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ABSTRACT

Drought and flooding are recurrent and serious problems in the U.S. Affiliated Pacific Islands (USAPI). Given
the agricultural and water-dependent characteristics of the USAPI economies, accurate forecasts of seasonal to
interseasonal rainfall variations have the potential to provide important information for decision makers involved
in resource management issues and response strategies related to drought and flood events.

Climatology of rainfall and outgoing longwave radiation (OLR) cycle in the USAPI and the response of OLR
to the El Niño–Southern Oscillation (ENSO) are addressed. Boxplot and harmonic analyses indicate that the
annual cycles in rainfall and OLR are generally strong in USAPI except those stations close to the equator.
Northern USAPI have positive (negative) OLR anomalies during El Niño (La Niña) winters.

Two statistical models, canonical correlation analysis (CCA) and a relatively new method called multivariate
Principal Component Regression (PCR), are employed to forecast rainfall variations in 10 USAPI stations. Sea
surface temperatures (SSTs) in the Pacific Ocean are used as predictors for both models. The results of this
study indicate that both models are potentially useful in predicting seasonal rainfall variations in the USAPI
region, especially in winter (DJF) and spring (MAM). CCA cross validation shows that at one and two seasons
lead JFM is the most accurately forecast period in the northern USAPI stations, with average skills of 0.53 and
0.41, respectively. However, the authors’ analysis indicates a problem of lower predictive skill in summer (JJA)
and fall (SON). One reason might be associated with the so-called spring barrier in predictive skill in the tropical
ocean–atmosphere system. Another reason might be associated with the tropical cyclone activity during these
seasons. Predictions using the PCR model yield similar predictive skill. Though simpler than He and Barnston’s
model in term of the number of predictor variables used, the authors’ CCA and PCR provide comparable skills.

1. Introduction

The U.S. Affiliated Pacific Islands (USAPI) comprise
former territories administered under a United Nations
trusteeship [now the Federated States of Micronesia
(FSM), Republic of Palau, the Commonwealth of Northern
Mariana Islands, and the Republic of the Marshall Islands]
as well as older U.S. territories (the Territory of Guam,
Wake Island, and American Samoa). All but American
Samoa lie in the Northern Hemisphere (Fig. 1).

Drought and flooding are recurrent and serious prob-
lems in the Pacific islands. Deficient rainfall can lead
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to water resource management problems, such as strict
water rationing and expensive importation of potable
water, as well as deleterious impacts on rain-fed agri-
culture and increased risk of wildfire hazard. On the
other hand, flooding can damage civil infrastructure
such as bridges, roads, and housing, as well as destroy
agricultural crops and fields. Accurate forecasts of sea-
sonal rainfall variation with sufficient lead times have
the potential to provide important information for de-
cision makers involved in resource management issues
and response strategies related to drought and flood
events in the Pacific islands.

A Pacific ENSO Applications Center (PEAC) was
established in early 1994 as a partnership among the
University of Guam, the University of Hawaii, NOAA’s
National Weather Service and Office of Global Pro-
grams, and the U.S. affiliated island governments of the
Pacific region, through the Pacific Basin Development
Council (PBDC). The main purpose of PEAC is to de-
velop and provide tools to assist government officials
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FIG. 1. Geographical map of Exclusive Economic Zone (EEZ) for
the United States Affiliated Pacific Islands (USAPI): 1—Republic of
Palau; 2—Federated States of Micronesia (FSM); 3—Territory of
Guam; 4—Commonwealth of the Northern Mariana Islands (CNMI);
5—Republic of the Marshall Islands; 6—Wake; 7—American Samoa.

FIG. 2. Locations of selected 10 USAPI stations (Andersen AFB/
Guam, Guam WSO, Kwajalein, Koror, Majuro, Pago Pago, Chuuk,
Wake, and Yap).

and other parties interested in changes in local climate
and impacts within the Pacific region arising from the
El Niño–Southern Oscillation (ENSO) cycle. Tools de-
veloped by the center support decision-making pro-
cesses undertaken in the Pacific region for water re-
source management, fisheries management, agriculture,
natural disaster mitigation strategies, power utilities,
coastal zone management, and other climate-sensitive
sectors. We determined that understanding the nature of
rainfall and its predictability is essential to serving our
clients.

Studies over the past 30 yr have demonstrated that
ENSO has a significant impact on the climate variability
in the Pacific islands. Bjerknes’s (1966, 1969) pioneer-
ing studies indicated that tropical climate was strongly
influenced by ENSO episodes. Later studies (Meisner
1976; Wright 1979; Ropelewski and Halpert 1987; Chu
1995) have supported the results of Bjerknes. Lau’s
(1985) global climate model experiments indicate that
much of the atmospheric response to ENSO is associated
with the changes in SSTs in the Pacific. Pacific SSTs
can thus be used to forecast regional climate fluctua-
tions, especially in the tropical Pacific area.

We decided to use two statistical techniques for our
application. The first technique is canonical correlation
analysis (CCA), a multivariate statistical model that
computes linear combinations of a set of predictors that
maximize relationships, in a least squares error sense,
to similarly calculated linear combinations of a set of
predictands. In other words, CCA is used to find linear
combinations of two datasets that are most highly cor-
related. Given this characteristic of CCA and the high
correlations between climate variations and ENSO (or
SSTs), CCA modeling using Pacific SSTs as predictors
certainly provides good potential in predicting seasonal
to perhaps interannual climate variations (e.g., rainfall
fluctuations) for the USAPI. The second technique that

we use is multivariate Principal Component Regression
(PCR). It is mathematically simpler than CCA. One of
our interests is in comparing performance of the two
techniques.

