Previous Lecture
Hurricane Structure and Climatology

Radar Observations
- Spiral rainbands
- Symmetric eye wall
- Clear eye
Prerequisites for Hurricane Formation

1. Warm ocean water with a temperature > 80°F (26°C) to a depth of ~50 m, so that cooler water cannot easily be mixed to the surface by winds. (Deep thermocline)

2. A pre-existing disturbance with cyclonic circulation (large low-level vorticity) persisting >24 hrs. As the air in the disturbance converges, angular momentum is conserved and the wind speed increases.

3. Small wind shear or little change in the wind speed or direction with height in the vicinity of the developing storm. (dv/dz<10 m/s from 850-200 mb)

4. Unstable troposphere characterized by enhanced thunderstorm activity. CAPE>1000 (Final CAPE in eyewall rather modest.)

5. Large relative humidity in the middle troposphere (no strong downdrafts). Moist air weighs less than dry air, contributing to lower surface pressures.
Likely Tracks

![Likely Tracks](image)

US Hurricane Climatology

- Category of US hurricanes at the time of landfall.

Hurricanes in Hawaii
Hazards and Forecasting

- Hurricane’s in Hawaii
- Hurricane hazards
- Hurricane forecasting

Some Common Comments

- No hurricane has made landfall on Oahu.
- Only Kauai gets hit
 - The Big Island and Maui were struck by a hurricane in 1871
 - Dot 1959, Iwa 1982, and Iniki 1992 all impacted Kauai
- Mountains protect us
 - If so, why don’t the mountains of Puerto Rico or Taiwan protect them?
- There is no Hawaiian word for hurricane
 - No “Hawaiian Term” actually is not a surprise, since words such as Hurricane and Typhoon arise from local words for the winds observed.
 - David Malo (1843) defined five different Kona Winds.
Hawaii vs Taiwan and Reunion Island

Simulated tracks with dots every 3 hours for Hurricane Flossie. The track of the blue (red) dots represents the case with (without) the Big Island present.

Impact of Hawaii Island on Track

Hawaii Hurricane Climatology

Hurricane tracks in the central Pacific from 1832 to 1949

Hawaii Hurricane Climatology

Hurricane tracks in the central Pacific from 1949-1998
Hawaii Hurricane Climatology

Tropical Cyclone tracks within 200 miles of the Hawaiian Islands since 1949.

Central Pacific Hurricane Climatology

Note: more hurricanes occur in the central Pacific during strong el niño years.

Why?

Eastern Pacific Hurricane Climatology

Monte Carlo Stochastic Simulation showing the number of times a hurricane passes within 75 nautical miles per 10 years in the Eastern and Central Pacific.

Hurricanes Impacting Hawaii

Number of hurricanes per month in the central Pacific.
Iniki 11 September 1992

http://helzhalfacre.com/iniki/

Iniki Impacts

- 90% of structures on Kauai affected
- 14,118 damaged or destroyed
- 30% telephone poles down
- 3 years later unemployment 12%
- Social fabric altered-10% move away

REMEMBER: This coincided with the bursting of the Japan Bubble Economy of the late 1980’s.

A Question of Size

1980 Winter Storm vs. Hurricane Iniki, 2 PM HST on September 12, 1992

Hurricane Impact

- Energy of winds = wind velocity squared: $E = V^2$
- A doubling of the wind speed (e.g., from 70 to 140 mph) results in four times the destructive energy.
Saffir/Simpson Hurricane Scale

- Category 1 74 - 95 mph Storm surge 4 - 5 ft
- Category 2 96 - 110 mph Storm surge 6 - 8 ft
- Category 3 111 - 130 mph Storm surge 9 - 12 ft
- Category 4 131 - 155 mph Storm surge 13 - 18 ft
- Category 5 > 155 mph Storm surge > 18 ft

- Energy of winds = wind velocity squared: \(E = V^2 \)
- A doubling of the wind speed (e.g., from 70 to 140 mph) results in four times the destructive energy.

Hurricane Hazards in Hawaii

The winds, storm surge, and storm waves are all greatest just to the right of the storm track.
Why?

