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ABSTRACT 
 

In this dissertation, shoreline response to a storm is investigated, and two new 

empirical models for shoreline position change, over timescales of decades to centuries, 

are developed and compared with earlier empirical models.  The new B-spline method 

and regularized-ST method avoid over-fitting of data, as predictions of future shoreline 

position can be wildly inaccurate if based on models that over-fit. They utilize a non-

diagonal data covariance matrix, with correlations estimated from the data residuals, in 

order to carefully estimate the uncertainty of predictions, because uncertainty is as 

important to shoreline managers as the predictions themselves. 

The first part of the dissertation investigates storm behavior at Assateague 

Island, MD.  Earlier work showed that inclusion of a transient storm function improved 

statistical modeling of historical shoreline data.  Here, it is found that the shoreline 

response to a storm has not only a transient component, as in our earlier work, but also a 

persistent component, and that both are required to fit the data.  

 The B-spline and regularized-ST methods focus on reducing model parameters in 

the alongshore direction.  The traditional single transect (ST) method uses far more 

parameters than necessary because it assumes that long-term erosion/accretion varies 

independently at each alongshore location. The new models give shoreline change rates 

that vary more smoothly alongshore than ST rates do, but are generally consistent with 

rates from prior studies.  Both new models successfully address problems with earlier 

models, notably Gibbs effect with polynomial basis functions and noise contamination 

with principal component basis functions.  
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Chapter 1 

INTRODUCTION 
 

 

1.1 Why analyze shoreline data? 

Increasing concern for shore-related hazards to coastal properties continues to 

spur coastal studies (e.g., Crowell et al., 1997; Miller and Dean, 2007; Davidson et al., 

2013; Ford, 2013).  Properties along the coast are often popular destinations for tourism 

and recreation.  Consequentially, the American population continues to shift toward the 

coast, increasing coastal development, and making coastal properties some of the most 

valuable in the U.S.  Often, coastal communities are planned with insufficient thought for 

natural hazards such as coastal erosion, and coastal structures built too close to eroding 

shorelines experience wave inundation and damage.  In response, sea walls and other 

structures are built to protect coastal homes, hotels, and infrastructure; but these 

structures can lead to the total loss of the beaches that once fronted them (Fletcher et al., 

1997; Romine and Fletcher, 2012).  As a result, numerous shoreline studies aim to 

quantify trends in shoreline migration (e.g., Crowell et al., 1991; Galgano, 2004; Morton 

and McKenna, 1999; Maiti and Bhattacharya, 2009; Romine and Fletcher, 2012; UGSG 

National Assessment of Shoreline Change).  Shoreline studies are thus vital to the early 

stages of the decision-making process for planned coastal developments to mitigate the 

potential loss of buildings, infrastructure, and beaches. 

Long-term (decadal) trends in data are of particular interest because coastal 

planning projects tend to be longstanding.  The median lifespan of commercial buildings 

is 70-75 years (U.S. Department of Energy, 2011).  But shorelines are dynamic in nature 

and coastal behavior is the complex result of multiple processes occurring and interacting 

on a variety of time and spatial scales.  Some physical processes that drive shoreline 
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change include waves, currents, tides, storm surges, seasonal fluctuations, aeolian 

transport, and relative changes in sea level (Komar, 1998).  

Many scientists agree that long-term prediction at the multi-decadal scale is best 

achieved by analyzing historical shorelines spanning at least 80 years (Crowell et al., 

1993; Galgano and Leatherman, 1991; Galgano and Douglas, 2000).  Yet this is 

problematic because the shoreline data available over time spans of this length are often 

noisy and sparse in time.  There might be, for example, a single historical shoreline 

survey per decade of the area of interest.  This under-sampling in time creates problems 

because often there is significant short-term variation in the shoreline due to natural 

processes such as tides, storms, seasons, and other incidents, which can mask the long-

term signal (Honeycutt et al., 2001; Zhang et al., 2002a).  Storms, especially, wreak 

havoc on shoreline analyses (Douglas and Crowell, 2000).  A 50-year storm event can 

move the shoreline inland over ten times the distance spanned by a normal seasonal cycle 

of accretion and erosion.  

Consequentially, coastal decision-makers rely on simple models that often 

produce estimates with inadequate accuracy for prediction purposes.  For example, the 

single transect (ST) methods – widely used, due to their simplicity – calculate an 

independent rate at regularly spaced intervals along the shoreline, ignoring the fact that 

sand between neighboring transects is shared.  Furthermore, due to the small number of 

available shoreline surveys, individual rate calculations are often accompanied by large 

uncertainty values; sometimes several times the size of the estimated rate itself.  If 

uncertainty values are not considered, planned development of properties could be at a 

high risk for wave inundation.  This is currently the case in determining shoreline 

setbacks on the islands of Kauai and Maui, Hawaii.   

Several new methods address alongshore correlations and large uncertainty 

values, but coastal managers have been reluctant to use these methods because they are 

often complex and unwieldy to implement.  It is important, therefore, to continue to 

develop more realistic models, which will, in turn, become more accurate as more data 

becomes available, and user friendly as shoreline managers become better acquainted 

with them.    
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1.2 Overview of historical shoreline data analysis methodology 

Historical shoreline data, in conjunction with statistical methods, can be analyzed 

to identify relevant information, provide insight, and support decision-making.  These 

shoreline studies typically involve calculating long-term cross-shore shoreline change 

rates at evenly spaced alongshore locations.  At each location, a time series of shoreline 

positions, relative to some baseline, is measured along a shore-normal line, called a 

transect.  Further discussion of analysis methods continues below, after detailed 

discussion of the types of data employed. 

For calculating erosion rates, many researchers recommend using the longest 

available record, usually containing NOAA topographic survey charts (T-sheets), 

provided there have been no physical changes in the system, such as construction of 

coastal armoring or inlets opening or closing (Crowell et al., 1997; Dolan et al., 1991; 

Leatherman and Crowell, 1997).  Although some scientists question the accuracy of T-

sheets (Smith and Zarillo, 1990; Dolan et al., 1980), others recognize that they provide 

greater temporal coverage, which greatly outweighs the relatively small increase in 

positional uncertainty (Crowell et al., 1992; National Research Council, 1990).  Other 

commonly used shoreline data are digitally orthorectified aerial photographs (Fletcher et 

al., 2003), GPS surveys (Morton et al., 1993), laser altimetry (LiDAR, Sallenger et al., 

2003), and satellite imagery (Maiti and Bhattacharya, 2009; Ford, 2013).  A reference 

feature, typically the high water line or the beach toe (Bauer and Allen, 1995), identifies 

the shoreline in aerial photos, T-sheets, GPS surveys, and satellite imagery.  LiDAR 

derived shorelines are based on a sea level datum.  Ruggiero and List (2009) provide 

methodology for using the feature-based and datum-based shoreline data concurrently in 

a single study.  

Using this data, a variety of methods have been implemented to calculate 

independent change rates (accretion/erosion) at each transect, for example: end-point rate 

(EPR), least squares (LS), the jackknife (JK), average-of-rates (AOR), reweighted least 

squares (RLS) (Rousseeuw, 1990), minimum description length (MDL) (Fenster et al., 

1993), and weighted least squares (WLS) (Genz et al., 2007).  Several researchers have 
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found LS to be the most accurate method, given known storm shorelines (Crowell, et al., 

1997; Dean and Malakar, 1999; Dolan, et al, 1991).  A drawback to using LS for 

shoreline change analysis is its susceptibility to outliers, especially those caused by large 

storms (Fenster et al, 1993; Dolan et al, 1991; Foster and Savage, 1989).   

Large storms often impact shorelines significantly, causing large deviations in 

shoreline positions (outliers), which contribute to large uncertainties in prediction, 

thereby rendering them unreasonable (Douglas and Crowell, 2000).  Several solutions to 

this problem were proposed.  Some researchers concluded that excluding storm surveys 

would greatly improve the accuracy of predictions  (Honeycutt et al, 2001; Galgano et al, 

1998; Galgano and Douglas, 2000).  For example, RLS and reweighted weighted least 

squares (RWLS) use statistical methods to identify and exclude specific storm data (Genz 

et al, 2007).  Conversely, Frazer, et al (2009b) explicitly included storms in the ST 

model, allowing all data to be used while gaining additional information about the 

storms.  As an alternative to the previous two methods, Miller and Dean (2004) 

introduced a cross-shore change model, which assumes an equilibrium beach position to 

which the beach relaxes, as with perturbation due to storms.  This method, utilizing 

relatively temporally dense (hourly) wave and water level data in addition to field 

surveys has the benefit of identifying shoreline changes over short time intervals, but 

does not accurately assess long-term shoreline change.  Methods based on the 

disequilibrium concept (e.g., Yates et al., 2009; Davidson et al., 2013) demonstrated 

successful hindcasting of observed shoreline locations at selected sites over shorter time 

scales.  However, these methods require additional shoreline, wave, and water level data 

not widely available, especially over long time scales.   

As addressed above, storms are not the only problem facing statistical models.  

Typical ST methods assume that the data at each transect location is independent.  

However, adjacent transects often reflect similar behavior.  Genz et al. (2007) found that 

similar rates can be binned into alongshore cells.  Frazer et al. (2009a) expand on this 

binning method by using the Akaike Information Criterion (AIC) to statistically select bin 

sizes.  This model is more parsimonious; it balances the accuracy of the prediction with 

the number of parameters used in the model.  However, the rates generated by binning 
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are discontinuous at cell boundaries, causing large jumps in rates alongshore.  Frazer et 

al. (2009a) and Genz et al. (2009) introduced alongshore basis functions to produce 

smooth rates alongshore, using a modified AIC to identify the number of basis functions 

needed to produce the most parsimonious model.  However, none of these methods 

accounts for large storms in the data.   

As these previous researchers illustrate, developing new methods to better 

understand and predict shoreline change is warranted. 

 

1.3 Improving analysis methods 

 This dissertation addresses some of the deficiencies discussed above by 

developing and testing new shoreline change methods.  In Chapter Two, the storm 

function introduced by Frazer et al. (2009b) is combined with the Eigenbeaches 

alongshore method (Frazer et al., 2009a) to investigate transient and persistent shoreline 

behavior from a storm on a barrier island.  Combining an alongshore basis function 

method with the storm function shows the potential benefit of reducing uncertainty in 

change rate estimates via the storm function and, at the same time, increasing model 

parsimony.  Shoreline data from Assateague Island, MD, provides an excellent example 

of a strong storm signal and it is temporally dense, as compared to most long-term 

datasets.  This also provides important insight into shoreline response to the storm over 

smaller times scales (months), which can be compared to assumptions about long-term 

shoreline behavior in temporally sparse datasets.    

 Two new shoreline change methods are introduced in Chapters Three and Four, 

following work done by Frazer et al., (2009b) and Genz et al., (2009).  The prior studies 

address the issue of model parsimony by reducing the number of model parameters via 

alongshore basis functions.  Chapter Three introduces a shoreline change method that 

uses spline basis functions (B-splines) to represent change rates and intercepts 

alongshore.  The spline method addresses problems with previously used basis function 

methods, such as Gibbs effect in polynomial (Legendre, trigonometric) functions and 

noise contamination in principal components regression.  This chapter also presents 

additional noise handling techniques that address spatially correlated data errors.  Chapter 



	   6	  

Four presents a regression methodology that reduces model complexity by “regularizing” 

ST rates and intercepts via second order Tikhonov regularization.  The regularized-ST 

model may be more acceptable to shoreline managers than the spline model because it 

includes the ST method as a special case in an obvious way.  The new methods described 

in Chapters Three and Four both employ an information criterion (IC) to select the 

appropriate level of model complexity. A comparison between the methods is given in 

Chapter 4. 
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Chapter 2 

TRANSIENT AND PERSISTENT  
SHORELINE CHANGE FROM A STORM 

 

Published as Anderson, T.R., Frazer, L.N., and C.H. Fletcher (2010), Transient and 
persistent shoreline change from a storm.  Geophysical Research Letters, 37, L08401, 
doi:10.1029/2009GL042252. 
 

