it is assumed that the probability of
more than two changepoints within the desired period
is negligible. In principle, the method espoused here
can be easily extended to more than two changepoints,
although the complexity of the problem is correspond-
ingly increased. We will discuss this in the summary
section.

Consider the following three hypotheses: (i) “a no-
changepoint” hypothesis H0, (ii) “a single changepoint”
hypothesis H1, and (iii) “a double changepoint” hy-
pothesis H2. The following derivations are all based on
the mathematical model described in section 3. Note
that the annual major hurricane data, h � [h1, h2, . . . ,
hn]
, are assumed to be described as a series of inde-
pendent random variables. The three hypotheses mod-
els are postulated below.

1) Hypothesis H0: “A no change in the rate” of the
hurricane series:

hi � Poisson�hi|�0, T�,
i � 1, 2, . . . , n,

where T is the unit observation time, which is a year
in this study.

�0 � gamma�h�0, T�0�,

where the prior knowledge of the parameters h
0 and
T
0 is given.

2) Hypothesis H1: “A single change in the rate” of the
hurricane series:

hi � Poisson�hi|�11, T�,

when i � 1, 2, . . . , � � 1

hi � Poisson�hi|�12, T�,

when i � �, . . . , n

	 � 2, 3, . . . , n,

where T is as defined in the hypothesis H0, and

�11 � gamma�h�11, T�11�

�12 � gamma�h�12, T�12�,

where the prior knowledge of the parameters h
11,
T
11, h
12, T
12 is given.

Note that there are two epochs in this model and
� is defined as the first year of the second epoch, or
the changepoint.

3) Hypothesis H2: “A double change in the rate” of the
hurricane series:

hi � Poisson�hi|�21, T�,

when i � 1, 2, . . . , �1 � 1

hi � Poisson�hi|�22, T�,

when i � �1, �1 � 1, . . . , �2 � 1

hi � Poisson�hi|�23, T�,

when i � �2, �2 � 1, . . . , n.
Note that �1|�2 � 2, 3, . . . , �2 � 1, �2|�1 � �1 � 1,

. . . , n, T is as defined in the hypothesis H0, and

�21 � gamma�h�21, T�21�

�22 � gamma�h�22, T�22�

�23 � gamma�h�23, T�23�,

where the prior knowledge of the parameters h
21,
T
21, h
22, T
22, and h
23, T
23 is given.

Note that there are three epochs in this model: �1 is
defined as the first year of the second epoch, or the first
changepoint, and �2 is defined as the first year of the
third epoch, or the second changepoint.

c. Bayesian inference under each hypothesis

As described in the model, throughout this study, the
unit period for the observation data h is always 1.
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1) BAYESIAN INFERENCE UNDER H0 HYPOTHESIS

There is only one parameter �0 under this hypothesis.
Since gamma is the conjugate prior for Poisson, the
conditional posterior density function for �0 is straight-
forward:

�0|h, H0 � gamma�h�0 � �
i�1

n

hi, T�0 � n�.

2) BAYESIAN INFERENCE UNDER H1 HYPOTHESIS

Under this hypothesis, there are three parameters,
�11, �12, and �. Following the conjugate prior property
again and with a given �, the conditional posterior den-
sity function for �11 and �12 is

�11|h, 	, H1 � gamma�h�11 � �
i�1

	�1

hi, T�11 � 	 � 1�
�12|h, 	, H1 � gamma�h�12 � �

i�	

n

hi, T�12 � n � 	 � 1�.

A detailed derivation for the conditional posterior
density of � given the parameters �11 and �12 is de-
scribed in appendix A (and can also be found in Elsner
et al. 2004). With a noninformative prior assumption
(uniform distribution) for changepoint �, the condi-
tional posterior density of � is formulated as [Eq. (A3)]

P�	|h, H1, �11, �12� � e��	�1���11 � �12���11

�12
��

i�1

	�1

hi

	 � 2, 3, . . . , n.

Thus, we have completed the Markov chain for the H1

hypothesis.

3) BAYESIAN INFERENCE UNDER H2 HYPOTHESIS

Under this hypothesis, there are five parameters, �21,
�22, �23, and �1, �2. With similar conjugate prior logic,
we have the conditional posterior density function for
�21, �22, and �23 with the given changepoints �1 and �2:

�21|h, 	1, H2 � gamma�h�21 � �
i�1

	1 � 1

hi, T�21 � 	1 � 1�
�22|h, 	1, 	2, H2 � gamma�h�22 � �

i�	1

	2 � 1

hi, T�22 � 	2 � 	1�
�23|h, 	2, H2 � gamma�h�23 � �

i�	2

n

hi, T�23 � n � 	2 � 1�.