Recently, He and Barnston (1996) used the CCA
method to forecast rainfall in the tropical Pacific islands
at various lead times. He and Barnston (hereafter re-
ferred to as HB) noted a moderate skill for certain is-
lands in the Northwestern Pacific, particularly during
late northern winter. Our current study complements the
HB analysis by further investigating the seasonality of
rainfall predictability in the USAPI. Climatology of the
rainfall cycle in the USAPI and the response of rainfall
and outgoing longwave radiation (OLR) to ENSO,
which are not addressed by HB, will be examined. Fur-
thermore, whereas HB used quasi-global SSTs, Northern
Hemisphere 700-mb height, and the past history of rain-
fall itself in forecasting island rainfall, we have focused
on SSTs as the sole predictors. We base this approach
on the close proximity of the USAPI to the equatorial
center of atmospheric response to ENSO (Ropelewski
and Halpert 1987).

Section 2 describes the data, and section 3 discusses
climatology and rainfall/OLR variations related to
ENSO. The analysis methods and CCA and PCR models
are described in section 4. Section 5 discusses the results
of cross-validation skills, along with an examination of
seasonality of rainfall predictability. Finally, section 6
summarizes the study.

2. Data

Monthly rainfall data for 10 major USAPI stations
(Koror, Yap, Guam WSO, Andersen Air Force Base in
Guam, Chuuk, Pohnpei, Wake, Kwajalein, Majuro, and
Pago Pago) in the Pacific islands are selected as pre-
dictands. Locations of selected long-term USAPI rain-
fall stations are shown in Fig. 2 and a table of geo-
graphical details for selected stations is given in Table
1. The rainfall data are for a period of 38 yr (1957–94).
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TABLE 1. Geographical details (latitude, longitude, and associated
governments) of each rainfall station.

Stations Latitude Longitude Governments

Koror
Yap
Guam WSO
Andersen AFB Guam
Chuuk
Pohnpei
Wake
Kwajalein
Majuro
Pago Pago

78209N
98299N

138339N
138359N

78279N
68589N

198179N
88449N
78059N

148209S

1348299E
1388059E
1448509E
1448559E
1518509E
1588149E
1668399E
1678439E
1718239E
1708439W

Palau
FSM–Yap
Guam
Guam
FSM–Chuuk
FSM–Pohnpei
United States
Marshalls
Marshalls
American Samoa

TABLE 2. A table of correlation coefficient (CC) between monthly rainfall in the USAPI stations and OLR times series at the nearest
box, with ∗ indicating the significance at 99% level (note: Guam rainfall data are rainfall in Guam WSO). Nineteen-year (1975–93) data
are used and 10-month OLR missing data in 1978 are replaced by median values.

Station Koror Yap Guam Chuuk Pohn Wake Kwaj Maju Pago

CC 20.67* 20.77* 20.78* 20.69* 20.63* 20.66* 20.64* 20.63* 20.60*

Data were obtained from the Western Regional Climate
Center (WRCC) in Reno, Nevada.

The SST data used in this analysis are a combination
of two datasets. The Global Ocean and Global Atmo-
sphere (GOGA) data (4.58 lat 3 7.58 long), derived from
the Comprehensive Ocean–Atmosphere Data Set
(COADS; Slutz et al. 1985), are used in the first part
from 1956 to 1988. For the later part of SST data (1989–
94), we use the Climate Prediction Center (CPC) blend-
ed SST data, which were derived from a blend of in
situ data, AVHRR satellite data, and ice data (Reynolds
1988). The SST data cover most of the Pacific Ocean
from 1008E to 728W, and 558S to 558N. The SST data
are then averaged into 108 lat 3 248 long boxes, as in
Joseph et al. (1991). There is a total of 80 boxes, or
predictor elements, for the forecasts because 8 boxes do
not have data.

We also used OLR, which is a commonly used proxy
for rainfall in the oceanic Tropics where stations are
scarce and the rainfall is primarily convective (Lau and
Chan 1983a,b; Weickmann 1983; Murakami and Nak-
azawa 1985; Yoo and Carton 1990; Lyons 1991). Al-
though Morrissey (1986) and Lyons (1991) demonstrat-
ed that OLR can be misleading in certain climate re-
gimes, the USAPI is generally free of that problem. An
inverse relation between OLR and rainfall in the Tropics
generally holds. This can be further seen in the high
negative correlation coefficient between the USAPI
monthly rainfall series and OLR series (at nearest cor-
responding box) in each USAPI station (Table 2). As
indicated in Table 2, a correlation analysis of 19-yr
USAPI rainfall and OLR monthly series show strong
correlation coefficients ranging from 20.60 to 20.78.
All correlation coefficients are significant at the 99%
level when the serial correlation is taken into account.

3. Climatology

The Northern Hemisphere USAPI lie within the mon-
soon region as defined by Ramage (1971). The rainy
seasons coincide with the annual northward march and
then southward retreat of the surface monsoon trough
(Sadler et al. 1987). The cloudiness and precipitation
maximum associated with the westerlies equatorward of
the trough constitute the intertropical convergence zone
(ITCZ) often described in the literature (Sadler 1975).
An additional warm season feature is the Tropical Up-
per-Tropospheric Trough (TUTT), which serves as a pri-
mary source of warm season disturbances and some
typhoons near Wake Island (Sadler 1978). Wake Island
lies well northeast of the maximum northward position
of the monsoon trough and experiences no ITCZ rains.
During the winter monsoon, dry northeasterly winds
blow at all Northern Hemisphere USAPI; cold fronts
reach Wake Island.

American Samoa lies eastward of the Southern Hemi-
sphere monsoon region as defined by Ramage (1971)
and Webster (1987). Climatologically, the monsoon
trough during austral summer is located near 128S, just
to the north of Australia, extending eastward from about
1508E to 1708E (Sadler et al. 1987). However, eastward
advances of the monsoon trough can sometimes envelop
Samoa, a feature evident during the 1982–83 ENSO
episode (Sadler 1983). This trough, together with the
South Pacific convergence zone (SPCZ), which is
aligned northwest to southeast from about 1708E to
1508W (Vincent 1994), is the source of the cloudiness.
In the austral cool season a cloudiness maximum re-
mains near Samoa. This maximum forms in the con-
vergence between two high pressure cells, one in the
extreme southeast Pacific and a second immediately east
of Australia.