 

Abstract – There is disagreement as to whether shoreline position eventually recovers 

from large storms. In an earlier paper we showed that statistical modeling of historical 

shoreline data was improved by including large storms in the model via a transient storm 

function. Here we show that, at shorter timescales of months to years, modeling of the 

shoreline at Assateague Island, MD is improved by a storm model with both transient and 

persistent components.  We find that the shoreline recovers from the storm rapidly, 

almost within a year, but that the recovery is only partial, despite anthropogenic 

reconstruction of a pre-existing berm. The long-term trend of a shoreline (whether 

erosive, accretive, or stationary) can thus be regarded as the cumulative persistent 

component of successive storms, although most long-term data sets are too temporally 

sparse to make such a parameterization more useful than a steady long-term rate.   

 

2.1 Introduction 

Coastal managers need to know how the shoreline is moving over long periods of 

time in order to plan development. Douglas & Crowell (2000) showed that post-storm 

shoreline positions can be outliers with respect to the trend, and that removing post-storm 

data can improve the apparent precision of trend estimates. However, removal of 

shoreline data inevitably introduces a degree of subjectivity. Frazer et al. (2009b) (paper 

1) showed that including large storms as part of the shoreline model can improve long-
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term shoreline position prediction from sparsely sampled historical shoreline data, and 

that subjectivity in choice of which storms to model can be addressed by using an 

information criterion and by probability-weighted model averaging. In order to better 

understand how storms impact beaches, this study investigates shoreline response to a 

large storm on a time scale much shorter than that in paper 1. Here the time between most 

surveys is a few months.  

 The US mid-Atlantic coast is subjected to intense tropical storms, which usually 

move quickly, impacting a given shoreline area for only a day, as well as mid-latitude 

storms known as “northeasters” which move more slowly, impacting a given shoreline 

area during several tidal cycles. Thus northeasters trap high-tide water, causing waves to 

reach higher portions of the shore.  These large storm waves move sand from the dunes 

and berm to the offshore (Short, 1979). Washover, aeolian transport and nearshore 

downwelling also remove sand and contribute to landward shoreline migration during a 

storm (Niedoroda, 1984; Kochel and Dolan, 1986; Leatherman, 1979).  

 In the intervals between storms, swell waves gradually move the offshore sand 

back onshore, and shoreline positions tend to recover from storms (Birkemeier, 1979; 

Kriebel, 1987; Morton, 1988; Morton et al., 1994). After a storm, the rate of shoreline 

change may return to its long-term trend (Galgano and Douglas, 2000; Zhang et al., 

2002a) over 5–15 years, depending on the magnitude of the storm. Historical shoreline 

data sets may span 150 years or more, but the data are temporally very sparse, so the 

details of shoreline recovery from a storm are not apparent. Here we model data in two 

dimensions (alongshore position and time) from Assateague Island, MD, containing a 

large storm. Although the time window from March 1995 to September 2002 is relatively 

short, the data are relatively dense in time (24 surveys) and the behavior of the storm-

influenced shoreline position is revealed in more detail. An onshore berm was leveled by 

the storm, and our model accounts for the effects of its replacement by coastal managers. 

Other forms of shoreline nourishment were used after the study interval. 
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2.2 Assateague Island 

Assateague Island is a barrier island along the coasts of Maryland and Virginia 

(Figure 2.1). Its Atlantic side consists of coastal dunes that seldom reach elevations above 

2 meters, and its landward side is a low-elevation back barrier flat, sand and tidal 

wetland. Dominant waves have an average height of 1 m (Schupp, 2007), and spring tides 

fluctuate between -1 and 3 m (Field, 1979). Ocean City Inlet formed during a hurricane in 

1933. Jetties constructed on both sides of the inlet in 1935 interrupted alongshore 

sediment transport from the north, causing severe coastal erosion south of the inlet 

(Rosati and Ebersole, 1996). An ebb tidal delta subsequently formed and developed into a 

300 m attachment bar connected to the shore about 650-950 m south of the inlet (Schupp, 

2007; Rosati and Ebersole, 1996) thus restoring a portion of the alongshore sediment 

transport (Krauss, 2000).  

In 1998, two large northeasters altered the study shoreline (Ramsey et al., 1998). 

On January 28, 1998, a low pressure system originating in Texas moved northeast, 

crossed the mouth of Chesapeake Bay and continued north with maximum wind gusts 

reaching almost 95 km/h and significant wave heights exceeding 7 m over an interval less 

than 24 hours. A few days later, on February 4, 1998, a stronger northeaster originating in 

the Gulf of Mexico crossed North Carolina and Virginia, and continued slowly north 

along the Atlantic Coast through February 6. This storm also produced significant wave 

heights exceeding 7 m, with maximum wind gusts near 95 km/h over a period greater 

than 24 hours.  As the time interval between these two storms is much smaller than the 

interval between shoreline surveys, we model them as a single storm on February 4.  

The large waves generated by the two northeasters washed over portions of 

Assateague Island just south of the Ocean City Inlet. As a breach in the island was then 

considered a possibility, an onshore berm was constructed by the Assateague Island 

National Seashore North End Restoration Project (ASIS) and was completed 8 months 

after the storm. About 153,000 m3 of sediment were deposited onto the beach 5-7.5 km 

south of Ocean City Inlet (National Park Service (NPS), Assateague Island National 

Seashore North End Restoration Project Timeline, available at 

www.nps.gov/asis/naturescience/upload/ProjectTimeline.pdf, 2006). (Prior accretion 
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north of the jetties at Ocean City Inlet protected Ocean City from what might otherwise 

have been catastrophic erosion.) 

 

 
Figure 2.1 (a) Assateague Island, MD. (b) Tracks of the 1998 storms. See text for details.  

 

2.3 Methods 

Shoreline positions for the years 1995 to 2003 have been collected by ASIS North 

End Restoration Project (www.nps.gov/asis/naturescience/resource-management-

documents.htm), which used a kinematic GPS mounted on an ATV to map the high tide, 
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high swash, wet/dry line four times a year. We used the Digital Shoreline Analysis 

System (DSAS) (Thieler et al., 2005) to cast cross-shore transect lines 10 m apart in the 

alongshore direction. The result is a matrix 

� 

Yij = y(xi,t j ) of shoreline positions in which 

the row index is alongshore distance and the column index is time. Each row of Y (a 

transect) is a time series of shoreline positions at one alongshore location, and each 

column of Y (a survey) is a snapshot of the shoreline position at a particular time. 

Columns were then anti-alias filtered and re-sampled to 50 m transect spacing.  

 The traditional method of shoreline data analysis, called the single-transect 

method, models each transect independently, ignoring the lack of independence of the 

data at adjacent transects (Fletcher et al, 2003). We address the dependency issue as in 

Frazer et al. (2009a) and Genz et al. (2009) by the use of alongshore basis functions: We 

subtract the pre-storm survey temporally nearest to the storm, 

� 

y(0), from all the columns 

of Y to obtain a matrix Z, find its singular value decomposition 

� 

Z = λku(k )v(k )
T

k∑ , then 

model each temporal coefficient 

� 

y(k )(t j ) = λkv(k )(t j )  as if it were a single transect. Our 

model for the data is thus  

 

 

� 

y(x, t) = y(0) + u(k )(x)y(k )(t)k∑  (2.1) 

 

in which the shoreline data mode 

� 

u(k )(x) is the eigenvector of the matrix 

� 

ZZT  with 

eigenvalue 

� 

λk
2 . Only the first few modes are needed to model the data, but we modeled 

all temporal coefficients for completeness; the coefficients of modes higher than six were 

best modeled by noise. 

 Paper 1 gives our method for fitting time models to the temporal coefficients. 

Here our most complex time model is 

 

 

� 

y(t) = b + rt + n(t)

+sTe+
−γ (t− ts ) + sPH(t − ts)

+ν e+
−γ (t− tv )(1− e−γ ( t− tv ))

+ac cos(2πt) + as sin(2πt).

 (2.2) 
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The first line of equation (2.2) has the intercept, rate and noise terms; the second line has 

the transient and persistent parts of the storm function; the third line has the nourishment, 

and the fourth line has the seasonal component. The unit of time is years. In the storm 

function, 

� 

ts is the time of the storm, 

� 

sT  is the amplitude of the storm transient, 

� 

γ  is the 

recovery rate, 

� 

H(t)  is the unit step function, and 

� 

sP  is the amplitude of the persistent 

component. The subscript “+” means that the storm transient 

� 

e+
−γ (t− ts ) is zero prior to the 

storm. The shoreline displacement by the storm is the sum 

� 

sT + sP . In the nourishment 

function, 

� 

tν  is the time of the nourishment, which was 8 months following the storm 

(NPS, project timeline, 2006), and 

� 

ν  is its amplitude. An information criterion (IC) —

here the corrected Akaike Information Criterion (AICc)—is used to evaluate the 

likelihoods of models with various terms, and the model likelihoods are combined with 

prior model probabilities to generate model probabilities. Briefly, the posterior 

probability of the jth model is proportional to 

� 

π j e
−IC j / 2 , in which 

� 

π j  is its prior 

probability, 

� 

IC j  is its IC score, and 

� 

e−IC j / 2 is its likelihood. The final model is a 

probability-weighted average over all candidate models. The covariance matrix of 

residuals, a modeling diagnostic, is given in Appendix D. 

 Here all models with non-zero prior probability are given equal prior probability. 

Models with zero prior probability (excluded models) are:  

 

1. Models with no storm component, unless the model is only noise.  

2. Models for which transient and persistent components have opposite signs: for 

example, a positive persistent component and negative transient component. For 

such models, the shoreline displacement 

� 

sT + sP  is reasonable, but 

� 

sT  and 

� 

sP  may 

individually have unreasonably large amplitudes. 

3. Models with a transient component whose recovery rate 

� 

γ  approaches zero. For 

such models the transient component is redundant, and only a persistent 

component is needed. 

 



	   13	  

Since all models not excluded are given the same prior probability, the model with the 

largest likelihood (lowest IC score) is the model with the largest posterior probability. 

 In view of the decomposition into data modes, and the modeling of temporal 

coefficients, the transient and permanent components of the modeled storm are the 

respective mode sums 

 

 
  
sT (x,t)= sT

(k )u(k )(x)k∑ e+
−γ (t−ts )   (2.3a) 

 

shown in Fig. 2.2c, and 

 

 
 
sP (x,t)= sP

(k )u(k )(x)k∑ H (t− ts )   (2.3b) 

 

shown in Fig. 2.2d. 

 To estimate errors we make an adiabatic approximation, assuming that errors in 

one modal coefficient are unrelated to those of other coefficients. For example, the 

variance in the estimate of the transient component amplitude is 

 

 
  
σsT
2 (x)≈ (σsT

(k ) )2 (u(k )(x)k∑ )2   (2.4) 

 

Calculation of quantities such as 

� 

σ sT
(k ) includes model selection error and is given in the 

Appendix E. In regard of errors, Zhang et al. (2002b) found that the variability of the 

high water line at Duck, North Carolina, is significantly lower during summer than in 

other seasons. To test for an effect on our results we grouped residuals (predicted position 

from a model average with no seasonal function, minus the data) by seasons and tested 

for differences in mean and variance, finding no significant difference at the 95% level of 

confidence. We also re-ran our computations using the seasonal uncertainties from our 

residuals and found that our results did not change in any significant way. Seasonal 

variation of uncertainty would probably have affected our analysis more if the data set 

had fewer surveys. 
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2.4 Results 

Figure 2.2 shows the analysis of shoreline data from Assateague Island, MD. 