In appendix B, we derive the conditional posterior
density of �1 and �2 given the parameters �21, �22, and
�23. With a noninformative prior (uniform) assumption

for changepoint �1|�2 and �2|�1, the conditional poste-
rior densities of �1 and �2 are [Eqs. (B1) and (B2)]:

P�	1|h, H2, �21, �22, �23, 	2� � e��	1 � 1���21 � �22���21

�22
��

i�1

	1�1

hi

,

	1 � 2, 3, . . . , 	2 � 1

P�	2|h, H2, �21, �22, �23, 	1� � e��	2 � 	1���22 � �23���22

�23
��

i�	1

	2�1

hi

,

	2 � 	1 � 1, . . . , n.

The Markov chain under H2 hypothesis is also com-
pleted.

With the formula introduced in this section, plus the
prior knowledge, we can apply the Gibbs sampler de-
scribed in section 4a to draw the samples from the pos-
terior distribution of the model parameters under each
respective hypothesis.

d. Hypothesis analysis

Based on the Bayes formula, the posterior PMF for
hypothesis is

P�H|h� �
P�h|H�P�H�

�
H

P�h|H�P�H�
,

where P(H) can be any discrete probability distribution
function. Generally a proper noninformative choice for
hypothesis space is a uniform distribution; thus we can
simplify this formula to P(H|h)  P(h|H).

Let � be the vector of model parameters. In this
study, � � [�
0, �
1, �
2]
 � [�0, �11, �12, �21, �22, �23., �, �1,
�2]
, where �0 � �0 represents the parameter under the
H0 hypothesis; �1 � [�11, �12, �]
 represents the param-
eters under the H1 hypothesis; and �2 � [�21, �22, �23, �1,
�2]
 represents the parameters under the H2 hypothesis.
Obviously, �0, �1, and �2 are nonoverlapping.

In this section, we propose a simple approach to es-
timating the marginal likelihood under the hypothesis
H, P(h|H). This is motivated by the formula,

P�h|H� � �
�

P�h|�, H�P��|H� d�,

which could be approximated using the Monte Carlo
integration method:

P�h|H� �
1
N �

i�1

N

P�h|�, H��i�,

N → �, �4�

where � is drawn from the prior P(�|H) and the super-
script [i] denotes the ith sampling, recalling that we
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already have the likelihood function for each hypoth-
esis [Eq. (C1)] as given in appendix C.

Specifically, under the H0 hypothesis, we generate a
value for �0 from the prior distribution; under the H1

hypothesis, we generate values for parameters �11, �12,
and � from the prior distribution; and under the H2

hypothesis, we generate values for �21, �22, �23, and �1,
�2 from the prior distribution. The parameters of the
changepoint � (under the H1 hypothesis) or �1|�2 and
�2|�1 (under the H2 hypothesis) are drawn from the
uniform distribution, which does not need any prior
knowledge. As for the rate parameters under each hy-
pothesis, [�0, �11, �12, �21, �22, �23.], they are generated
from the prior distributions as described in section 4b
with given prior parameters, namely, h
0 and T
0 for H0;
h
11, T
11, h
12, T
12 for H1; and h
21, T
21, h
22, T
22, h
23, T
23

for H2.
Generally speaking, a flat, noninformative prior is

preferred in the Bayesian inference. A proper nonin-
formative prior for the rate parameters is a gamma(c, d)
where c � d � 0.001. A noninformative prior may be
suitable in the Gibbs sampler proposed in section 4c
under each hypothesis since the likelihood is very nar-
row. However, a noninformative prior for the rate pa-
rameters is inappropriate for Eq. (4) because it only
works well when priors are relatively close to the region
of the highest likelihood. A noninformative prior such
as gamma(c, d) is apparently too flat, thus Eq. (4) may
never converge within a large number of iterations. In
this regard, a proper informative prior is chosen. Ac-
cordingly, we will propose a practical approach to sam-
pling prior from a distribution, which is conforming to
the peak region of the likelihood. This approach is
hereafter referred to as the informative prior estima-
tion (IPE) method. We will first look on the simplest
hypothesis, H0 and then extend it to the H1 and H2

hypotheses in a similar manner.
As discussed in section 3, for the hurricane series, if

the two prior parameters are given, the marginal distri-
bution for the observed data is a negative binomial.
With this model, under the H0 hypothesis, and guided
by Eq. (3), we have

P�hi|h�0, T�0, T � 1, H0� � Pnb�hi|h�0,
T�0

1 � T�0
�,

i � 1, 2, . . . , n.