Figure 3 shows boxplots of monthly rainfall data in
selected USAPI stations. The annual cycle appears
strong in the Northern Hemisphere USAPI stations with
maximum median rainfall in ASO (August–October)
and minimum in FMA (February–April). The annual
cycles for individual stations vary slightly and maxi-
mum rainfalls (medians) occur at times ranging from
early June to October, depending on the locations of
individual stations relative to the seasonal, meridional
movement of the monsoon trough. Thus, rainfall max-
ima occur in July/August in low latitude stations such
as Koror, Yap, Pohnpei, Chuuk, and Majuro while they
occur in September/October in higher latitude stations
such as Guam WSO and Kwajalein. In Wake, however,
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FIG. 3. Boxplots of monthly rainfall totals from 1957 to 94 in selected stations. The box shows the interquartile range extending from the
lower quartile (p 5 25%) to the upper quartile (p 5 75%). White spots inside the boxes are middle halves of the data (medians), the vertical
lines (‘‘whiskers’’) extending from the box reach to the most extreme nonoutlier (p 5 97.5% and p 5 2.5%); outlying points are plotted
individually.

maximum rainfall is usually associated with the TUTT
as discussed earlier. Low rainfall values in spring are
associated with the dry east Asian winter monsoon. In
Pago Pago, maximum rainfall occurs in January when
the SPCZ is very strong, and the minimum is in Sep-
tember/October when the SPCZ is weak.

The OLR boxplots at locations (Fig. 4) show similar
characteristics. Most Northern Hemisphere stations ap-
pear to have minimum OLR (or maximum convection)
in ASO and maximum OLR (or minimum convection)
in FMA.

To evaluate the importance of the annual cycle, har-
monic analysis is performed on the long-term monthly
mean rainfall and OLR series. The first harmonic, which
represents the annual cycle, explains a substantial vari-
ance of the rainfall/OLR variability in the monsoonal
regions (Fig. 5 and Table 3). Maximum rainfalls (or
minimum OLRs) occur from August to October for
northern USAPI stations (Table 3). The first harmonic
explains most of the variance (at least 53% of total
variance for rainfall and 73% for OLR), especially for
Guam (92%, 90%), Pago Pago (90%, 99%), and Yap
(85%, 87%). The annual cycle is relatively weak
(though still explaining over 53% of the variance for

rainfall) at stations near the equator such as Koror,
Chuuk, and Pohnpei. These stations receive monsoon
trough rains twice a year as the trough crosses on its
northward advance and southward retreat. A second har-
monic (Table 4), which represents the semiannual cycle,
adds significantly to the variance explained at Koror,
Pohnpei, and Wake.

The OLR data are utilized to demonstrate ENSO ef-
fects in the Tropical Pacific region, as in Chu (1995).
Due to the relatively short record of OLR data, we se-
lected five winters (DJF) of warm ENSO events (1976/
77, 1982/83, 1986/87, 1991/92, 1992/93) and two win-
ters of cold events (1975/76, 1988/89) for composite
analyses. In a normal Northern Hemisphere winter, the
northern USAPI are in the high OLR (low rainfall) zone
(Fig. 6a). The SPCZ, as defined by a persistent OLR
minimum area with values less than 230 W m22, extends
southeastward from New Guinea to American Samoa
and beyond.

The OLR composites are shown in Figs. 6b and 6c.
For El Niño winters (Fig. 6b), strong negative OLR
anomalies (associated with stronger convention) are lo-
cated in the equatorial central Pacific while strong pos-
itive anomalies (associated with weaker convection) are
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FIG. 4. Same as Fig. 3 but for OLR time series (1975–93) at nearest locations.

found in the equatorial western Pacific. Two relatively
weak positive anomalies are found in the subtropical
areas of the central Pacific. Pago Pago is in the boundary
of the negative anomaly center while most northern Pa-
cific stations are located in the positive anomaly area.
Thus, Pago Pago receives more than normal rainfall
while most northern Pacific stations become drier during
El Niño. The pattern of OLR anomalies during cold
events (Fig. 6c) is approximately opposite to warm
events: relatively large, negative OLR anomalies are
found in the northern tropical Pacific while positive
anomalies are located in the equatorial central Pacific.

4. Analysis methods and CCA and PCR model
building

a. Predictors

SSTs in the Pacific are used as predictors in the CCA
model. Studies by Hastenrath and Heller (1977), Moura
and Shukla (1981), and Shukla and Misra (1977) indicated
that SSTs play an important role in regulating precipitation
on regional or global scales. Lau (1985) also found that
much of the atmospheric response to ENSO was associated
with the changes in sea surface temperatures in the Pacific.
SSTs have long-term records and thus provide a good
sample size for statistical models. Indeed, Barnston and

He (1996) used a CCA model to predict rainfall in Hawaii
and Alaska and their results suggested that SSTs contribute
the most to forecast accuracy.

b. Data prefiltering by empirical orthogonal function
(EOF) analysis

It is highly advisable to apply EOF analysis prior to
the CCA. This can be accomplished by projecting the
data onto EOFs and then retaining only a limited number
of principal components in the analysis. There are sev-
eral reasons for doing this. First of all, the large number
of spatial points can cause difficulty in inverting the
matrices and in the eigenvalue problem. The prepro-
cessing procedure transforms the large spatial dimension
into a smaller number of retained EOF modes and this
value is quite modest even for large fields. The com-
putation of canonical modes is thus simplified after pre-
processing. In addition, the small-scale noise is filtered
out after EOF analysis since the use of EOFs allows the
analysis to focus on the dominant modes of variability
within each input dataset. The procedure for computing
eigenvectors from a matrix of data has been described
extensively in the literature and will not be discussed
here.

The EOF analysis is thus performed onto the box-
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FIG. 5. First harmonic of rainfall and OLR. Solid lines denote rainfall in individual stations; dashed lines denote OLR values at corre-
sponding locations. Values in the upper-left (right) corner are variances explained by the first harmonies of rainfall (OLR).

TABLE 4. Same as Table 3 except for the second harmonic.