Figure 2.2a is a 2D perspective plot of the original data, and Fig. 2.2b is the complete 

model including all modes. Fig. 2.2c shows the transient portion of the storm, and it can 

be seen that recovery is rapid, almost within 2 years for all portions of the beach. Fig. 

2.2d shows the persistent component of the storm, which is lower in amplitude than the 

transient component, i.e., it does not account for as much of the initial shoreline 

displacement as the transient part of the model. Areas of the largest persistent shoreline 

change correlate roughly with areas of shoreline where the island was overwashed by the 

storm 5–8 km south of the inlet. Fig. 2.2e shows the modeled nourishment associated 

with the replaced onshore berm. 

 The first six modes have more than 99% of the data variance, and the temporal 

coefficients of the remaining modes are best modeled by noise. The first mode has 90.7% 

of the data variance, the second mode 5.0% and the third mode 1.9%. (See Appendix C 

for a table of modal contributions.) The temporal coefficient of the first mode is shown in 

Fig. 2.2g, and the temporal coefficients of modes 2 and 3 are given in the Appendix B. 

The first coefficient shows a strong storm signature with obvious transient and persistent 

components, and it is not surprising that the best model, i.e., the model with the largest 

posterior probability, is the model with rate, transient and persistent storm components. 

The probability-weighted average model, incorporating all possible models with 

likelihoods based on IC values, shows virtually no rate but a rapidly recovering transient 

storm component as well as a persistent component. There is also a small perturbation as 

a result of nourishment. The best model for the second mode coefficient (Appendix A) 

has rate, transient storm, and nourishment. The best model for the third mode coefficient 

has no rate, but a transient storm component and a larger nourishment term.  
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Figure 2.2 (a) Shoreline data from Assateague Island, MD. (b) Probability-weighted 
average model. (c) Transient component of storm related shoreline change. (d) Persistent 
component of storm-related shoreline change. (e) Nourishment component of model (see 
text). (f) Residuals = data – model prediction. (g) Temporal coefficient of the first 
shoreline data mode (filled circles), with best model (red) and probability-weighted 
average model (blue). (h) Transient and persistent parts of the storm; the transient part is 
evaluated at the time of the first post-storm survey for comparison with data. The dotted 
line (data) is the first post-storm survey minus the average of pre-storm surveys. On the 
error bars, the inner ticks are the standard error of the model-average computed using the 
method of paper 1, and the outer ticks include model selection error—see Appendix E for 
details. 
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Figure 2.2h shows shoreline displacement at the first survey after the storm 

(February 11, 1998). The black dashed line is the actual horizontal landward change in 

shoreline position seen in the data. The blue line is the model displacement due to the 

storm. The green and red lines show the transient and persistent shoreline change due to 

the storm respectively. 

 

2.5 Discussion and Conclusions 

The Assateague Island data suggest that storm-induced shoreline change can be 

modeled as the sum of a transient component that is recovered in a few years and a 

component that persists until sediment is mobilized by a subsequent storm. There is thus 

a suggestion that long-term shoreline change can be grossly modeled as the cumulative 

sum of persistent components from storms. Unfortunately, most historical shoreline data 

sets do not have the time resolution necessary to resolve the transient and persistent 

components, and it is probably better to model such data with a gradual trend (rate term) 

plus a sum of transients from the larger storms, as in paper 1. Still, a transient-persistent 

analysis may be useful in shoreline management. For example, in areas where multi-

decade data are not available, a transient-persistent analysis of recent, temporally dense 

data containing a storm might be used to generate a very coarse estimate of long-term 

rate as the persistent component from the storm divided by the expected time interval 

between such storms. 
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2.6 Appendix A. Model Probabilities 

The posterior probability of a model is proportional to the product of its 

likelihood and prior probability. As we give all models with non-zero prior the same prior 

probability, the model with the largest likelihood has the largest posterior probability; this 

is the model with the lowest IC score.  

                         

                            
Figure 2.3 Posterior probabilities of models for the temporal coefficient of mode 1.  

 

 

 
 

Figure 2.4 Posterior probabilities of models for the temporal coefficient of modes 2 and 

mode 3. Models assigned zero prior probability (see main text) are not displayed.  
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2.7 Appendix B.  Temporal Coefficients of Modes 2 and 3. 

   

    
 

Figure 2.5  Left panel: mode 2. Right panel: mode 3. The red lines are the models with 

the lowest IC score (largest likelihood, largest posterior probability). The blue lines are 

the probability-weighted average models. 
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2.8 Appendix C.  Modal Contributions 

Table 2.1 Percent data variance contribution of each mode and cumulative percent.  

Key: R-rate, T-transient storm, P-persistent storm, N-nourishment, S-seasons. 
 
  
Mode Data variance 

Contribution (%) 
Cumulative 
Contribution (%) 

Best-fit model 

1 90.67 90.67 R,T,P 
2 5.01 95.68 R,T,N 
3 1.92 97.61 T,N 
4 0.69 98.30 Noise 
5 0.45 98.75 R,T,N 
6 0.26 99.01 R,T,N 
7 0.21 99.23 Noise 
8 0.15 99.38 Noise 
9 0.11 99.49 Noise 
10 0.09 99.58 Noise 
11 0.09 99.67 Noise 
12 0.07 99.74 Noise 
13 0.05 99.79 Noise 
14 0.04 99.83 Noise 
15 0.04 99.87 Noise 
16 0.03 99.90 Noise 
17 0.07 99.93 Noise 
18 0.02 99.95 Noise 
19 0.02 99.97 Noise 
20 0.01 99.98 Noise 
21 0.01 99.99 Noise 
22 0.01 100 Noise 
23 0 100 Noise 
24 0 100 Noise 
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2.9 Appendix D.  Prediction Error 

Figure 2.6 shows the time averaged prediction error covariance matrix 

 

� 

1
24

yp (xi,tk ) − y(xi,tk )[ ] yp (x j ,tk ) − y(x j ,tk )[ ]
k=1

24

∑ , 

 

in which y is the data and 

� 

yp  is the prediction from modeling. If our model for noise and 

signal corresponded exactly to reality, this matrix would be diagonal (a bright line along 

the diagonal of the figure with darkness off the diagonal), meaning that the prediction 

error at any alongshore location is uncorrelated with the error at any other alongshore 

location.  

 
 
Figure 2.6 Time averaged prediction error covariance matrix. 
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2.10 Appendix E. Error Estimation 
 

In the Auxiliary Material for Frazer et al. (2009b) (paper 1) there is a Section D, 

entitled “Variance of a model-averaged estimator,” in which we derived an expression 

(equation D9) for the variance of a model-averaged estimate. Briefly, for any quantity of 

interest 

� 

φ  we calculated the variance, 
  

� 

σ  φ 
2 , of the model-averaged estimate 

  

� 

 
φ = p jφ jj∑  

in which 

� 

φ j  is the estimate from the jth model, and

� 

p j  is the posterior probability of the jth 

model. (The posterior probability of a model is gotten by combining the prior probability 

of that model with the model likelihood computed from the data.) We calculated the 

variance by first calculating the variation   

� 

δ
 
φ   with respect to a variation of the data 

� 

δy , 

not neglecting the variation 

� 

δp j . The standard error indicated by the inner ticks on Figure 

2.2(h) of this paper is the square root of that variance. That method of estimating errors 

was used in this paper and in paper 1 because it is analogous to the standard method of 

estimating error for any particular model and is thus comparable to most error estimates 

in the literature.  

 In this paper we also calculate model selection error (Buckland et al. 1997), which 

tends to be larger and is thus more conservative. We derive model selection error as 

follows by using probability density functions (pdf). Let 

� 

p(φ | y)  be the pdf of 

� 

φ  given 

data y. Then we may write 

 

� 

p(φ | y) = p(φ |Mi,y)pi
i
∑                     (2.E1) 

 
in which 

� 

p(φ |Mi,y)  is the pdf of 

� 

φ  conditioned on 

� 

Mi being the correct model. The 

expected value of 

� 

φ  for model 

� 

Mi is thus 

 

� 

φi = φ p(φ |Mi,y)dφ∫            (2.E2) 

 

and its variance, needed below, is 

 



	   22	  

� 

σφ i
2 = (φ − φi)

2 p(φ |Mi,y)dφ∫
= (φ 2 − 2φφi + φi

2)p(φ |Mi,y)dφ∫
= φ 2

i
−φi

2 .

        (2.E3) 

 

The model-averaged estimate of 

� 

φ  is 

 

  

� 

 
φ = φ p(φ | y)dφ∫

= φ p(φ |Mi,y)pi
i
∑ dφ∫

= pi
i
∑ φ p(φ |Mi,y)dφ∫

= pi
i
∑ φi

          (2.E4) 

 

and the variance that includes model selection error is 
 
 

  

� 

σ  φ 
2 = (φ −

 
φ )2 p(φ | y)dφ∫

= (φ −
 
φ )2 p(φ |Mi,y)pi

i
∑ dφ∫

= pi
i
∑ (φ −

 
φ )2 p(φ |Mi,y)dφ∫

= pi
i
∑ (φ 2 − 2φ

 
φ +
 
φ 2)p(φ |Mi,y)dφ∫

= pi
i
∑ φ 2

i
− 2φi

 
φ +
 
φ 2{ }

= pi
i
∑ φ 2

i
− 2
 
φ pi

i
∑ φi +

 
φ 2 pi

i
∑

= pi
i
∑ φ 2

i
− 2
 
φ 2 +

 
φ 2

= pi
i
∑ φ 2

i
−
 
φ 2

= pi
i
∑ σφ i

2 + pi
i
∑ φi

2 −
 
φ 2.

                  (2.E5) 

 
The square root of this variance is indicated by the outer ticks on the error bars of Figure 

2.2h of the paper. 
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Chapter 3 

TOWARD PARSIMONY 
IN 

SHORELINE CHANGE PREDICTION: 
B-SPLINES AND NOISE HANDLING 

 

In review for publication in the Journal of Coastal Research as Anderson, T.R. and L. N. 
Frazer, Toward parsimony in shoreline change prediction (III): B-splines and noise 
handling. 
 

 

Abstract – The traditional single-transect method for predicting long-term shoreline 

change uses far more parameters than necessary because it assumes that erosion/accretion 

(change) rates at adjacent alongshore positions (transects) are independent. Such over-

fitting can cause poor predictions of future shoreline location, so recent work has 

modeled change rates as linear sums of polynomials, or linear sums of principal 

components.  Here we introduce an alternative method that uses linear sums of B-splines. 

As in earlier work, an information criterion is used to identify the optimal number of 

basis functions.  The local nature of B-spline models makes them less susceptible to 

Gibbs effect than polynomial models, and their smoothness makes them more robust to 

noise than principal components regression.  We also compare three noise-handling 

techniques by examining their effects on the posterior probability density functions of 

rates. We find that noise handling affects both predicted rate and its uncertainty, and that 

correlated noise is best addressed by iteratively constructing a full covariance matrix 

from data residuals. We illustrate our procedure using shoreline data from Assateague 

Island and Ocean City, Maryland and a synthetic dataset.    
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3.1 Introduction 

Quantifying trends in shoreline position is necessary for managing natural coastal 

environments and human communities.  Models for shoreline change range from simple 

empirical relations, such as the model of this paper, to physics-based models.  Empirical 

models gain parsimony (require fewer parameters) by ignoring waves, currents and 

bathymetry.  Physics-based forward modeling systems, such as Delft3D, developed by 

Delft Hydraulics (Roelvink and van Banning, 1994), include those phenomena, but must 

contend with limited availability of required data (e.g., wind, wave, high resolution 

bathymetry) and large propagated errors.  Semi-empirical models (e.g. Miller and Dean, 

2004; Yates, Guza, and O’Reilly, 2009; Davidson, Splinter, and Turner, 2013) must also 

contend with limited data availability and propagated errors, but to a lesser extent.  