For the sake of convenience, we would choose a mo-
ment method to estimate the parameters h
0 and T
0.
Nonetheless, when T
0 is relatively large, the moment
estimation could be significantly biased. In this case, the
maximum likelihood estimation (MLE) method ap-
pears to be preferable. The formula for moment esti-

mation is as below (Carlin and Louis 2000; Chu and
Zhao 2004)

T̂�0|H0 �
q0

1 � q0
,

ĥ�0|H0 � mh0T̂�0, �5�

where q0 � mh0/sh0 and mh0 � (1/n)�n
i�1hi, sh0 � (1/n �

1)�n
i�1(hi � mh0)2 are the sample mean and sample vari-

ance for the given data, respectively.
When q0 
 1, the moment estimation breaks down.

Thus, in this case, we may regard this series as a con-
stant rate Poisson process and set T̂
0 as a large enough
value and let ĥ
0 � mh0*T̂
0. To draw rate �0 from its
prior or posterior density, one just sets it equal to the
sample mean mh0.

This estimation method could be extended to mul-
tiple changepoint hypothesis with given changepoints.
The similar argument will apply to the q11, q12, q21, q22

or q23 
 1 scenario as q0 
 1 under H0. The moment
estimation formulas for prior parameters under the H1

and H2 hypotheses are given by Eqs. (6) and (7), re-
spectively:

T̂�11|H1, 	 �
q11

1 � q11
,

ĥ�11|H1, 	 � mh11T̂�11

T̂�12|H1, 	 �
q12

1 � q12
,

ĥ�12|H1, 	 � mh12T̂�12, �6�

where

q11 � mh11�Sh11,
q12 � mh12�Sh12,

and

mh11 �
1

	 � 1 �
i�1

	�1

hi,

Sh11 �
1

	 � 2 �
i�1

	�1

�hi � mh11�2,

mh12 �
1

n � 	 � 1 �
i�	

n

hi,

Sh12 �
1

n � 	 �i�	

n

�hi � mh12�2,

T̂�21|H2, 	1, 	2 �
q21

1 � q21
,

ĥ�21|H2, 	1, 	2 � mh21T̂�21

T̂�22|H2, 	1, 	2 �
q22

1 � q22
,
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ĥ�22|H2, 	1, 	2 � mh22T̂�22

T̂�23|H2, 	1, 	2 �
q23

1 � q23
,

ĥ�23|H2, 	1, 	2 � mh23T̂�23, �7�

where

q21 � mh21�Sh21,
q22 � mh22�Sh22,
q23 � mh23�Sh23,

and

mh21 �
1

	1 � 1 �
i�1

	1�1

hi,

Sh21 �
1

	1 � 2 �
i�1

	1 � 1

�hi � mh21�2,

mh22 �
1

	2 � 	1
�
i�	1

	2�1

hi,

Sh22 �
1

	2 � 	1 � 1 �
i�	1

	2�1

�hi � mh22�2,

mh23 �
1

n � 	2 � 1 �
i�	2

n

hi, and

Sh23 �
1

n � 	2
�
i�	2

n

�hi � mh23�2.

Apparently, we could insert Eqs. (5), (6), and (7) into
the Markov chain derived in section 4c to complete the
Gibbs sampler within each iteration. In real applica-
tions, we would choose a noninformative prior during
the burn-in phase because before convergence, the es-
timation of prior parameters for rate based on (5), (6),
and (7) could be biased. After reaching convergence,
we then insert the estimation of the prior parameters in
each iteration of the Gibbs sampler. That is, after the
burn-in period, in each iteration of Gibbs sampling, cal-
culate the estimation of prior parameters with given
changepoints, then generate the Poisson rates with
their relative estimated priors, and then calculate the
likelihood for each hypothesis. With guidance of Eqs.
(4) and (C1), under the uniform prior assumption in the
hypothesis space and after normalization, we obtain
P(H|h). In the simulated examples of this study, we find
this estimation method converges very fast. Since there
are two parameters to estimate for each epoch, the
minimum sample size is two. This constraint is imposed
in a real Gibbs sampler design.