Stations

Rainfall

R2 T (months)

OLR at nearest box

R2 T (months)

Koror

Yap

Guam WSO

Chuuk

Pohnpei

Wake

Kwajalein

Majuro

Pago Pago

0.28

0.08

0.06

0.06

0.30

0.25

0.09

0.07

0.01

1.83
7.83
3.18
9.18
5.93

11.93
5.53

11.53
5.38

11.38
6.37

12.37
4.51

10.51
6.04

12.04
4.86

10.86

0.16

0.06

0.07

0.03

0.06

0.23

0.08

0.12

0.01

2.57
8.57
3.75
9.75
4.49

10.49
2.57
8.57
5.80

11.80
5.64

11.64
4.48

10.48
4.42

10.42
2.65
8.65

TABLE 3. Harmonic analysis of annual cycles of USAPI rainfall
and OLR series (at nearest corresponding box). Here, R2 denotes the
proportion of the variance accounted for by the first harmonic, and
T denotes the phase angle of the first harmonic or the time, in month
(e.g., 1 means January, 2 means February, . . .) of maximum (or
minimum for OLR) of the first harmonic function. Nineteen-year
(1975–93) rainfall and OLR data are used.

Stations

Rainfall

R2 T (month)

OLR at nearest box

R2 T (month)

Koror
Yap
Guam WSO
Chuuk
Pohnpei
Wake
Kwajalein
Majuro
Pago Pago

0.60
0.85
0.92
0.53
0.64
0.55
0.81
0.79
0.90

8.46
9.17
9.83
8.87
8.55
9.39
9.76
9.54
2.30

0.74
0.87
0.90
0.84
0.89
0.73
0.79
0.78
0.99

9.23
9.35
9.46
9.21
9.46
9.07
9.48
9.55
2.51

averaged seasonal mean SSTs for the period of 1956 to
1994 and seasonal rainfall totals for the period of 1957
to 1994. The data have not been detrended or stan-
dardized. The EOF analysis is thus performed using a
covariance matrix. The advantage of using the covari-
ance matrix is that the strongest variations can be iden-
tified or isolated in a dataset.

There is no universally agreed upon procedure for
determining how many EOF modes should be retained.
Morrison (1976) suggests that the retained components

should explain perhaps 75% or more of the variances.
Therefore, the leading eight modes of SSTs and the four
leading modes of rainfall are selected since they account
for approximately 75% or higher of the total variance,
respectively (Tables 5 and 6). Scree graphs (Wilks 1995)
are also used and results are consistent with the above
selection rule (not shown).



2592 VOLUME 10J O U R N A L O F C L I M A T E

FIG. 6. OLR anomaly in winter. (a) OLR mean in winter (DJF)
based on data from 1975–93; (b) OLR anomaly in El Niño winter
(1977/78; 1982/83; 1986/87; 1991/92; 1992/93); (c) OLR anomaly
in La Niña winter (1975/76; 1988/89). Shading in (a) indicates areas
with OLR , 230 W m22 and shading in (b) and (c) indicates negative
anomalies.

TABLE 6. Percentage of variance explained by eigenvectors. (Val-
ues in parentheses are cumulative variance explained by the k largest
eigenvalues.)

Ek/
rainfall

DJF
rainfall

MAM
rainfall

JJA
rainfall

SON
rainfall

E1
E2
E3
E4

54.9 (54.9)
13.8 (68.7)
10.6 (79.3)

7.6 (86.9)

58.7 (58.7)
17.6 (76.3)

9.7 (86.0)
4.6 (90.6)

34.6 (34.6)
21.5 (56.1)

6.9 (73.0)
11.4 (84.4)

33.1 (33.1)
22.8 (55.9)
14.5 (70.3)

9.5 (79.8)

TABLE 5. Percentage of variance explained by eigenvectors. (Val-
ues in parentheses are cumulative variance explained by the k largest
eigenvalues.)

Ek/SST DJF SSTs MAM SSTs JJA SSTs SON SSTs

E1
E2
E3
E4
E5
E6
E7
E8

35.5 (35.5)
9.9 (45.4)
8.0 (53.4)
7.0 (60.4)
5.2 (65.6)
4.3 (69.9)
3.9 (73.8)
3.3 (77.1)

26.7 (26.7)
12.1 (38.8)

9.5 (48.3)
8.0 (56.3)
6.2 (62.5)
5.0 (67.5)
4.2 (71.7)
3.6 (75.3)

22.1 (22.1)
14.7 (36.8)
11.3 (48.1)

7.2 (55.3)
5.8 (61.1)
5.4 (66.5)
4.3 (71.8)
3.8 (74.6)

33.7 (33.7)
12.7 (46.4)

8.2 (54.6)
5.7 (60.3)
5.2 (65.5)
4.5 (70.0)
4.1 (74.1)
3.4 (77.5)

c. CCA forecast model

The CCA technique was introduced by Hotelling
(1935), and a useful discussion of the method, with ex-
amples of its application to meteorological fields, was pre-
sented by Glahn (1968). Since the introduction of CCA,
prediction of climate variations using the method has re-
ceived wide attention and has had some success; for ex-
ample, CCA was employed to forecast short-term climate
fluctuations (Barnett and Preisendorfer 1987; Graham et
al. 1987a,b; Barnett et al. 1988) and seasonal rainfall fluc-
tuations (Barnston 1994; Chu and He 1994; Yu 1994;
Barnston and He 1996; Barnston and Smith 1996).

Assuming that Xs,t denotes the predictor matrix and Yr,t

denotes the predictand matrix, where the subscripts s and
r represent space, and subscript t represents time, namely,

s 5 1, . . . , m

r 5 1, . . . , n

t 5 1, . . . , k.