Recently, Maged et al. (2011) incorporated wave spectra from airborne synthetic aperture 

radar (SAR) data into a long-term shoreline change model. Technical innovations such as 

GPS (e.g. Dail, Merrifield, and Bevis, 2000), LiDAR (e.g. Stockdon et al., 2002), and 

video imagery (e.g. Plant et al., 2007; Becker et al., 2007) are greatly improving the 

quality and quantity of shoreline data, but available time series are not long enough to 

reveal trends over decades to centuries.  In order to extract such trends, we are still 

largely dependent on historical shoreline surveys. 

 

 
Figure 3.1  Weighted least squares linear regression of shoreline data along a single 
transect.   
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One of the simplest and most widely used methods of estimating long-term 

shoreline change is the single-transect (ST) method (Figure 3.1).  It is an empirical 

method in which equally spaced cross-shore transects (e.g., 20 to 50 m apart) are 

analyzed independently.  The mathematical model for each transect is usually y = rt + b  

in which y is shoreline position in the cross-shore (i.e., landward-seaward) direction, r is 

the rate of erosion or accretion, and b is an intercept that depends on the baseline relative 

to which y is measured. The data consist of historical shorelines at each transect 

(Honeycutt, Crowell, and Douglas, 2001; Fletcher et al., 2003; Genz et al., 2007; Thieler 

et al., 2009; etc.)  The ST method is attractive because it is simple to understand and easy 

to implement, especially over large spatial regions.  Also, it provides shoreline change 

statistics at a high spatial frequency along the shoreline.  However, it ignores correlation 

between the rates at different transects, and thus creates a model shoreline that can have 

large excursions that increase unrealistically as the model prediction is extended further 

into the future.  Moreover, for shorelines in which rates change little from transect to 

transect, the ST method is highly unparsimonious; it has far more parameters than are 

independent, as indicated by the wide autocorrelation of ST rate parameters along 40 km 

of shoreline centered on Ocean City Inlet, Maryland, shown in Figure 3.2.  Here, we 

focus on long-term (decades) and large-scale (kilometers) shoreline trends, attempting to  

 

                         
Figure 3.2  Autocorrelation of rates calculated by the ST method for the north (top) and 
south (bottom) study areas.   
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improve on the ST method.  Frazer, Genz, and Fletcher (2009), and Genz, Frazer, and 

Fletcher (2009) also addressed the over-fitting issue of ST, and the procedure of this 

paper extends their work by the use of different basis functions and by an improved 

treatment of noise.  

Frazer, Genz, and Fletcher (2009) examined three types of basis functions: 

polynomials, eigenbeaches (principal components), and piece-wise constant “bins.”  

Examples of Legendre polynomials and eigenbeaches are shown in Figure 3.3d,e.  

Polynomials are subject to Gibbs effect (Bracewell, 2000) when modeling shorelines with  

 

 
Figure 3.3  Results from modeling a synthetic data set consisting of eleven shorelines ten 
years apart.  Additive noise in the data is from N(0, (7.5m)2 ) . (a) Solid line shows the 
true rates, constant on each side of a jump between transects 50 and 51; black crosses are 
the rates estimated by ST. (b) Rates estimated using 30 Legendre polynomials (green, 
solid), eight Legendre polynomials (green, dashed), eight B-splines (red), and one 
eigenbeach (blue). (c) Errors in rate [estimated - true] for ST (black crosses), 30 Legendre 
polynomials (green), 8 splines (red) and one eigenbeach (blue). (d) The Legendre 
polynomials. (e) The three most dominant eigenbeaches with percent variance. (f) The 
eight B-splines. Note Gibbs effect and noise in (b) and (c). The location of the rate jump 
was assumed known prior to modeling.   
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sudden alongshore variations in rate (Figure 3.3b,c).  Eigenbeaches automatically does 

away with Gibbs effect by using principal components of the shorelines themselves as the 

basis functions, but those basis functions are contaminated by process and measurement 

noise in the data (Figure 3.3b,c). 

In this paper we model cross-shore rate with a cubic spline defined by its value at 

alongshore locations called “knots” (de Boor, 1978).  Splines avoid Gibbs effect, if extra 

knots are added at alongshore locations where rate changes rapidly, and they are not 

contaminated by noise (Figure 3.3b,c).  We use B-splines (de Boor, 1978) as basis 

functions for the spline because of their simplicity.  Following the methodology in 

Frazer, Genz, and Fletcher (2009), the parameters of our model are the coefficients of the 

basis functions; least squares regression is used to estimate those coefficients and an 

information criterion (IC) is used to select the optimal number of basis functions.  We 

improve on the noise methodology of Frazer, Genz, and Fletcher (2009) by iteratively 

estimating the spatial covariance of the data noise. 

 We illustrate the new procedures using barrier island shoreline data from 

Assateague Island and Ocean City, Maryland.  We examine 40 km of shoreline centered 

on Ocean City (OC) inlet, as seen in Figure 3.4a.  Inlet jetties disrupt alongshore 

sediment transport from the north, resulting in episodes of sand bypassing (Kraus, 2000; 

Schupp, Bass, and Grosskopf, 2007).  The coast is mostly developed north of OC Inlet, 

and is undeveloped south of the Inlet where Assateague Island National Park is located. 

 

3.2 Methodology 

 

3.2.1 Historical Shoreline Data 

Our data consist of 12 historical shoreline surveys (1849–2000) obtained online as 

GIS shape files from the United States Geological Survey (USGS) National Assessment 

of Shoreline Change for the New England and Mid-Atlantic Coasts (Himmelstoss et al., 

2010).  Table 3.1 lists the range of years for USGS shorelines derived from different data 

sources, and their average uncertainty values calculated from  



	   28	  

Table 3.1  Shorelines used in the study.  (HWL – high water line; MHW – mean high 
water; # Shore – number of shorelines; Unc. – average uncertainty from quantifiable 
sources) 
   

Date Source # Shore Indicator Unc. (m) 

1849-1942 T-sheet 6 HWL 10.8 

1962-1976 T-sheet 2 HWL 5.1 

1980-1989 Air photo 3 HWL 3.2 

2000 LiDAR 1 MHW 5.3 

 

 

 
Figure 3.4  (a) Study area and (b-c) shoreline data relative to offshore baseline for 
sections north and south of Ocean City Inlet.  Transects are spaced 50 meters apart.  
 

quantifiable sources of error (Hapke et al., 2010).  Shorelines are extracted from T-sheets 

and air photos by digitally identifying the high water line (HWL) from georeferenced 

maps and photos.  Mean high water (MHW) indicates shoreline position in LiDAR (light 

detection and ranging) derived shorelines.  Details of data extraction and error 

quantification procedures are available in Hapke et al. (2010).  To correct for the 

horizontal difference between the MHW and HWL, we shift the LiDAR shoreline 

landward by the proxy-datum bias values in Himmelstoss et al. (2010).  The baseline, a 
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proxy for a mean shoreline shape, is also obtained from the USGS online.  We cast cross-

shore transects perpendicular to the baseline, and record the distance between each 

shoreline and the baseline at each transect using the Digital Shoreline Analysis System 

(DSAS) Version 4.2 (Thieler et al., 2009).  There is a gap in the shoreline where OC inlet 

cuts through the barrier island, so we model the 20 km sections north and south of the 

inlet separately (Figure 3.4b,c). 

 

3.2.2 Summary of Procedure 

Spline models are distinguished by the number and location of their knots.  For 

the Assateague data analyzed here, it is sufficient to count basis functions because we use 

knots that are regularly spaced, except for coincident knots at endpoints. For each model, 

we create a spline matrix; each column of the matrix is a B-spline evaluated at each 

transect.  We use the matrix in a generalized least squares regression model that includes 

iterative estimation of the data covariance matrix.  From the residuals and the number of 

model parameters, including the parameters required for covariance, we calculate an 

information criterion (IC) statistic.  We take the model with the lowest IC to be the best 

model, and we use it to predict shoreline positions at specified times within the study 

area.  We also generate the posterior probability density function for rate at each transect.   

 

3.2.3 B-splines as Basis Functions 

A cubic spline is a linear sum of cubic B-splines (de Boor, 1978).  Each B-spline 

is defined everywhere, but it vanishes outside an interval that spans five knots in a 

prescribed knot sequence.  Its first and second derivatives vanish at the endpoints of that 

interval, so each B-spline has a continuous second derivative, and thus the linear sum also 

has a continuous second derivative.  Figure 3.5a shows 11 B-splines (solid lines) 

generated from a knot sequence consisting of 15 knots: 9 evenly spaced knots (dashed 

lines), 50 transects apart, between transects 0 and 400, with 4 knots at each endpoint. 

(The three extra knots at each endpoint cause the spline to vanish outside the interval.)  

The heavy line in Fig. 3.5a is the B-spline with support from transect 50 to transect 250.   
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Figure 3.5 (a) Cubic B-splines. (b) Five B-splines multiplied by coefficients (right 
column) form a linear combination of B-splines to create a spline function (left column at 
bottom).     
 

The shape of the B-spline shows how it acts as a local weighted average.  The B-splines 

near the ends have smaller apertures than the interior B-splines because of the duplicate 

knots at the ends.  Although the B-splines in the figure were generated using evenly 

spaced interior knots, the spacing can be allowed to vary if there is compelling a priori 

information that warrants it.  For example, if there were a geologic or structural feature, 

such as a stream mouth or pier in the middle of an otherwise uniform sandy shoreline, 

one could add additional knots in the vicinity of the feature, allowing more basis 

functions to capture the higher spatial frequencies, as in Figure 3.3f.   

−1
−0.5

0

−1
−0.5

0

0
1
2

−1
−0.5

0

0
1
2

0 100 200 300 400
−2

0
2

Transect

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Transect

a)

b)

Ra
te

 (m
/y

r)

-1.0

-1.3

2.9

-1.6

0

1

0 200 400

0

1

0 200 400

0

1

0 200 400

0

1

0 200 400

ĺ

ĺ

ĺ

ĺ

ĺ

=












ĺ
0

1

0 200 400
1.7

=

=

=

=

Transect



	   31	  

The number of knots at a knot location determines the smoothness at that point.  

More knots allow less continuity.  For example, if there are two knots at the same 

location, the resulting spline will have a continuous first derivative at that point, but not 

necessarily a continuous second derivative. Four knots at the same location allow a 

zeroth-order discontinuity there.  

  Suppose for a moment that we are modeling only rate. We use B-splines to 

create a spline matrix V which linearly transforms a short column vector of spline 

coefficients  m  to a much longer  I×1  column vector of rates r, with one rate for each 

transect.  (The tilde notation is called for because, in order to be consistent with single-

transect, we refer to r as the rate model, and below we will include rates and intercepts in 

a model vector m.)  Each column of the spline matrix is a B-spline generated using the 

recursion relation of de Boor (1978, p. 131), and the modeled rate at transect  1≤ i≤ I  is 

 

  ri =Vi, m ,             (3.1) 

 

in which 

� 

Vi,  denotes the ith row of V. 

 

3.2.4 Shoreline Change Model  

Here we apply B-splines to the simple, time-linear model y = rt + b .  Let 

� 

y(xi,t j )  

represent the cross-shore shoreline position at alongshore location 

� 

xi and time 

� 

t j , for 

i = 1: I  transects and j = 1: J  shoreline surveys.  Our shoreline equation is 

y(xi ,t j ) = bi + (t j − t )ri + nij , where 

� 

ri and 

� 

bi are the rate and intercept, respectively, at the 

ith transect; nij  is the noise for shoreline position

� 

y(xi,t j ) ; and 

� 

t  is the mean of shoreline 

survey years.  Shifting the time origin to 

� 

t  helps condition the system matrix for 

regression, without affecting rate parameters. 