Although the method described here does work well
if the model can adequately represent the data, it still
has a limitation. For example, if the ratio between the

mean and variance of the data is larger than one in an
epoch with given changepoint(s), the prior has to be set
as a gamma distribution with an infinite rate. As a re-
sult, one is forced to conclude that the data do not
update prior beliefs. This is against the fundamental
rule of Bayesian analysis. To avoid this problem, one
may use some other estimation approaches or build
some other models (e.g., Elsner et al. 2004).

One of the simplest marginal likelihood estimation
methods is called “harmonic mean estimator” (Cong-
don 2003). Inspired by the identity,

�
�

P��|h, H�

P�h|�, H�
d� �

1
P�h|H�

,

an alternative approach to estimating P(h|H) by using
Monte Carlo integration is formulated by

P�h|H� � 1�1
N �

i�1

N 1

P�h|�, H��i�,

N → �, �8�

where � is drawn from its posterior probability P(�|h,
H) and the superscript [i] denotes the ith sampling.

Unlike the approach given by Eq. (4), Eq. (8) does
not depend on sampling from the prior distribution.
Instead, it only needs to draw samples from the poste-
rior distribution, which in this study is equivalent to the
output of the proposed Gibbs sampler after the burn-in
period. Thus, a noninformative prior for the rate pa-
rameters is proper for Eq. (8). A harmonic mean esti-
mator (HME) has been widely used, but it may be un-
stable if by chance a few low likelihood values are
present in the sampling output. In the simulated ex-
amples of this study, this approach converges much
slower than the proposed IPE approach. However,
since the MHE approach is only based on a noninfor-
mative prior and needs outputs from a Gibbs sampler
for estimation, it may serve as a useful comparison with
the IPE approach. A simple extension to this method is
given by Gelfand and Dey (1994).

e. Predictive distribution

After running the Gibbs sampling algorithm with the
Markov chain described in sections 4c and 4d, the sta-
tionary output will be P(�, H|h). Therefore the predic-
tive distribution for future T̂ years will be

P�ĥ|h, T̂� �
1
N �

i�1

N

P�ĥ|T̂, �, H��i�,

N → �, �9�

where � and H are drawn from P(�, H|h) and super-
script [i] denotes the ith independent sampling. Alter-
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nately, since both hypothesis choice and the position of
changepoints are discrete, another simple method for
prediction is to find the optimum [maximum a posterior
(MAP)] estimation of changepoints and hypothesis and
apply them to the likelihood model. This yields

P�ĥ|h, T̂� � Pnb� ĥ| �
i�1

n

hi,
n

T̂ � n
�,

when Ĥ � H0

P�ĥ|h, T̂, 	̂� � Pnb� ĥ| �
i�	̂

n

hi,
n � 	̂ � 1

T̂ � �n � 	̂ � 1�
�,

when Ĥ � H1

P�ĥ|h, T̂, 	̂1, 	̂2� � Pnb� ĥ| �
i�	̂2

n

hi,
n � 	̂2 � 1

T̂ � �n � 	̂2 � 1�
�,

when Ĥ � H2. �10�

5. Simulation and results

For each following example, the length of the burn-in
period is 500 and the number of iterations of the Gibbs
sampler after the burn-in period is chosen as 10 000 for
the MCMC–IPE approach and 50 000 for the HME
approach. In all simulations, the noninformative prior
for the rate parameters is a gamma(0.001, 0.001).

a. Simulated examples

To test the validity of the MCMC–IPE method, two
simulated examples are shown subsequently. We apply
the model building approach outlined in section 4b to
the following two simulated time series; the first one is
characterized by one single changepoint and the second
one by two changepoints.