Both Xs,t and Yr,t are monthly mean (or seasonal mean)
removed matrices. Performing EOF analysis on Xs,t and
Yr,t leads to

X 5 E T (1)s,t s,s s,t

Y 5 E T , (2)r,t r,r r,t

where Es,s and Er,r represent EOF spatial modes of the
predictor and predictand matrices, respectively, and Ts,t

and Tr,t are their attendant time coefficients.
Assuming that we take the first i EOF modes of the

predictor time series (Ti,t, i , m) and the first j EOF
modes of the predictand series (Tj,t, j , n) as inputs to
CCA analysis, we can determine canonical vectors (u,
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y) and linear combinations of Z 5 u9 Ti,t and W 5 y9Tj,t.
The following matrices are defined:

U9 5 [u9, u9, . . . , u9]9 (3)1 2 q

V9 5 [y9, y9, . . . , y9]9 (4)1 2 q

a1

a 02A 5 , (5)q,q .F G
0 aq

where a1, . . . , aq are ‘‘canonical correlations’’ between
Z and W, and a1 $ a2 $ . . . $ aq and q is equal to i
or j, whichever is smaller.

Prediction equation at time t for lead time l for the
first j modes of predictand can then be constructed as
follows (Glahn 1968; Chu and He 1994):

T̂j,t̂1l 5 (V9)21Aq,qU9Ti,t. (6)

Using the orthogonal characteristics of EOF modes,
truncated equations of (1) and (2) can be rewritten as

T 5 (E )9X (7)i,t s,i s,t

Y 5 E T . (8)r,t r,j j,t

Using Eqs. (7) and (8), Tj,t 1 1 can thus be transformed
back to rainfall values as

Ŷr,t1l 5 Er,j(V9)21Aq,qU9(Es,i)9Xs,t. (9)

d. Principal Component Regression (PCR) model

In the CCA model, we assumed that the predictor
field is a matrix of known constants. If that matrix is
random, then the analysis is carried out conditional on
it so that it is still treated as if it were fixed. The initial
EOF truncations also cause a problem. In CCA, it is
implicitly assumed that the first four modes of the pre-
dictand field are the ones that are most highly correlated
with the first eight modes of the predictor fields. How-
ever, there is no guarantee that one of the higher modes
of variations in the predictor set (e.g., higher than the
eighth mode) will not be strongly associated with the
predictand set.

To overcome these problems, we use a relatively new
approach, principal component regression (Draper and
Smith 1981). Using the same notation as in section 4c,
we can write the Principal Component Regression
(PCR) model as follows:

Yr,t 5 Br,iTi,t 1 Yr,t, (10)

where Ti,t is a matrix of the truncated EOF time coef-
ficients and Br,i is a matrix of regression coefficients
(obtained from least squares estimates). The error matrix
Yr,t has rows that are assumed to be multivariate normal
with means zero and some appropriate covariance struc-
ture. Note that there is no EOF truncation on the pre-

dictand dataset so that the full information contained in
the rainfall dataset is used. By doing so, there is no need
to assume that the leading truncated modes in the pre-
dictor dataset are those that are most highly related to
the leading modes in the predictand dataset. Once fitted
equations are obtained in terms of the selected modes,
they can be transformed back into a function of the
original predictor data using Eq. 7.

We still use the first eight modes of SSTs (which
explain more than 75% of the total variance as shown
in Table 6) as predictors to construct a PCR model. To
ensure that we do not miss modes with strong correlation
to predictands, the correlations between the time coef-
ficients of the eigenvectors associated with other non-
zero eigenvalues and the predictand values are exam-
ined, and no particularly strong correlation is found. The
selection of the first eight principal components in PCR
also make it easier to compare the skills between PCR
and CCA model results directly.

5. Model results
a. CCA maps

The loading patterns of mode one for winter (DJF) SSTs
and the following spring (MAM) rainfall are shown in
Figs. 7a and 7b. Strong negative (positive) SST anomalies
in the equatorial central/eastern Pacific are associated with
positive (negative) rainfall anomalies throughout the north-
ern USAPI region. The rainfall series in USAPI is highly
correlated to the Pacific SST series for this mode, which
accounts for 39% of the total variance. In Fig. 7c, the two
canonical component times series have a high correlation
coefficient (0.80). Higher than normal winter SSTs in the
equatorial central Pacific lead to lower than normal spring
rainfall in northern USAPI and higher than normal spring
rainfall in Pago Pago. Specifically, a maximum anomaly
of 10.88C in the equatorial central Pacific leads to 2136
mm and 134 mm of spring rainfall anomalies at Andersen
AFB and Pago Pago, respectively. Given the importance
of the first mode, the above results suggest that the inter-
annual rainfall variations in the tropical Pacific islands are
strongly influenced by the SST field and further support
the use of the Pacific SSTs as predictors in the model.

The pattern of the observed SST anomalies at the height
of the 1982–83 ENSO (Fig. 7d) is similar to the SST
loading pattern (Fig. 7a) although the sign is reversed. By
combining the canonical component time series of SSTs
(solid line in Fig. 7c) and the SST loading pattern (Fig.
7a), we independently obtain a positive anomaly in the
equatorial central–eastern Pacific during DJF of 1982/83.
Therefore, the first mode is an ENSO-related mode, im-
plying that ENSO plays an important role in the inter-
annual rainfall variation.

b. CCA cross-validation results and seasonality of
rainfall predictability

Cross validation is a generalization of the common tech-
nique of repeatedly omitting a few observations from the
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FIG. 7. The principal loading patterns and canonical component time series of mode 1 for
winter (DJF) SSTs and the following spring (MAM) precipitation. (a) SST loading pattern. The
SST and rainfall loadings have been adjusted to their raw units, namely 8C and mm, respectively;
(b) rainfall loading pattern; (c) canonical component time series in normalized values. Solid line
and dashed line denote SSTs and rainfall, respectively; 1 and V denote El Niño and La Niña
years, respectively; (d) observed DJF 1982/83 SST anomalies in 8C (based on SST climatology
from 1957 to 1994).

data, reconstructing the model, and then making forecasts
for the omitted cases (Stone 1974; Chu and He 1994).
Cross validation is conducted to evaluate the overall fore-
casting skill of the CCA model. The cross validation is
nonparametric and provides an unbiased estimate of fore-
cast skill. The approach goes as follows (Chu 1989): The
predictor and predictand data of N time points are divided
into L segments. A model is then developed using the data
of L 2 1 segments. This model is then used to predict
the variable in the remaining segment. This process is
successively repeated by changing the segment that has
been excluded from the model development. By doing
this, we obtain N predictions. These predicted values can
be correlated with N observations and the overall forecast
skill can be determined.