Frazer, Genz, and Fletcher (2009) and Genz, Frazer, and Fletcher (2009) used an 

additional acceleration term in some of their models.  Frazer, Anderson, and Fletcher 

(2009) and Anderson, Frazer, and Fletcher (2010) included a storm function in the time 

component of their shoreline model.  We do not include acceleration or storms here 
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because preliminary testing showed no significant acceleration or storm signals in this 

dataset.  However, both storms and acceleration terms may also be expressed as linear 

combinations of spline basis functions. 

Here we use splines to model the alongshore variation in intercept as well as rate, 

so we construct the matrix V as a block-diagonal matrix with two blocks of splines, one 

for rates, and one for intercepts. The two blocks have different numbers of columns if the 

number of splines needed for intercept differs from the number needed for rate. The 

vector  m  contains the spline coefficients for both rate and intercept. Combining the time-

linear model with spline modeling of rate and intercept gives 

 

  

y(xi ,t j ) = bi + (t j− t )ri +nij
            =Vi, m+ (t j− t )VI+i, m+nij

.                 (3.2) 

 

3.2.5 Basic GLS 

Our generalized least squares (GLS) model is similar to that given in Frazer, 

Genz, and Fletcher (2009), but is presented here in a slightly different way so that the 

matrix of spline basis functions is explicit.  In the following section, and in the appendix, 

we present our method for handling spatially correlated noise.  The GLS model for the 

single-transect method is written as 

 

 

� 

d = Gm +η,                                                                                (3.3) 

 

in which N = I × J  is the number of data points, d is an 

� 

N ×1 vector of shoreline 

positions relative to the baseline; G is an 

� 

N × 2I  system matrix; m is a 

� 

2I ×1 vector of 

parameters (I rates and I intercepts); η  is an 

� 

N ×1 vector of noise with zero mean and 

covariance matrix 

� 

Cdd .  To reduce the number of parameters in the model, we set  

 

 

� 

m = V ˜ m ,                                                                                                              (3.4) 
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in which V is the 

� 

2I × M  spline matrix described above, and 

� 

˜ m  is an 

� 

M ×1 vector of 

spline coefficients with M << 2I . Substituting (3.4) into (3.3), and introducing the 

notation  G = GV , gives the familiar GLS form 

� 

d = ˜ G ˜ m +η, still with noise covariance 

� 

Cdd .   

In basic GLS there is only one noise parameter. One begins with an a priori 

estimate of the covariance 

� 

˜ C dd , then scales it using a scaling factor that maximizes the fit 

of the model to the data.  The basic GLS estimator of 

� 

˜ m  is the usual relation  

 

� 

˜ ˆ m = ( ˜ G T ˜ C dd
−1 ˜ G )−1 ˜ G T ˜ C dd

−1d   ,                                                                                 (3.5) 

 

with parameter covariance matrix (e.g., Menke 2012) 

 

� 

ˆ C ̃  m ˜ m = ( ˜ G T ˆ C dd
−1 ˜ G )−1,                                                                     (3.6) 

 

in which the estimated data covariance  Ĉdd = α̂ Cdd  contains the best-estimate constant of 

proportionality 

 

� 

ˆ α = (N − M)−1(d − ˜ G ˜ ˆ m )T ˜ C dd
−1(d − ˜ G ˜ ˆ m ) .                                                (3.7) 

 

The estimated parameter vector 

� 

ˆ m  containing rates and intercepts at each transect, is now 

 

 

� 

ˆ m = V ˜ ˆ m                          (3.8)  

 

with associated covariance matrix, 

 

� 

ˆ C mm = V ˆ C ̃  m ˜ m V
T .                                                                                                   (3.9) 

 

Shoreline positions are predicted using the best-fit shoreline model.  The 

predicted shoreline position 

� 

ˆ y (xi,t)  at desired time t and transect location 

� 

xi is  
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� 

ˆ y (xi,t) = qi
TV ˜ ˆ m = qi

T ˆ m  ,                                                                                     (3.10)   

  

in which 

� 

qi = qi(t)  is a 

� 

2I ×1 column vector, which we refer to as a prediction kernel. 

The variance of the prediction is 

 

 

� 

ˆ σ 2(xi,t) = qi
TV ˆ C ̃  m ˜ m V

Tqi = qi
T ˆ C mmqi,                                                                   (3.11) 

 

where 

� 

ˆ C ̃  m ˜ m  (Eq. 3.6) is the parameter covariance matrix, and 

� 

ˆ C mm  (Eq. 3.9) is the 

covariance matrix for modeled rates and intercepts (Eq. 3.8).  Confidence intervals are 

calculated by multiplying the square root of the above variance by the Student’s t-statistic 

tν , 1−ε /2  where ν is the number of independent observations minus the number of 

parameters used to model the data, and   100(1−ε)  is the percent confidence level. 

 

3.2.6 Data Covariance Estimation  

Ideally, the GLS model outlined in the previous section would contain a data 

covariance matrix 

� 

Cdd  that is known. In reality, the covariance matrix is rarely known a 

priori, even to within a scaling factor, and must be estimated.  In the problem of this 

paper, the structure of the covariance matrix may be simplified by noting that shoreline 

surveys are typically dense in space but ~10 years apart in time.  Therefore it is a good 

approximation to assume that data errors are correlated in the alongshore direction but 

weakly correlated in time.   

Frazer, Genz, and Fletcher (2009) and Genz, Frazer, and Fletcher (2009) 

addressed alongshore correlation by fitting the data residuals from the ST method to a 

decaying exponential, then using that exponential to generate the rows of the covariance 

matrix.  Another method for handling correlated noise is to inflate a diagonal covariance 

matrix by using N * −M instead of N −M  in equation (7), where N *  is the effective 

number of independent observations (Bayley and Hammersely, 1946).  That is essentially 
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what others (e.g. Hapke et al., 2010; Kane et al., 2012) have done to estimate the 

variance in the average of correlated rates; we refer to that method as WN*.   

Here, in what we refer to as the Cfull method, we estimate the full covariance 

matrix for each spline model by an iterative process in which each successive covariance 

matrix is calculated from the residuals of the previous iteration (e.g., Dosso, Neilsen, and 

Wilmut, 2006).  Below, in the context of the spline model, we compare differences in the 

posterior probability density function (pdf) for all three methods of noise estimation: 

uncorrelated (Wdiag), inflated variance based on an effective number of data (WN*), and 

full covariance (Cfull).   

                                     
Figure 3.6  Flowchart for estimating the unscaled covariance matrix  

Cdd  (before scaling 
by  α̂ ).  
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Each of the noise handling methods incorporates in some way the shoreline 

position uncertainties provided by the USGS (Himmelstoss et al., 2010). Let 

� 

˜ C dd
(0) = diag(wij

2)  be the diagonal matrix containing USGS uncertainty estimates 

� 

wij  at 

locations i and times j.  In the uncorrelated noise method (Wdiag) we use 

� 

˜ C dd
(0)  as the a 

priori estimate of 

� 

˜ C dd .  In the noise estimation method (WN*) we also use 

� 

˜ C dd
(0) as the a 

priori estimate 

� 

˜ C dd , but we increase the constant of proportionality α̂  by substituting the 

effective number of independent data N* for the actual number of data N in equation 

(3.7).  In the full-covariance (Cfull) method we iteratively construct 

� 

˜ C dd  from the data 

according to the flowchart in Figure 3.6, and then multiply by the best-estimate constant 

of proportionality 

� 

ˆ α .  We limit the number of noise parameters associated with the scaled 

autocorrelation by assuming that it is independent of time and alongshore distance. 

Details of the flowchart procedure are given in Appendix A.     

In our study area, iteration for  
Cdd  converged for each spline model, but at 

different rates.  Most models essentially converged within two to three iterations, 

although we used a more conservative stopping criterion for iteration (see Appendix A).  

Table 3.2 contains the left hand side of the convergence criterion for each iteration of the 

two best models.  The misfit value LL (defined as -2 times the logarithm of the 

likelihood) is also displayed; LL decreases in value as model likelihood increases, and it 

is used in IC calculations.  The covariance scaling factor 

� 

ˆ α  is also shown, since it is used 

in calculating LL, although it is not needed in the iteration for covariance. 

 To test the goodness of our covariance matrix estimate, we compare the 

autocorrelation function for raw data residuals  ρ = d − G m  with the autocorrelation 

function for standardized residuals defined as  ρ = Ĉdd
−1/2ρ .  In GLS regression, the 

standardized residuals are minimized, and the autocorrelation function of the 

standardized residuals indicates the accuracy of the data covariance matrix estimate.  

Figure 3.7 shows the autocorrelations of raw residuals (left) and standardized residuals 

(right) for two survey years.  The delta-like autocorrelation of the standardized residuals 

indicates considerable improvement over the diagonal covariance assumption. 
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Table 3.2  The decline in LL during iteration shows how an improved estimate of the 
covariance matrix gives a model with higher likelihood. ΔLL is the change in LL between 
successive iterations. 

� 

ˆ α  is the covariance scaling factor needed to calculate LL, but is not 
used in the iteration process.    

� 

 1 is the matrix L1  norm of the difference in estimated 
covariance matrices between iterations.  The iteration process on the left is for the best 
model in the north region, comprised of 6 rate and 72 intercept basis functions.  The best 
model in the south region (right) has 10 rate and 62 intercept basis functions.  
Convergence is essentially complete within two iterations.  
 

North Section       South Section 

Iteration (ΔLL) / LLit−1
 

� 

ˆ α  
  
Cdd
(it )− Cdd

(it−1)
1
Cdd
(it−1)

1

−1

 

(ΔLL) / LLit−1
 

� 

ˆ α  
  
Cdd
(it )− Cdd

(it−1)
1
Cdd
(it−1)

1

−1

 
0 -- 24.2 -- -- 46.2 -- 

1 -8.35 x 10-1 16.8 7.23 x 101 -9.17 x 10-1 25.9 8.10 x 101 
2 -2.51 x 10-3 24.0 2.71 x 10-1 -3.56 x 10-4 27.7 1.11 x 10-1 

3 -6.40 x 10-5 25.2 2.10 x 10-2 -1.67 x 10-4 28.1 8.04 x 10-3 
4 -4.78 x 10-6 25.3 1.73 x 10-3 2.79 x 10-6 28.1 8.57 x 10-4 
5 -4.14 x 10-7 25.3 1.53 x 10-4 -7.79 x 10-7 28.1 6.28 x 10-5 
6 -3.61 x 10-8 25.3 1.37 x 10-5 2.33 x 10-8 28.1 5.58 x 10-6 

7 -3.21 x 10-9 25.3 1.23 x 10-6 -- -- -- 

 

  

 
Figure 3.7  Selected autocorrelation functions for raw residuals (left column) and 
standardized residuals (right column) show the improvement due to a full covariance 
matrix.  
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3.2.7 Information Criterion 

Within a given family of models, the best model is the one with the minimum 

information criterion (IC) statistic (score, value).  An IC statistic is the sum of two 

penalty terms: one term, the misfit, increases with the data residuals, and the other term 

increases with the number of parameters.  Increasing the number of parameters reduces 

the first term and increases the second term.  The IC score thus helps prevent one from 

fitting the noise instead of the data.  For further reading on IC use in regression, see 

McQuarrie and Tsai (1998) or Frazer, Genz, and Fletcher (2009).  This paper uses the 

corrected Akaike information criterion (AICc) (Hurvich and Tsai, 1989; Sugiura, 1978).   