1) EXAMPLE ONE

In the first example, a Poisson time series with a
sample size of 300 is generated. For the first 160 points,
the rate for each point is generated from a gamma(2, 1)
while for the remaining 140 points, the rate for each
point is drawn from a gamma(4, 1). Figure 1a illustrates
the simulated series. After running the proposed
method described in the preceding section, the output
for the posterior probability of three hypotheses is
P(H0|h) � 0, P(H1|h) � 0.981, and P(H2|h) � 0.019,
suggesting that the single changepoint hypothesis is
prevailing. The posterior PMF for changepoint � is il-
lustrated as a solid line in Fig. 1b, from which we see
that the model can precisely catch the prescribed
changepoint, which is shown as a broken line. We also
plotted the estimated prior PDF and the true model

prior PDF of the Poisson rate for the epoch before and
after the changepoint (namely �1 and �2) in Figs. 1c and
1d, respectively. The estimated prior is very close to the
true model under H1 hypothesis. We also apply the
harmonic mean estimator approach to this series and
obtain almost exactly same PMF plot for the change-
point. The estimation of the posterior probability for
hypothesis H0, H1, and H2 is 0, 0.645, and 0.355, respec-
tively.

2) EXAMPLE TWO

In the second example, the same model as in the first
one is used to generate a different Poisson time series.
This time, the time series has two changepoints. The
length of this time series is also set to be 300. For the
first 50 points, the rate for each point is generated from
a gamma(4, 2); for the middle 170 points, the rate for
each point is drawn from a gamma(5, 1)and for the final
80 points, the rate for each point is drawn from a
gamma(9, 3). The simulated series are plotted in Fig. 2a
and after running the MCMC–IPE approach, the out-
put for the posterior probability of three hypotheses is
P(H0|h) � 0, P(H1|h) � 0.011, and P(H2|h) � 0.989;
this result indicates that the double changepoint hy-
pothesis is dominant, a feature consistent with our pre-
set model. The posterior PMF for these two change-
points, namely �1 and �2, are drawn in Figs. 2b and 2c,
respectively; again, the method demonstrated can catch
both changepoints precisely under the H2 hypothesis.
Figures 2d,e,f plot the estimated prior for the rate of
each epoch, namely, �1, �2, and �3, superimposed on
their relative model prior PDFs. It is clear that the
estimated PDF approximates the true PDF for each
epoch without much bias under the H2 hypothesis. For
the HME approach, we obtain almost exactly the same
PMF plots for the changepoints and the estimation of
the posterior probability for hypotheses H0, H1, and H2

is 0, 0.003, and 0.997, respectively.

b. Changepoint analysis of the hurricane rates in
the ENP basin

Now let us turn our attention to modeling the actual
records. We apply the proposed method to the series of
annual major hurricane (MH) counts in ENP. Figure 3a
shows the time series of annual MH counts over the
ENP from 1972 to 2003. Under the uniform prior as-
sumption in the hypothesis space, with the MCMC–IPE
approach, the calculated posterior probability for each
hypothesis is P(H0|h) � 0.021, P(H1|h) � 0.195, and
P(H2|h) � 0.784; for the HME approach, the calculated
posterior probability for each hypothesis is P(H0|h) �
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0.089, P(H1|h) � 0.237, and P(H2|h) � 0.674. Regard-
less of which approach is taken, the H2 hypothesis is by
far the most likely choice. Figure 4 displays the succes-
sive sample values for each parameter under the H2

hypothesis and their relative autocorrelation plots with
lags up to 40. Under the H2 hypothesis, the posterior
PMF for both changepoints are shown in Figs. 3b and
3c, through which one can see that the best choice for
the first (second)changepoint appears to be 1982 (1999)
in terms of MAP estimation.

The posterior PDF for the rate of each epoch is plot-
ted in Figs. 3d,e,f, respectively. The average rate prior
to 1982 is about 2.64 MH yr�1, and increases to almost
4.41 MH yr�1 from 1982 to 1998, and drops back to 1.4
MH yr�1 thereafter (Table 1). Figures 5a,b show the
posterior PDF for the rate shift from the first epoch to

the second epoch (�2 � �1), and the rate shift from the
second to the third epoch (�2 � �3), respectively. The p
values for the posterior PDF of both shifts are all very
small (0.006 for the first and 0.004 for the second),
which strongly implies the existence of two change-
points in the hurricane time series.

c. Decadal tropical cyclone prediction

After having identified two changepoint years in the
major hurricane series, we will use Eqs. (9) and (10) to
predict major hurricane counts in the ENP for the next
decade. Figures 6a and 6b display the predictive distri-
butions of the annual counts in the next decade. A
bimodal distribution of future annual major hurricane
counts is noted if a weighted-average formula such as
(9) is used (triangles in Fig. 6a). The two peaks and the