- 1. Storm Surge and Large Surf
- 2. Heavy rains – Floods, flash floods, and landslides
- 3. High winds – flying debris

Hurricane Hazards in Hawaii

The storm surge and storm waves are greatest just to the right of the storm track.
Wind hazard is greatest on exposed ridges and mountain slopes.
Flash flood hazard is greatest near steam beds.
TRIPLE THREAT FROM TROPICAL CYCLONES

TRIPLE THREAT

Storm Surge (winds & low pressure)
- Injuries and Loss of Life
- Structural Damage
- Destruction of vegetation/crops
- Flooding of coastal areas
- Erosion of Beaches
- Saline Intrusion—loss of fertility
- Loss of Power/Communications
- Fires - Urban and Brush
- Contamination of Water Supply
- Land Subsidence
- Flooding of Inland Areas
- Mud and Landslides

High Winds
- Flooding of coastal areas
- Erosion of Beaches
- Saline Intrusion—loss of fertility

Heavy Rains
- Storm surges are historically responsible for the greatest numbers of deaths and they cause some of the worst damage.

Past Hurricane Impact: Death vs Damage

The record is dominated by a few extreme events: Galveston hurricane of 1900 and Katrina in 2005 (2005 Dollars)
Storm Surge

Debris line from Iniki storm surge

Storm Surge

±8000 people died in the storm surge

Storm Surge

Storm surge: before and after hurricane Camille, 8/17-18/1969.

Ivan Aftermath

Storm Surge

9/24/2004
52 deaths in US
70 deaths in Caribbean
Katrina ±1800 deaths in US

Katrina Aftermath of Storm Surge

Katrina Aftermath

Oil production takes a hit from Rita and Katrina.

Hurricane Wind Damage

Wind Speed in hurricane Celia as it passed Gregory, TX.
Hurricane Wind Damage

Wind damage to Darwin, Australia from cyclone Tracy. Made landfall on Christmas Eve 1974. Similar wind damage occurred in Andrew.
Landslides

> 1000 deaths in Hurricane Mitch due to rain induced landslides.

Ivan 2004 Aftermath

Heavy rains & Flooding in NC
US Death Toll 25

Irene 2011 Aftermath

Widespread Heavy Rains & Flooding
US Death Toll 44

North Carolina Flooding

Slow moving tropical cyclones result in very large rainfalls.

Hurricane Forecasting

Hurricane Mobile Homes

Hurricane Gridlock

Hurricane forecasting involves predicting the future track and intensity of a hurricane.
Hurricane forecasting involves predicting the track and intensity of a hurricane.

A combination of observations, numerical model output, and climate data are used to forecast hurricanes.

Hurricane tracks can be erratic and difficult to predict.

More progress has been made in hurricane track forecasting than in forecasting hurricane intensity change.

NWS Hurricane Advisories

- Hurricane Watch - Hurricane may threaten the coast. Issued ~ at least 36 hours in advance

- Hurricane Warning - Hurricane conditions are expected within 24 hours. Issued ~12-24 hours or more in advance.

Cloud Drift Winds

IR Imagery from Bonnie 8/25/98 1145 UTC (Blue Rings at 100 and 350 km Radius)
Satellite Rainfall Measurement

• Hurricane Katrina

Hurricane Forecasting

• Radar Observed Rainfall

• 48-h model forecast with satellite observations

• 48-h model forecast without satellite observations

Wind Observations

Wind distributions in Andrew and Katrina
Hurricane Rita Simulation using a high resolution model with data assimilation

How can we estimate where this hurricane is going and how strong it will be?

Locating Hurricane Jimena

Layer-Mean Winds Steer the Storm
Track Forecasting

Sea Surface Temperature Important Factor for Hurricane Strength

Wind Shear Weakens Storm

Thunderstorms and Flooding
Thunderstorms and Flooding

The heaviest rainfall was in Upper Puna, where 8.43 inches were recorded in Glenwood and 6.09 inches in Mountain View in the 24 hours ending at 2 p.m. yesterday. Pi‘ihonua recorded 5.75 inches, while Waiakea Uka had 5.79 inches.

Rains turned out to be moderate and mostly beneficial to drought-stricken Big Island.

Winds in Hurricane Jimena

Officials with Hawai‘i Electric Light Co. scrambled to repair downed power lines and remove tree branches tangled in lines, especially in Puna and Waimea.

Questions?

Questions?
Questions?

Hurricane Katrina

Hurricane Katrina
24-29 August 2005
GOES-12
Colorized animation

GOES Project NASA-GSFC