Our formula for AICc includes additional terms that were unnecessary in Frazer, Genz, 

and Fletcher (2009) because they were constant across all models.  Since our method of 

estimating the covariance matrix produces matrices with different off-diagonal behavior, 

we use the more general expression 

 

AICc = log Ĉdd( ) + (N −M )+ 2KN / (N − K −1) ,                                  (3.12) 

 

where 

� 

log(...)+ (N −M)  represents the misfit and 

� 

2KN /(N −K −1)  penalizes the model 

based on parameter count.  Here K is the number of parameters used in the modeling 

process; it is the sum of M and the number of parameters used to model variance.  Table 

3.3 summarizes parameter counts for different methods.  For uncorrelated noise (Wdiag 

method), only one parameter (the covariance scaling factor 

� 

ˆ α ) is associated with 

variance.  The inflated diagonal covariance technique (WN*) uses two parameters for 

variance, one for the covariance scaling factor, and one associated with calculating the 

effective number of independent data, N * . For model selection in the WN* method, we 

substitute N *  for N in Eq. 3.12.    

Since the Cfull procedure uses an estimated autocorrelation function, one may first 

think to count the number of autocorrelation lags as the number of parameters associated 

with correlation.  However, correlations for large lags contribute little to the covariance 

estimation, and they are poorly estimated, so we damp them in estimating the 

autocorrelation (Box, Jenkins, and Reinsel 1994).  The effective number of parameters  
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Table 3.3  Model parameter counts and relative AICc scores of methods with differing 
covariance estimators.  (STind – Single Transect with variance calculated independently at 
each transect; Wdiag – Spline method with weighted diagonal covariance matrix; WN* – 
Spline method with inflated weighted diagonal covariance calculated using the effective 
number of data; Cfull – Spline method with full covariance matrix; nr – number of 
parameters used to model rates; nb – number of parameters used to model intercepts; nvar 
– number of parameters used to estimate variance; K – IC parameter count (nr + nb + 
nvar); N – number of data; N* – effective number of data; ΔAICc – the AICc score minus 
the lowest AICc score.)  
 

 North Section  South Section 
Method nr nb nvar K N* 

(N=2819) 
ΔAICc  nr nb nvar K N* 

(N=3321) 
ΔAICc 

STind 401 401 401 1203 -- 13248  401 401 401 1203 -- 17269 
Wdiag 8 34 1 43 -- 9084  16 11 1 28 -- 14787 
WN* 8 20 2 30 276 13439  7 6 2 15 196 21463 
Cfull 6 72 101 179 -- 0  10 62 101 173 -- 0 

 

 

associated with spatial correlation is thus the integral of the damping function given in 

Appendix A.  

When comparing IC scores for models with different noise handling methods, it is 

helpful to understand how the misfit term is related to the likelihood of a model.  Since 

we assume Gaussian noise, the likelihood function for parameter vector m, given data d, 

is  

 

 

� 

L(m | d) = (2π)−N / 2Cdd
−1/ 2 exp −

1
2
(d −Gm)T Cdd

−1(d −Gm)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ . 

 

As noted above, the misfit LL, is defined as -2 times the logarithm of the likelihood 

function.  Therefore, smaller LL values correspond to models with higher likelihood. The 

(ΔLL) / LL  values in Table 3.2 show LL decreasing (model likelihood increasing) during 

iteration toward the full covariance matrix, with convergence after 2-3 iterations. 
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3.3 Results and Discussion 

 

3.3.1 Model Selection: AICc 

Figure 3.8 shows the ΔAICc scores, the difference in AICc from the lowest-

scoring model, for each combination of rate and intercept parameters (up to 40 rate and 

100 intercept parameters).  The lowest AICc score in the north section corresponds to the 

model with 6 basis functions for rate and 72 basis functions for intercepts (see Table 3.3).  

Many more basis functions are required for modeling alongshore variations in intercept 

because the mean shoreline location depends on the shape of the baseline, and the 

baselines used in the USGS study are straight lines over large geographic regions, lines 

that do not mimic the mean shoreline shape on smaller scales.  Alongshore variations in  

          

                      
Figure 3.8  ΔAICc scores for each combination of rate and intercept basis functions North 
(a) and South (b) of OC Inlet.  Red stars indicate the minimum AICc values.  
 

rate, however, are insensitive to cross-shore shifts in mean shoreline position.  In fact, if 

only rates are desired, one could simply remove the mean of each transect, as was done in 

Frazer, Genz, and Fletcher (2009) and Genz, Frazer, and Fletcher (2009).  Calculated 

shoreline positions, however, depend on intercepts, so reducing the number of intercept 
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parameters is desirable for parsimony in shoreline prediction models. The same 

phenomenon is reflected in the AICc scores for the southern study region where 10 rate 

basis functions and 62 intercept basis functions were found optimal.     

 

3.3.2 Modeled Rates and Intercepts 

Modeled rates and intercepts produced from the optimal number of basis functions are 

shown in Figure 3.9, along with rates and intercepts calculated from the ST method.  The 

two methods generally agree, indicating long-term erosion from the northernmost 

location (transect 0), turning to accretion, which is greatest just north of the OC Inlet.  In 

the south section, erosion is most severe near the Inlet, in agreement with previous 

studies which found that the OC Inlet jetties have disrupted the natural long-term 

sediment transport to the south, causing sand to accumulate just north of the Inlet while 

retreating landward south of the Inlet (Dean and Perlin, 1977; Leatherman, 1984; Kraus, 

2000; Buttolph et al., 2006).   

 

 
Figure 3.9  Modeled rates and intercepts along the coast of Ocean City and Assateague 
Island, MD using the spline model and ST model.  For clarity, the lower middle panels 
are plotted with a different vertical scale.  
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For the north and south regions, we also computed an average change rate with 

95% confidence interval by assuming a constant rate over each region, and inverting for 

that rate directly.  For that calculation we shifted the y-baseline to zero, so the intercept is 

zero, and the spline matrix was reduced to an 

� 

I ×1 column vector of ones.  A large 

difference is apparent between the constant rates calculated for the beaches north (0.31 ± 

0.28 m/yr) and south (-2.40 ± 0.69 m/yr) of OC Inlet, due to disruption of longshore 

transport by OC Inlet jetties.  

 

 
Figure 3.10  North section predicted shoreline positions (grayscale) for (a) ST and (b) 
Cfull spline methods.  Data are shown in black.  Predictions are for the time span 1849 – 
2100, a 100-year extension from the latest data. (c) Predicted shoreline positions in year 
2100 for the ST and two spline methods reveals the unrealistic amplification of high 
spatial frequencies by ST.  The spline model with noise treated as uncorrelated (Wdiag) 
gives predictions similar to smoothed ST predictions. 
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The spline and ST rates have similar long-wavelength shapes, but deviate at 

shorter length scales, as expected.  Areas with the largest deviations correspond generally 

to areas where ST estimates have the largest uncertainty estimates, especially in the 

southern portion closest to OC Inlet. The spline intercepts resemble the ST intercepts 

because many spline basis functions were needed to model the intercepts.  If one 

continues to increase the number of basis functions used to model intercept and rate, the 

spline results would approach ST estimates because the single transect method is the end 

member of basis function saturation – equivalent to having delta-like spline basis 

functions at each transect.  If we also then applied the correlated noise handling technique 

to ST, the estimates would be identical.   

 

 

                
Figure 3.11  South section predicted shoreline positions for the (a) ST and (b) Cfull spline 
methods during the time span 1849 – 2100.    
 

3.3.3 Predicting Future Shorelines  

Figure 3.10 shows predicted spline and ST shorelines, for the northern section of 

the study site, from 1849 to 2100, a 100-year extension to the time span of the original 

data.  With time, the high spatial frequencies in the ST method are amplified, producing 

unrealistic variations between neighboring transects, inconsistent with the smoothing  
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Figure 3.12  Northern section predictions for the year 2100, with 95% confidence 

intervals.   

 

processes observed over time in natural coastal environments.  The spline methods, 

however, give smooth shoreline predictions (Fig. 3.10c).  Figure. 3.11 shows the 

corresponding results for the southern section.  Figure 3.12 shows confidence intervals 

for the northern section predictions for the year 2100, using ST and all four spline 

methods, and it is interesting that the Cfull spline method allows more alongshore detail 

than the Wdiag and WN* spline methods because it fits the data better (next section).  

Moreover, the Wdiag result shows that if correlations in the noise are not properly handled, 

the erroneously low estimates of parameter variance results in erroneously narrow 

confidence intervals.  For example, the average standard error of Wdiag predicted 

positions in 2100 is roughly six meters, which is significantly less than the ≈11 meters of 
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actual shoreline position uncertainty (including variability in the shoreline indicator (high 

water line) due to seasonal and tidal influence) estimated by Douglas and Crowell (2000) 

at nearby Cotton Patch Hill, DE.  

 

3.3.4 Comparing Noise Handling Techniques 

As mentioned above, we processed the data using our spline method in 

conjunction with several different noise handling techniques.  It is worth noting that the 

issue of spatially correlated noise spans all modeling techniques, no matter how 

unparsimonious they may be.  One could apply all of the noise handling techniques we 

present (Wdiag, WN*, Cfull), to the ST method because ST is just a spline method with 

delta-like splines at each transect.  Since ST is so widely employed, we present only the 

standard ST noise methodology of estimating uncertainty independently at each transect, 

comparing that with our spline models.  When comparing the ST method to our spline 

models, we denote the method as STind as a reminder of the noise handling in the ST 

method.  

Table 3.3 contains, for each noise method, the optimal number of basis functions 

used to model rate (nr), intercept (nb), and variance (nvar).  The total number of 

parameters used in the IC calculations, K, is also shown.  The STind method naturally has 

the largest number of model parameters – a rate, intercept, and variance at each transect. 

The Wdiag method requires far fewer parameters, with the WN* method requiring even 

fewer parameters due to a much reduced effective number of data N * .  In the north 

section, N *  is 276 compared to the actual number of data N = 2819.  In the south section, 

N *  is 196, out of N = 3321 actual data.  The Wdiag method also has reduced AICc values 

compared to ST in both the northern and southern portions, mainly due to the large 

reduction in parameters since IC scores balance model misfit (LL) with parameter count.  

The WN* method, on the other hand, actually has the highest AICc score of all due to its 

high LL.  The high AICc score is mainly due to the unlikely large variance in 

combination with assumed uncorrelated errors, and may not reflect actual accuracy (see 

Synthetic Data section below).  The Cfull method (splines with full covariance matrix) has 

a similar number of rate and intercept basis functions as the other two spline methods, but  
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Figure 3.13  Posterior probability density functions for rate at four locations using: the 
single transect method with noise calculated independently at each transect (STind); the 
spline method with uncorrelated noise (Wdiag); the spline method with inflated diagonal 
(WN*); and the spline method with full covariance (Cfull). The change in mean rate 
between STind and WN* occurs because the IC allows the WN* method fewer basis splines. 
 

needs extra parameters to estimate the covariance matrix; even with the extra parameters, 

its lower LL gives it the lowest AICc score. 

Notably, the different noise handling methods change not only the variance of the 

parameter estimates, but also their means.  The posterior pdfs of rate at four locations are 

shown in Figure 3.13.  The pdfs of the STind method are typically the broadest because of 

the relatively small amount of data at each transect.  The pdfs for the Wdiag method are 

more localized due to the increased number of data used to estimate each rate in the 

spline method. In the Wdiag method each B-spline coefficient is essentially a weighted 

average, and since the data are assumed independent and identically distributed, the 

variance of the average is smaller than that of any individual datum.  This illustrates how 

when correlation is ignored, estimates of parameter uncertainty are erroneously low.  On 

the other hand, the WN* noise model gives rates with broader pdfs than the Wdiag noise 

model because of the inflated variances; using N *  in lieu of N reduces the number of 

parameters allowed by the IC because the fit is degraded, and that changes the mean of 
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the rate pdf while increasing the variance.  The pdfs for the Cfull spline method are also 

broader than those in the Wdiag method because covariance terms are included.  

Nevertheless, as Figure 3.12 shows, the Cfull method reveals more alongshore detail 

because it is allowed more model parameters by the IC—because it fits the data better.  