FIG. 1. Result for the first simulated example. A Poisson time series with sample size 300 is generated. For the
first 160 points, the rate for each point is generated from a gamma(2, 1) while for the remaining 140 points, the rate
for each point is drawn from a gamma(4, 1). (a) The simulated time series. (b) The posterior PMF for changepoint
� (solid line). The broken line in (a) and (b) denotes the prescribed changepoint position. The estimated prior PDF
(broken line) and the true model prior PDF (solid line) of the Poisson rate for the epoch (c) before and (d) after
the changepoint (i.e., �1 and �2).
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distribution are similar to that shown in Fig. 3f, where a
bimodal distribution is also exhibited in the posterior
distribution of the hurricane rate for the third epoch.
Since there are two changepoints identified and the rate
is sharply decreased after the second changepoint
(Table 1), a straight application of Eq. (10) results in a
distribution that tends to yield only one peak near 12
major hurricanes (asterisks in Fig. 6a).

Also shown in Figs. 6a and 6b is the predictive dis-
tribution when no changepoint is presumed (open
circles), a common practice in the traditional Bayesian
analysis. This refers to H � H0 in Eq. (10). Clearly, a
shift toward a higher number of major hurricanes is
evident when one compares the predictive distribution
of the two changepoints to that of a no changepoint
scenario (asterisks to open circles). Thus, without tak-
ing into account the different hurricane rates through-

out the time, it would be naive to project active hurri-
cane activity in the next decade. The difference in the
cumulative predictive distributions between a no
changepoint and a two changepoint model is also very
clear in Fig. 6b. The curve based on the weighted av-
erage (triangles) resembles a compromise between
these two distributions (Fig. 6b).

6. Summary and discussion

Traditionally, major hurricane rates over an ocean
basin have been modeled in a data parameter two-layer
hierarchical Bayesian framework (Elsner and Bossak
2001). In this view, hurricane rates are assumed to be
invariant throughout time, and the annual hurricane
counts are described by a stationary Poisson process
whose rate is conditional on a gamma distribution. To

FIG. 2. Result for the second simulated example. A Poisson time series with sample size 300 is generated. The
time series has two prescribed changepoints. For the first 50 points, the rate for each point is generated from a
gamma(4, 2); for the middle 170 points, the rate for each point is drawn from a gamma(5, 1); and for the final 80
points, the rate for each point is drawn from a gamma(9, 3). (a) The simulated series are plotted. The posterior
PMF for these two changepoints, namely (b) �1 and (c) �2 are shown. Broken lines in (a)–(c) denote the prescribed
changepoint positions. The estimated prior (broken line) for the rate of each epoch, (d) �1, (e) �2, and (f) �3,
superimposed on their theoretical prior (solid line) PDFs.
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detect potential abrupt shifts in tropical cyclone series,
Chu and Zhao (2004) introduced a data parameter hy-
pothesis, three-layer Bayesian paradigm so that the hy-
pothesis layer allows the possibility of both a single
change and no change of the annual hurricane rate.
Elsner et al. (2004) recently modeled the hurricane
count time series based on a nonconstant Poisson rate
process with an hierarchically constructed prior. Build-
ing and extending from the three-layer, two-hypothesis
paradigm for the central North Pacific tropical cyclone
series, in this study the hypothesis space allows for
three scenarios: “a no change in the rate,” “a single
change in the rate,” and “a double change in the rate”
for the annual major hurricane counts over the ENP.
This extension is necessary because in the real world it
is not unusual to have encountered more than one
abrupt shift in a climate time series.

With a noninformative assumption on both hypoth-
esis space and the position of changepoints, after con-
structing the complete Markov chains of a Gibbs sam-

pler under each hypothesis, we propose an approach to
estimating the posterior distribution of the hypotheses
and the parameters under each hypothesis. It is based
on sampling from an estimated informative prior. As a
test of the informative prior estimation (IPE) approach,
two examples are simulated and their results are com-
pared favorably to the harmonic mean estimator ap-
proach. The simulation results demonstrate that the
IPE approach can catch the proper hypothesis and the
associated changepoints quickly. In addition, the
samples drawn from the estimated prior are very close
to that of the true prior distribution of the underlying
model.