In this study, we remove only one observation at a time
for each case. This is justified as interannual autocorre-
lations in the data are small (e.g., the average absolute
autocorrelations of the rainfalls and SSTs is 0.10 and 0.17,
respectively). Therefore we use all data available except
for the season for which we want to make a prediction.
For example, to forecast the summer (JJA) rainfall of 1980
with one-season lead time, we use a 37-yr summer rainfall
time series (1957–79, 1981–94) and a 37-yr spring SST
series (1957–79, 1981–94) to build a CCA model (redo
everything each time, including the pre-EOFs). Then this
resulting CCA model is used to forecast rainfall values in
summer 1980 using SST values in spring 1980. We use
the moving average season of three consecutive months

in order to identify the season with best predictability,
yielding 12 target seasons (DJF, JFM,..., OND, NDJ).

The cross-validation skills for JFM, AMJ, JAS, and
OND are shown in Table 7. As indicated, different islands
show different levels of predictive skill. Overall, rainfall
forecasts for Yap, Guam WSO, Andersen, Chuuk, and
Pohnpei are relatively well predicted with a mean skill of
0.33 or higher as demonstrated in the bottom line of Table
7. Rainfall forecasts are most skillful in Guam WSO (0.39)
and Andersen (0.36). The CCA model generates very poor
rainfall prediction for Pago Pago. One possible reason may
be that Pago Pago is not located near any of the other
stations in the study and the variance of this station may
get chopped off after the pre-EOF truncation because it
does not have any ‘‘partners’’ to align with.

The cross validation also indicates a seasonality of pre-
dictive skill. In general, forecasts for JFM and AMJ are
better than the corresponding ones for JAS and OND.
When all stations are considered, the model yields the best
forecast skill (0.49) for one-season lead when the target
season is JFM. At some stations (Yap and Pohnpei), one-
season lead forecasts have skills of 0.70. For some stations
(Yap, Andersen, and Wake for JFM; and Yap, Guam WSO,
and Andersen for AMJ), the model can even demonstrate
moderate predictive skill ($ 0.30) at four-season lead time
when the target seasons are JFM and AMJ.

Forecast skills for JAS rainfall are generally not as good
as those for JFM and AMJ. However, moderate skills are
found in Guam WSO and Pohnpei. OND is the most



OCTOBER 1997 2595Y U E T A L .

TABLE 7. CCA cross-validation skill (correlation between seasonal rainfall forecasts and observations, negative correlations are set to
zero) for all 10 stations in the USAPI. For example, predictions for OND (target season) rainfall using SSTs in JAS and AMJ as predictors
are considered as one season and two season leads, respectively.

Season
(target)

Lead time
(season) Kor Yap Gua And Chu Poh Wak Kwa Maj Pag Mean

JFM 1
2
3
4

0.46
0.44
0.00
0.15

0.70
0.60
0.22
0.39

0.52
0.52
0.31
0.25

0.59
0.61
0.38
0.39

0.46
0.29
0.00
0.16

0.70
0.39
0.01
0.12

0.37
0.38
0.37
0.34

0.52
0.36
0.14
0.18

0.53
0.12
0.00
0.01

0.00
0.42
0.00
0.10

0.49
0.41
0.14
0.21

AMJ 1
2
3
4

0.00
0.14
0.07
0.51

0.32
0.24
0.31
0.45

0.44
0.55
0.30
0.31

0.41
0.51
0.31
0.33

0.25
0.32
0.37
0.21

0.00
0.02
0.32
0.09

0.00
0.24
0.06
0.00

0.49
0.29
0.23
0.28

0.43
0.08
0.17
0.18

0.00
0.00
0.00
0.00

0.24
0.24
0.21
0.24

JAS 1
2
3
4

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.39
0.35
0.31
0.26

0.25
0.26
0.14
0.09

0.08
0.09
0.29
0.06

0.61
0.40
0.39
0.35

0.12
0.00
0.00
0.00

0.30
0.11
0.00
0.00

0.00
0.00
0.00
0.00

0.05
0.00
0.00
0.00

0.18
0.12
0.11
0.08

OND 1
2
3
4

0.40
0.00
0.30
0.00

0.31
0.18
0.21
0.01

0.18
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.40
0.20
0.40
0.32

0.12
0.41
0.19
0.00

0.00
0.00
0.00
0.00

0.00
0.18
0.00
0.00

0.00
0.18
0.02
0.03

0.20
0.16
0.11
0.08

0.16
0.11
0.12
0.04

Mean skill 0.18 0.33 0.39 0.36 0.33 0.34 0.16 0.28 0.15 0.09 0.26

TABLE 8. Cross-validation skill for JFM (target season) rainfall in the USAPI. Note that the first two rows show partly specification
relationships.

Predictor
period Kor Yap Gua And Chu Poh Wak Kwa Maj Pag Mean

DJF SST
NDJ SST

0.49
0.42

0.73
0.72

0.54
0.54

0.55
0.59

0.48
0.44

0.66
0.64

0.40
0.38

0.50
0.49

0.48
0.43

0.08
0.00

0.49
0.47

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
OND SST
SON SST
ASO SST
JAS SST
JJA SST
MJJ SST
AMJ SST
MAM SST
FMA SST
JFM SST

0.46
0.44
0.35
0.44
0.24
0.12
0.00
0.06
0.07
0.15

0.70
0.72
0.69
0.60
0.42
0.30
0.22
0.40
0.31
0.39

0.52
0.52
0.55
0.52
0.42
0.36
0.31
0.37
0.33
0.25

0.59
0.62
0.66
0.61
0.53
0.42
0.38
0.46
0.42
0.39

0.46
0.44
0.33
0.29
0.11
0.06
0.00
0.00
0.05
0.16

0.70
0.71
0.62
0.39
0.22
0.10
0.01
0.14
0.09
0.12

0.37
0.42
0.43
0.38
0.36
0.39
0.37
0.37
0.39
0.34

0.52
0.47
0.37
0.36
0.30
0.24
0.14
0.20
0.22
0.18

0.53
0.47
0.33
0.12
0.06
0.00
0.00
0.00
0.00
0.01

0.00
0.10
0.35
0.42
0.32
0.10
0.00
0.11
0.20
0.10

0.49
0.49
0.47
0.41
0.30
0.21
0.14
0.21
0.21
0.21

Mean skill 0.27 0.52 0.44 0.52 0.24 0.34 0.37 0.33 0.20 0.15 0.34

difficult season to accurately predict rainfall in the islands.
Only one station (Chuuk) shows moderate forecast skill.
One reason why JFM and AMJ have better predictability
is probably because ENSO responses are most pronounced
during boreal winter as the Pacific SSTs and Southern
Oscillation index anomalies reach their peaks during bo-
real winter/spring. Table 8 gives more detailed cross-val-
idation skills for the JFM target season at varying lead
times.