 

3.3.5 Comparing Basis Functions 

 The choice of basis function used in an analysis depends on both the analysis 

objective and the geology of the study area.  No single type of basis function is superior 

in all situations, as summarized in Table 3.4.  The ST method, although not truly a basis 

function method, is included in the table because it is equivalent to using delta-like basis 

functions at each transect.   

All of the basis function methods produce more parsimonious models than ST, 

but they require careful handling of spatially correlated data errors.  If the geology of the 

region warrants an alongshore discontinuity in rate (or intercept), B-splines and 

eigenbeaches (principal components) address the Gibbs effect (Figure 3.3) inherent in 

  

Table 3.4  The effects of using different basis functions on model estimates.   
*Eigenbeaches basis functions are not independent of the data; additional care is required 
for selecting a parsimonious number of basis functions (e.g., cross-validation)  
**Requires careful knot placement to circumvent Gibbs effect 
1Correlated errors – covariance matrix must account for spatially correlated errors 
2Nonparametric – requires nonparametric estimation method (e.g., bootstrap) 
 

Method Parsimonious Defined 
Everywhere? 

Gibbs 
Effect 

Error Estimation 
Assumptions 

ST N N N Independent 

Spline 
(B-splines) 

Y Y    N** Correlated errors1 

Polynomial 
(Legendre, 

Trigonometric) 

Y Y Y Correlated errors1 

Eigenbeaches 
(Principal 

components) 

 Y* N N Correlated errors1; 
Nonparametric2 
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polynomial (Legendre, trigonometric) basis functions, but not without added 

complication.  The spline requires careful knot placement alongshore to circumvent the 

Gibbs effect.  Eigenbeaches are contaminated by noise because they are derived from the 

data, requiring additional care in model selection and error estimation.  Only the 

polynomial and spline basis functions are defined at every alongshore location, not just at 

each transect, a property that could be important if transects are widely spaced.  If 

estimates are needed between transect locations, interpolation is required in the ST and 

eigenbeaches methods.  

 

3.3.6 Limitations of the Time-Linear Model 

All models tested here have the same shoreline change assumption in time – that 

shorelines erode or accrete at rates that are constant over decade to century time scales.  

This limitation affects predictions on either side of the OC Inlet jetties because shoreline 

behavior has changed, perhaps even reversed, over the time span of our data.  The 

predicted shoreline locations for all models just north of the inlet actually exceed the 

seaward extent of the northern jetty.  Since the jetty is the cause of sand accumulation to 

the north of the inlet, it is obviously incorrect to predict that the shoreline will continue to 

accrete past the seaward extent of the jetty.  Given persistent coastal conditions, 

shorelines tend to move only when perturbed by a disruption, then gradually re-

equilibrate to a stable state.  Accordingly, the time component of our shoreline change 

model might be improved by incorporating relaxation in the time domain, following work 

done by Miller and Dean (2004) or Yates, Guza, and O’Reilly (2009).  Incorporating our 

alongshore spline methods and noise handling into the Kalman Filter shoreline evolution 

framework described in Long and Plant (2012) might also provide additional 

improvement.  

 

3.3.7 Confirmation with Synthetic Data 

 We analyze a synthetic dataset to support our modeling results.  Ten cubic B-

splines represent alongshore rates; intercepts are defined as zero everywhere.  From the 

defined rates and intercepts, eleven synthetic shorelines at ten-year intervals are sampled  
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Figure 3.14  True (black line) and modeled (colored) most-recent synthetic shoreline.  
Inset shows true alongshore correlation and modeled correlation.  Damped ST 
autocorrelation is not used in modeling, but has a similar shape to the Cfull model 
autocorrelation.  
 
 

         
Figure 3.15  Histograms of shoreline position errors (estimated – true) for STind, Wdiag, 
Cfull, and WN* methods.  Minimum and maximum error values for each method are 
indicated by vertical blue dashed lines.   
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at 50-meter increments alongshore.  Correlated, zero-mean noise (Figure 3.14, inset) is 

weighted by a priori uncertainty estimates of 10 meters for the four oldest shorelines and 

7.5 meters for the remaining seven shorelines, and added to the synthetic data.  We model 

the data using the STind, Wdiag, WN*, and Cfull methods.   

The Cfull model is unique in identifying the true number of rate (ten) and intercept 

(one) B-splines used to create the synthetic data (Table 3.5).  Its low relative AICc score 

indicated that the Cfull model is also the most probable.  The WN* method also selects ten 

rate B-splines, but uses four B-splines to model intercepts alongshore, indicating that 

WN* estimates represent slightly more noise than Cfull estimates.  As in the real data 

example, the WN* method has the highest AICc due to the unlikeliness of its inflated 

variance.  The Wdiag and STind methods use the most B-splines (Table 3.5) to model 

alongshore parameters indicating that they model more noise than the Cfull and WN* 

methods do.   

Histograms of shoreline position errors (estimated – true) (Figure 3.15) show the 

Cfull model to be the most accurate, followed closely by the WN* model, then the Wdiag 

and STind models.  The modeled noise correlation in the Cfull method resembles the true 

correlation (Figure 3.14, inset).  Autocorrelation of ST residuals are also similar to the 

true correlation.  Model predictions of the most recent shoreline are shown in Figure 

3.14; the synthetic data test also confirms that the uncertainty in the Wdiag model is 

underestimated as seen in Figure 3.14 where the estimate does not overlap the true signal.  

 
Table 3.5  Model parameter counts and relative AICc scores of methods with differing 
covariance estimators for synthetic data.  (True – true model; STind – Single Transect with 
variance calculated independently at each transect; Wdiag – Spline method with weighted 
diagonal covariance matrix; WN* – Spline method with inflated weighted diagonal 
covariance calculated using the effective number of data; Cfull – Spline method with full 
covariance matrix; nr – number of parameters used to model rates; nb – number of 
parameters used to model intercepts; ΔAICc – the AICc score minus the lowest AICc 
score)  

Method nr nb ΔAICc 
True 10 1 -- 
STind 401 401 5674 
Wdiag 12 20 5036 
WN* 10 5 7133 
Cfull 10 1 0 
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3.4 Conclusion  

Alongshore correlated data in shoreline change prediction is addressed by using a 

linear combination of B-splines to represent spatial variations of model parameters.  B-

splines avoid problems with Gibbs effect at abrupt discontinuities in rates (if knots are 

properly chosen) in previously used Legendre polynomial, sinusoid, and principal 

component basis functions, and they avoid problems with noise contamination in the 

latter.  In addition to model parsimony, proper treatment of correlated noise is significant 

because differences in noise handling techniques affect mean parameter estimates, as well 

as estimated uncertainties.  Treating correlated noise as if it were uncorrelated results in 

erroneously low variance estimates.  Inflating variance estimates via an effective number 

of data to account for the lack of off-diagonal covariance terms limits the number of 

model parameters allowed, causing an increase in the misfit.  Correlated noise was best 

addressed by including a full covariance matrix, constructed iteratively from data 

residuals.  Although our method addresses both parsimony and noise handling, the 

shoreline near Ocean City Inlet reveals the usual limitations of the underlying time-linear 

assumption.  

 

3.5 Appendix A: Estimating the Data Covariance Matrix 

Following the flowchart in Figure 3.6, we begin by initializing 

� 

˜ C dd  as the 

diagonal matrix   
Cdd
(0) = diag(wij

2 ) , where wij  are the USGS a priori error estimates at 

locations i and times j.  A diagonal covariance matrix represents uncorrelated data errors.  

Using 

� 

˜ C dd
(0), we invert for model parameter vector  ̂m  (Eq. 3.5), and subsequently 

calculate residuals    ρ= d− G ̂m .  The correlation matrix Ccorr is then constructed using 

the following equation 

 

  
cii ' jj ' = ρi, j

2
i∑j∑( )

−1
ρk , jρk+ i '−i , j

k=1

I−i '−i

∑
j=1

J

∑ ⋅δ jj '                        (3.A1) 
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in which i and i’ are location indices ranging from 1 to I, j and j’ are time indices ranging 

from 1 to J, and 

� 

δ jj '  is the Kronecker delta which enforces our assumption that data are 

not correlated in time.  If the data vector in the GLS problem is arranged such that data 

are grouped by time, and ordered spatially, the correlation matrix is block diagonal with 

each block equal and in Toeplitz form.  Figure 3.16, left column, shows the spatial 

autocorrelation of shoreline residuals (first row of one block) for the north and south 

study sections.   

To condition the matrix and ensure that it is positive definite, each autocorrelation 

in the correlation matrix is damped with the taper function  

 

  
T i '− i( )= cosl

π i '− i
2(I−1)

 (Fig. 3.16c),                             (3.A2) 

 

in which the exponent l controls the rate of decay as data are spatially farther apart.  We 

tested the values l = 3,6,10, and 20 for selected combinations of basis functions, and 

found that they all produced nearly identical parameter vectors.  We used 

� 

l = 6 in our 

study, which causes the correlation to go nearly to zero by about lag 3/4 I.  Fig. 3.16(a,b) 

shows the damped autocorrelation of residuals versus lag.  

One of the 

� 

I × I  blocks within the block-diagonal Ccorr matrix (J blocks total – 

one for each shoreline survey time) for the north section is shown in Fig. 3.16(e).  The 

correlation matrix is subsequently weighted by the product of corresponding a priori 

uncertainty estimates wi jwi ' j '  to produce a new  
Cdd  

 

    
Cdd
(1) = Cdd

(0)1/2Ccorr
Cdd
(0)1/2

.        (3.A3) 

 

The USGS estimated errors for the year 2000 LiDAR-derived shoreline in the 

North are shown in Fig. 3.16d, with the accompanying weighted correlation matrix (Fig. 

3.16f).  We then use the new full covariance matrix to invert for an updated parameter 

vector  ̂m , and use that parameter vector to estimate yet another covariance matrix and  
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Figure 3.16  (a-b) Autocorrelation (dashed) and damped autocorrelation (solid) of 
residuals for north (a) and south (b) portions of the study area, (c) the cosine damping 
function (l = 6), and (e) the resulting autocorrelation matrix for each year in the north 
section.  (d) The a priori error estimates for the 2000 LiDAR shoreline fluctuate 
alongshore (north section).  (f) The result of weighting the correlation matrix in (e) by the 
error estimates in (d).  For years in which a priori shoreline error estimates do not vary 
alongshore (shorelines not derived from LiDAR data), the entire block is simply scaled 
by the constant.  
 

model pair, and so on, until the covariance matrix is sufficiently similar to the one from 

the previous iteration.  Our convergence criterion is 

� 

˜ C dd
(u) − ˜ C dd

(u−1)
1

< 10−5 ˜ C dd
(0)

1
, where u 

is the number of iterations, and   

� 

 1 denotes the matrix L1-norm. Notice that it is not 

necessary to calculate the constant of proportionality 

� 

ˆ α  until the iterations have 

converged, because it drops out of equation 3.5, the GLS estimator of parameter vector 

 m . 

 

 

 

  

 

 

0

5

10

15

20

25

30

>35

 

 

100 200 300 400

100

200

300

400 0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 4003

5

7

9

11

13

Transect (<- North South ->)

U
SG

S 
 e

rro
rs

 (m
)

0 50 100 150 200 250 300 350 400
Lag (transects)

0 50 100 150 200 250 300 350 400
ï���

0

0.2

0.4

0.6

0.8

1

ï���

0

0.2

0.4

0.6

0.8

1

Autocorrelated residuals
Damped

ï���

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

North Section

South Section

Lag (transects)

a)

b)

c)

Lag (transects) Transect

Tr
an

se
ct

(m2)

100

200

300

400

Tr
an

se
ct

100 200 300 400
Transect

D
am

pi
ng

Au
to

co
rr

el
at

io
n

Au
to

co
rr

el
at

io
n

d)

e)

f )

Year 2000

Year 2000

(lidar data)

(lidar)



	   54	  

 
 
 
 
 

Chapter 4 

LONG-TERM SHORELINE CHANGE  
AT KAILUA, HAWAII, USING REGULARIZED-ST 

 

In preparation for publication submission as Anderson, T.R., L. N. Frazer, and C.H. 
Fletcher, Long-term shoreline change at Kailua, Hawaii, using regularized-ST. 
 