The new Bayesian algorithm is subsequently applied
to the annual major hurricane counts over the ENP
during 1972–2003 and a double change hypothesis is
most likely over the last 32 years with abrupt shifts
being identified in 1982 and 1999. In terms of epoch
definitions, the period 1972–81 is regarded as inactive
while the epoch of 1982–98 is active. Beginning with

FIG. 3. Bayesian changepoint analysis result for the annual MH counts in ENP: (a) The time series of annual MH
counts over the ENP from 1972 to 2003; (b), (c) the posterior PMF for both changepoints; and (d), (e), (f) the
posterior PDF for the rate of each epoch.
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1999, the ENP is dominated by a quiescent epoch. In-
terestingly, the Pacific decadal oscillation also seems to
change its phase from a positive to a negative one in
1999 (more information available online at http://

sealevel.jpl.nasa.gov/science/pdo.html). Whether the
change in hurricane series is related to the PDO phase
shift is beyond the scope of the current study and merits
further investigation. As expected, the predicted major
hurricane count in ENP for the next decade based on
this three-layer Bayesian analysis, given the possibility
of the changepoints, is much lower than that based on
the traditional two-layer analysis.

For the sake of simplicity, we neglect the possibility
of more than two changepoints in this study. However,
it would also be possible to carry out an analysis with
more than two changepoints. The general idea is out-
lined in the following. For example, if we assume that
there are possibly at most up to K � 1 changepoints in
the time series, we then have K possible hypotheses in
hypothesis space. In detail, under the k changepoint
hypothesis, 0 � k � K � 1, we can introduce k change-
point position random variables, namely �1, �2, . . . , �k

and k � 1 random Poisson rates, namely �1, �2, . . . ,
�k�1, for each relative epoch. Thus there will be 2k � 1
parameters under the k changepoint hypothesis. For
any single target parameter under this hypothesis, if all

TABLE 1. Bayesian analysis results on the changepoint of annual
MH counts in the ENP. Here, under the uniform assumption in
the hypothesis space, P(H0|h), P(H1|h), and P(H2|h) denote the
posterior probability of the H0, H1, and H2 hypotheses, respec-
tively; �̂1 and �̂2 are the maximum likelihood estimates for the first
and second changepoints under the H2 hypothesis, respectively;
�1| �̂1, �̂2, �2| �̂1, �̂2, and �3| �̂1, �̂2 denote the average rate, under the
H2 hypothesis, in three consecutive epochs (i.e., 1972–81, 1982–98,
and 1999–2003), respectively, given changepoints in 1982 and
1999.

Term Value

P(H0|h) 0.021
P(H1|h) 0.195
P(H2|h) 0.784
�̂1 1982
�̂2 1999
�1| �̂1, �̂2 2.64
�2| �̂1, �̂2 4.41
�3| �̂1, �̂2 1.40

FIG. 4. Successive sample values for each parameter under (left) the H2 hypothesis and (right) their autocorrelation
plots when running the MCMC/IPE approach to the annual MH count series in the eastern North Pacific.
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other parameters are given, the derivation of its condi-
tional posterior distribution is fairly similar to the ex-
tension from the H1 to the H2 hypothesis with very
minor revisions (refer to the argument and derivation
in appendix B). Furthermore, under the similar deduc-
tion in appendix C, it is also easy to formulate the like-
lihood P(h|�, Hk) under the given model. Once the
Markov chain for Gibbs sampler is set, we can estimate
both posterior and prior distributions in a way similar
to that introduced in section 4d for each parameter
under this hypothesis. In essence, it is quite straightfor-
ward to extend the whole framework described in sec-
tion 4 to up to any finite number of multiple change-
points in hypothesis space. However, the extended
framework inevitably increases the computational com-
plexity.
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APPENDIX A

Derivation of a Conditional Posterior PDF
P(�|h, H1, �11, �12)

Given h � [h1, h2, . . . , hn] and hi � Poisson(hi|�11,
T � 1) when i � 1, 2, . . . , � � 1 and hi � Poisson(hi|�12,
T � 1) when i � �, . . . , n, we have

FIG. 5. Posterior density function of the shift for the major
hurricane series over the ENP (a) P(�2 � �1|h, H2, �1 � 1982, �2

� 1999) and (b) P(�2 � �3|h, H2, �1 � 1982, �2 � 1999).