Figure 8 provides plots of cross-validation skills for 12
moving seasons (from DJF to NDJ). We can see that at
one-season lead JFM is the most skillful forecast period
in the northern USAPI, with average skill of 0.53. JFM
is also the most skillful forecast period at two seasons
lead, with average skill of 0.41. The maximum cross val-
idation skills in JFM and FMA and the minimum skills
in ASO and SON yield a seasonality of rainfall predictive
skill.

A target season-lead time cross-section plot is a useful
way to present the CCA cross-validation skills. Such a
plot is given in Fig. 9. Cross-validation skill varies strongly
as a function of target season. Skills are high during boreal
winter and spring when the contour line of 0.30 extends
to 8 months lead. Low skills are found during boreal fall
(SON). Therefore, a strong seasonality in empirical rainfall
predictive skill is seen. Figure 9 also indicates that cross-
validation skill tends to decrease as lead time increases.

As mentioned earlier, one of our objectives is to deter-
mine how much predictability can be achieved when only
the Pacific SSTs are used as predictors. Compared to HB’s
Fig. 2a and Fig. 3a, Figs. 8 and 9 imply that our model
provides comparable skills (note that HB uses 14 stations,
including Johnston and 4 Hawaiian stations, and that the
lead time in their study is defined to be 3 months less than
in our study such that OND-to-JFM is called a zero lead
time). This is intriguing since our model is simpler relative
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FIG. 8. CCA cross-validation skills (average) for nine stations in
the Northern Hemisphere. Solid and circled line, solid line, dotted
line, and dashed line denote one, two, three, and four seasons ahead,
respectively.

FIG. 9. Lead time-target season cross section of CCA cross-
validation skill for northern USAPI rainfall. The horizontal axis
denotes the target season, and the vertical axis the lead time in
months.

FIG. 10. The correlations between observations and predictions
(initiated in four different seasons) of the northern USAPI rainfall as
a function of lead times. JFM, AMJ, JAS, and OND indicate rainfall
forecasts using JFM, AMJ, JAS, and OND SSTs as predictors, re-
spectively. The average forecast skill values are shown in the middle
of individual lines.

to HB and suggests that the Pacific SSTs alone may be
enough to make a moderately skillful rainfall prediction
for the USAPI. Given the well-known ENSO’s impact on
USAPI rainfall, the Pacific SSTs may thus have advantages
in predicting Pacific island rainfall and there is no need
to include SSTs from other ocean basins and 700-mb
height into the prediction scheme.

Since SSTs are the only predictors in the CCA model,
the predictability of rainfall variations will depend largely
on the characteristics of the ocean surface. Latif and Gra-
ham (1991) noticed that there appeared to exist a ‘‘pre-
dictability barrier’’ around the time of boreal spring. They
found that the correlations between observations and pre-
dictions of the SSTs of the coupled system of the Pacific
Ocean decrease rapidly between April and June. Similar
decreases across the spring period appear in the results of
other coupled models (e.g., Cane 1991). Focusing on the
rapid decline in forecast skills during boreal
spring,Webster and Yang (1992) indicated that the summer
monsoon circulation develops fastest from April to May,
the time when the Walker circulation is the weakest and
most susceptible to external noise. Thus, the typical ocean–
atmosphere interaction may be least robust during boreal
spring and thus subject to larger error growth. This idea
was supported by Xue et al. (1994) who found that the
transient initial error grows fastest starting from spring and
slowest starting from late summer; they attributed the rapid
decline in forecast skill in boreal spring (the ‘‘spring bar-
rier’’) to the smallness of the signal to be forecast.

In our CCA model, no useful skill can be produced for
summer and fall rainfall prediction if variations in SSTs
are uncertain in the antecedent boreal spring. As shown
in Fig. 10, rainfall forecasts using AMJ SSTs as predictors
generate the worst skill for 4–6 months ahead forecasts
and, as a result, the average skill (0.17) is the lowest among
the four seasons. JAS also has very low skill from 1 to 4
months ahead. Forecasts initiated in OND provide the best
overall skill (0.37). The model’s low rainfall forecast skills
in summer and fall (using AMJ SSTs as predictors) and

the good rainfall forecast skills in winter and spring (using
OND SSTs as predictors) suggest that a spring barrier
occurs in the CCA when SSTs are used as predictors.
These results are consistent with previous studies (e.g.,
Cane et al. 1986; Webster and Yang 1992; Xue et al. 1994).

Another possible explanation of the low rainfall forecast
skills in summer and fall relates to tropical cyclone activity
in the corresponding period. It is known that the western
North Pacific is the favored breeding ground for tropical
cyclones, which generally form in late summer and early
fall. These intense convection systems can produce sub-
stantial rainfall over limited areas and can cause significant
local variability in seasonal rainfall at an individual island.

We calculated tropical cyclone frequency in the area of
the North Pacific islands. A box covering a domain of 08–
208N and 1308E–1808 is selected. Tropical cyclone fre-
quency is counted only when a tropical cyclone is located
within the domain of the selected box and with a maximum
sustained wind speed of 17 m s21 or more. The relationship
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FIG. 11. CCA cross-validation skills and tropical cyclone frequen-
cy. Solid line with open circle and solid line denote one season ahead
and two season ahead forecasts, respectively. Monthly tropical cy-
clone frequency (total number of tropical cyclones affecting the se-
lected box within 08–208N and 1308E–1808 from 1949 to 1994) is
plotted as dashed line and its scale is shown in the right vertical axis.