FIG. 6. Decadal predictive distribution of MH counts in the
ENP: (a) probability and (b) cumulative mass function. Triangles
indicate the prediction made by the weighted average; asterisks
denote the prediction by the two changepoint hypotheses; open
circles denote the prediction without considering the changepoint.
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P�h|H1, �11, �12, 	� � ��
i�1

	�1e��11�11
hi

hi!
���

i�	

n e��12�12
hi

hi!
�

���
i�1

n e��12�12
hi

hi!
�� �i�1

	�1

e��11�11
hi

�
i�1

	�1

e��12�12
hi � � ��

i�1

n e��12�12
hi

hi!
�e��	�1���11 � �12���11

�12
��

i�1

	�1

hi

. �A1�

With guidance of the Bayesian formula, we have

P�	|h, H1, �11, �12� �
P�h|H1, �11, �12, 	�P�	�

�
	�2

n

P�h|H1, �11, �12, 	�P�	�

,

	 � 2, 3, . . . , n �A2�

where P(�) is the prior density for the changepoint.
Here P(�) can be of any discrete distribution, how-

ever, the proper noninformative choice is uniform dis-
tribution. Under this assumption, we have

P�	|h, H1, �11, �12� � P�h|H1, �11, �12, 	�

� e��	�1���11 � �12���11

�12
��

i�1

	�1

hi

,

	 � 2, 3, . . . , n. �A3�

APPENDIX B

Derivation of Conditional Posterior PDF
P(�1|h, H2, �21, �22, �23, �2) and

P(�2|h, H2, �21, �22, �23, �1)

For P(�1|h, H2, �21, �22, �23, �2), with given �2, for the
data in the first and second epochs, [h1, h2, . . . , h�2�1],
the case is equivalent to the single changepoint hypoth-
esis as described in appendix A except that the data

range from 1 to �2 � 1 and the rates for the first and the
second epochs are �21and �22, respectively. Thus, with
noninformative prior for �1|�2, the conditional posterior
for �1 is

P�	1|h, H2, �21, �22, �23, 	2� � e��	1 � 1���21 � �22���21

�22
��

i�1

	1�1

hi

,

	1 � 2, 3, . . . , 	2 � 1. �B1�

By similar argument, with given �1 the data in the sec-
ond and third epochs, [h�1

, h�1�1, . . . , hn], is also with
only a single changepoint. Thus, with given the rate for
the epochs before and after �2, �22, and �23, respec-
tively, also with noninformative assumption for the
prior �2|�1, we have the conditional posterior for �2:

P�	2|h, H2, �21, �22, �23, 	1� � e��	2 � 	1���22 � �23���22

�23
��

i�	1

	2�1

hi

,

	2 � 	1 � 1, . . . , n. �B2�

APPENDIX C

Derivation of Likelihood
P(h|�, Hi) i � 0, 1, 2

Given

ln�P�h|�,H0�� � ln��
i�1

n e��0�0
hi

hi!
� � �n�0 � ln��0�* �

i�1

n

hi � �
i�1

n

ln�hi!�

ln�P�h|�, H1�� � ln���
i�1

	�1e��11�11
hi

hi!
���

i�	

n e��12�12
hi

hi!
��

� ���11�	 � 1� � �12�n � 	 � 1�� � ln��11�*��
i�1

	�1

hi� � ln��12�*��
i�	

n

hi� � �
i�1

n

ln�hi!�

ln�P�h|�, H2�� � ln�� �
i�1

	1 � 1e��21�21
hi

hi!
�� �

i�	1

	2 � 1e��22�22
hi

hi!
���

i�	2

n e��23�23
hi

hi!
��

� ���21�	1 � 1� � �22�	2 � 	1� � �23�n � 	2 � 1�� � ln��21�*� �
i�1

	1 � 1

hi� � ln��22�*� �
i�	1

	2 � 1

hi�
� ln��23�*��

i�	2

n
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i�1

n

ln�hi!�,
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obviously, �n
i�1 ln(hi!) does not contain any information

about the parameters or the hypothesis choice. Thus,
after removing the constant part e−�i�1

n ln�hi!�, we get the
following formula:

P�h|�, H� � 	
e�n�0*�0

�
i�1

n

hi if H � H0

e���11�	�1���12�n�	�1��*�
11

�
i�1

	�1

hi
*�

12

�
i�	

n

hi if H � H1

e���21�	1�1���22�	2�	1���23�n�	2�1��*�
21

�
i�1

	1�1

hi
*�

22

�
i�	1

	2�1

hi
*�

23

�
i�	2

n

hi if H � H2

. �C1�
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