FIG. 13. Lead time-target season cross section of PCR PRESS
statistic (units: 1000 mm2) for the northern USAPI rainfall. The hor-
izontal axis denotes the target season, and the vertical axis the lead
time in months.

FIG. 14. Same as Fig. 13 but for CCA.FIG. 12. Same as Fig. 9 but for PCR.

between cross-validation skills and tropical cyclone fre-
quency is plotted in Fig. 11. One-season and two-season
lead cross-validation skills are shown in this figure. The
predictive skill of rainfall is negatively proportional to the
tropical cyclone frequency in the northwest Pacific. The
minimum tropical cyclone frequency in February is as-
sociated with the highest cross-validation skill in JFM sea-
son. After February, the cross-validation skills decline rap-
idly as the spring barrier is penetrated, and then reach
minimum values in September and October when maxi-
mum tropical cyclones form in this region.

c. PCR results

We employ the same cross-validation scheme (described
section 5b) to assess our PCR model validity and ade-
quacy. In addition to cross-validation skill (correlation),
we compare the results of the PCR and CCA models by
computing what is known as the PRESS statistic (the sum
of the squared differences between the actual observations
and the predictions from the leave one out cross-validation

results). The PRESS selection procedure was proposed by
Allen (1971). It is a combination of all possible regres-
sions, residual analysis, and validation techniques. The
PRESS statistic (Raymond 1990) can be expressed as

k

2ˆPRESS 5 (Y 2 Y ) , (11)O t t,2t
t51

where Yt denotes the tth observation and Ŷt,2t is the leave
one out prediction for the tth value. In general, a model
with the smallest PRESS is preferred.

Figure 12 shows lead time-target season cross sec-
tion of PCR cross-validation skill for northern USAPI
rainfall. It has an almost identical pattern with Fig. 9.
The PCR model shows high prediction skills during
boreal winter and spring, and again JFM is also the
most skillful forecast period. A further comparison of
cross-validation skills is made by computing the
PRESS statistic for both PCR and CCA models (shown
in Figs. 13 and 14, respectively). The PCR model re-
sults are generally as good as the CCA results. In both
PCR and CCA models, small PRESS values (useful
predictive skills) are found during boreal winter and
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spring, and large PRESS values (weak skills) in sum-
mer and fall.

6. Summary

Following an overview of the climatology of the
USAPI stations and the effects of ENSO, CCA and PCR
are employed to forecast rainfall and study rainfall pre-
dictability for 10 stations in the USAPI. Box-averaged
SSTs in the Pacific Ocean are used as predictors. To
filter the noise and reduce sample size, EOF analysis is
conducted as a preprocessing method. The following
conclusions are drawn:

1) Boxplots and harmonic analysis of rainfall series in-
dicate that the annual cycle in rainfall is generally
strong for most USAPI stations with maximum rain-
fall in August/September and minimum in February/
March. However, the annual cycle is relatively weak
at stations close to the equator. This is evidenced by
these equatorial stations (e.g., Koror, Pohnpei),
which encounter monsoon trough rains twice each
year as the trough crosses on its northward advance
and southward retreat. The results are supported by
a similar study of OLR.

2) ENSO has a strong impact on the climate of USAPI.
For example, most stations have positive OLR anom-
alies (less convection) during El Niño winters and
negative anomalies (more convection) during La
Niña winters. The ENSO impact in Pago Pago in the
Southern Hemisphere is generally opposite.

3) The CCA model provides useful skill in predicting
rainfall in the Pacific Islands. Rainfall at most USAPI
stations (e.g., Yap, Guam WSO, Andersen, Chuuk,
and Pohnpei) shows moderate overall forecast skill
with mean cross-validated correlation skill of 0.33
or higher. This result is intriguing in that it is a sim-
pler (one predictor variable: SST) model relative to
He and Barnston (1996), who used three predictor
variables, and it further suggests that the Pacific SSTs
alone might be enough to make a moderate-skill rain-
fall prediction for the USAPI. This might be ex-
pected in view of the important role of SSTs in reg-
ulating precipitation and the strong ENSO impact on
USAPI rainfall.

4) The CCA cross-validated predictive skills show a
strong annual cycle (seasonality). JFM is the most
accurately forecast period in the northern USAPI at
one and two seasons lead time with average corre-
lation skill of 0.53 and 0.41, respectively. Generally
speaking, high predictability in rainfall is found in
boreal winter and spring while relatively low pre-
dictability is found in summer and fall.

5) The poor forecast skills resulting from AMJ SSTs as
predictors suggest that the so-called spring-barrier
effect may exist for SST-based predictions in linear
statistical models. It is very difficult to generate ac-
curate forecasts using spring SSTs as predictors if

variations in SSTs are uncertain during boreal spring.
The moderately useful skill using OND SSTs to pre-
dict forthcoming seasonal rainfall further supports
this claim. The spring-barrier effect may contribute,
at least partially, to the seasonality of rainfall pre-
dictions.

6) Our study also indicates that there might be a rela-
tionship between the predictability of seasonal rain-
fall in the USAPI region and tropical cyclone activity
in the area. The low CCA skills in boreal summer
and fall may be attributed in part to the strong trop-
ical cyclone activity during these periods. On the
other hand, the high forecast skills in winter and
early spring are associated with the minimum trop-
ical activity in the same period.

7) The relatively high predictability in boreal winter
and early spring might be attributed to the least SST
barrier in fall, the low tropical cyclone activity, and
the pronounced ENSO responses in winter and
spring.

8) A relatively new multivariate Principal Component
Regression model is also employed to predict USAPI
rainfall. Comparison of both PCR and CCA model
results indicates that PCR provides comparable skills
in predicting USAPI rainfall variation relative to
CCA. Because of its simplicity, PCR offers a po-
tential as a new tool for statistical climate prediction
research.
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