 

Abstract – We use second-order Tikhonov regularization to model long-term shoreline 

change at Kailua, Hawaii. As a check on our regularized-ST method, we also analyze the 

data with the traditional single-transect method (ST) and with B-splines.  All three 

methods indicate long-term accretion, especially near the opening of an offshore sand-

filled channel toward the middle of Kailua Beach, consistent with earlier work by others. 

The regularized-ST and B-spline models both give shoreline change rates that vary more 

smoothly alongshore than the rates from ST.  In regularized-ST, the alongshore 

smoothness is controlled by two regularization parameters, one for rate and one for 

intercept, which can vary continuously and are chosen using a Bayesian information 

criterion. Setting those parameters to zero gives traditional ST. In the B-spline method, 

smoothness is controlled by the spline counts for rate and intercept, and changing the 

number of splines causes the location of the splines to shift, thus linking model 

smoothness to other aspects of the model. This is a disadvantage compared to 

regularized-ST, although splines have the compensating advantage of being defined at 

every alongshore point, a convenience if transects are widely spaced.  Regularized-ST is 

more straightforward to implement than splines, especially when modeling data with 

alongshore discontinuities.  Regularized-ST may also be preferable because of its 

continuous connection with the familiar ST method.  
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4.1 Introduction 

Shoreline change studies are becoming increasingly vital to coastal managers as 

chronic erosion, storms, limited sediment supplies, coastal development, and rising sea 

levels continue to damage coastlines.  Many states rely on quantitative measures of 

shoreline behavior, such as shoreline change rates, to implement building setback 

policies.  Given that the median lifespan of commercial buildings is 70-75 years (U.S. 

Department of Energy, 2011), it is desirable to predict shoreline locations 70 to 100 years 

into the future.   

Data limitations present challenges to long-term shoreline prediction because of 

the complexity of coastal dynamics, especially drivers of shoreline change such as wave 

energy, storm surge, tides, seasonal variations, aeolian transport, and changes in relative 

sea level which occur over a wide range of time and spatial scales (Miller and Dean, 

2004).  Highly sophisticated three-dimensional physics-based models (e.g., Delft3D-

MOR (Lesser et al., 2004)) adequately represent shoreline behavior over short time 

spans, but are limited in their long-term predictive capabilities.  Empirical models, on the 

other hand, can identify long-term trends in historical shoreline position data, which are 

typically very sparse in time and contain large scatter due to short-term beach processes 

(e.g., Galgano and Douglas, 2000; Honeycutt, Crowell, and Douglas, 2001).  For 

example, it is common that only 5 to 10 historical shoreline positions, unevenly spaced 

over approximately 80 years, are available for a shoreline.  As more data becomes 

available, modeling efforts progress toward assimilating the various time resolutions 

(e.g., Long and Plant, 2012; Davidson, Splinter, and Turner, 2013).  

Long-term shoreline change modeling techniques have developed incrementally.  

Least squares regression has replaced the once-favored end-point method (e.g., Crowell, 

Douglas, and Leatherman, 1997; Galgano and Douglas, 2000; Honeycutt, Crowell, and 

Douglas, 2001).  Least squares regression uses all available shoreline positions, whereas 

the end-point rate method used only two shoreline positions to calculate a cross-shore 

change rate at each alongshore location.  Genz et al. (2007) investigated different forms 

of regression analyses such as least absolute deviation, weighted least squares, and least 

median of squares.  Frazer, Anderson, and Fletcher (2009) added a storm function to the 
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typical rate-only regression equations, improving long-term shoreline change estimates.  

Improvements in quantifying error and bias in data derived from different sources (e.g., 

LiDAR, aerial photographs) have also improved shoreline change statistics (Douglas and 

Crowell, 2000; Fletcher et al., 2003; Ruggiero and List, 2009).     

 

                  
Figure 4.1  Autocorrelation of shoreline change rates at 20 meter increments along Kailua 
Beach.   

 

The single transect method (ST) is still the typical procedure for calculating a 

shoreline change rate at each shore-normal transect alongshore. It assumes that the data 

and noise at each transect are independent, which results in more parameters being used 

to fit the data than are necessary.  As an example, Figure 4.1 shows the autocorrelation of 

long-term rate parameters that were calculated independently at 20-meter increments 

(transects) along Kailua Beach, Hawaii.  The slow decay of the autocorrelation in the 

alongshore direction shows that rates are highly correlated.  Frazer, Genz, and Fletcher 

(2009) and Genz, Frazer, and Fletcher (2009) reduced this overfitting by representing 

change rates as the sum of alongshore basis functions.  The basis functions they used 

were Legendre polynomials, trigonometric functions, and principal components.  They 

followed Fenster, Dolan, and Elder (1993) by using an information criterion to select the 

most parsimonious model.  Anderson, Frazer, and Fletcher (2010) combined alongshore 

basis functions with the storm function (Frazer, Anderson, and Fletcher, 2009) in their 

modeling technique to investigate transient and persistent storm components.  Recently, 

Anderson and Frazer (in review) investigated B-spline basis functions as a way to avoid 

the Gibbs effect; they also compared different methods of handling correlated data errors, 
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showing that approximating correlated errors by uncorrelated errors affects rate as well as 

uncertainty.   

Regularization is a technique often used in regression analysis to improve the 

condition of matrix inverses, but it can also be used to avoid overfitting (Aster, Borchers 

and Thurber 2012). In zeroth-order Tikhonov regularization, solutions are penalized for 

distance from a reference model, as well as for misfit; in first-order Tikhonov 

regularization, solutions are penalized for their variability, including linear variation; in 

second-order Tikhonov regularization, solutions are penalized for roughness but not for 

locally linear behavior. In this paper we use second-order Tikhonov regularization to 

make the traditional ST method more parsimonious. Regularization can be applied to any 

model, but it is most useful when the basis functions of the model are localized. In the 

spline method, the width of the basis functions is controlled to avoid overfitting, so 

regularization isn’t necessary, but in the traditional ST method, the basis functions are 

delta-like, and regularization is highly beneficial. From the point of view of Bayesian 

statistics, regularization consists of multiplying the likelihood function by a prior, but is 

implemented numerically by adding more equations to the linear system. 

We begin with the ST method.  At each transect location, the shoreline position 

y(x,t)  is estimated by  ŷ(x,t)= r̂(x)(t− t )+ b̂(x) , where r̂(x)  and b̂(x)  are the least 

squares rate and intercept, respectively, for alongshore location x.  These parameters are 

found by minimizing the residual sum of squares (RSS), or misfit, in the equation 

 y= rt+b  at each alongshore location x.  As an example, the circles in Figure 4.2 show 

rate parameters r̂(x) , calculated using ST at transects spaced 20 meters apart for Kailua 

Beach, Hawaii. A much less complex relationship results when the difference between 

ST rates at adjacent transects is constrained to be constant, giving the smoothest 

representation possible: a straight line (Figure 4.2, dashed line).  That alongshore-linear 

rate model does not fit the data nearly as well as the ST model but it is very 

parsimonious.  The preferred model lies somewhere between the two extremes of fitting 

the data well at each transect and limiting the alongshore variability. The regularized 

model parameters are found by minimizing 
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   φ(m) = RSS(m)+γ 2 {roughness penalty(m)},     γ≥ 0 , 

 

where m is a vector of parameters, RSS is the (Mahalanobis) residual sum of squares, γ is 

the regularization parameter, and the roughness penalty is the sum of the squared 

alongshore second derivative of parameters. When γ is zero, there is no penalty, and the 

model reverts to ST.  As γ increases, the penalty for alongshore variation increases, and 

parameters are forced to vary smoothly.  In Figure 4.2, the solid line represents rates in 

which alongshore variation is constrained by a large penalty; as γ approaches infinity, the 

parameters approach a straight line.   

	  

 
Figure 4.2  Rates from ST (dots), rates from regularized-ST with very large γ (dashed 
line), and rates from regularized-ST with moderate γ (solid line).  

 

As an alternative to choosing basis functions, regularization has some practical 

advantages.  For example, polynomial basis functions usually require separate analysis of 

shoreline sections that are separated by small gaps of missing data, but regularization 

allows for one-time processing of shorelines with alongshore data gaps. We find 

regularized ST easier to implement than basis functions methods, and many routines used 

in regularization are available in software packages such as Matlab 

(www.mathworks.com) and R (www.r-project.org).  

In regularization, some criterion is required for selecting the appropriate 

regularization parameter(s).  This is comparable to selecting the optimal number of basis 

function using basis function methods (Frazer, Genz, and Fletcher, 2009).  After 

experimenting with the traditional L-curve method (Aster, Borchers and Thurber 2012), 

and various information criteria, we elected to use the simple Bayesian Information 
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Criterion derived in Appendix B.  As with any information criterion, the best model is the 

one whose BIC score is the lowest.     

Below we present our regularization methodology and use it to analyze historical 

shoreline data at Kailua Beach, Oahu, Hawaii. To buttress our findings at Kailua we 

compare results for three different shoreline change methods: standard ST, regularized-

ST, and B-spline basis functions.  We also discuss model selection in regularization, 

practical issues in applying different methods, and the estimation of parameter 

uncertainty.      

 

4.2 Kailua Beach, Hawaii 

 

4.2.1 Physical Setting 

 Kailua Beach is located on the windward side of the Hawaiian island of Oahu 

(Figure 4.3).  The 4-kilometer carbonate sand beach is bounded by limestone to the north 

at Kapoho Point and basalt at Alala Point to the south.  A wide fringing reef platform 

provides moderate protection to the beach from year-round northeast trade wind waves, 

and winter (October-March) north swells.  The reef platform is bisected by a winding 

200m wide sand-floored channel that widens toward the shore into a broad sand field at 

the center of the beach.  The residential area of Kailua sits upon a low-lying expansion of 

Holocene-age carbonate dune ridges and terrestrial lagoon deposits (Harney and Fletcher, 

2003).  Low vegetated dunes front many oceanfront homes.  The Kaelepulu Stream 

empties into the ocean near the south end of Kailua Beach.  Episodic removal and 

occasional redistribution of sand near the stream mouth began in the 1980s.  A boat ramp, 

constructed between 1949 and 1963 at the south end of Kailua Beach, generally inhibits 

sediment moving toward the north, as evidenced by sediment accumulation on the south 

side, and deprivation on the north of the boat ramp in the majority of post-1949 historical 

aerial photos available online from the University of Hawaii Coastal Geology Group 

(http://www.soest.hawaii.edu/coasts/erosion/mosaics.php?sArea=kailua). 
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Figure 4.3  Kailua Beach, Oahu, Hawaii. (Adapted from Romine et al., 2009) 
 

4.2.2 Kailua Beach Data 

Data used in the study are cross-shore distances relative to a user-defined baseline 

(Figure 4.4 inset).  Historic shorelines extracted from aerial photographs and T-sheets 

dating between 1928-2005 were obtained from the University of Hawaii Coastal Geology 

Group as GIS shapefiles (see Romine et al., 2009 for shoreline extraction procedure).  

Dates, origins, and total position errors for each survey, calculated by Romine et al., 

(2009), are shown in Table 4.1.  Approximately shore-normal transects, spaced 20 meters 

apart, are cast off of a smooth baseline that follows the general shape of the shoreline.  

Here, the baseline is a spline fitted to the average shoreline position (Figure 4.4). At each 

transect location xi along the baseline, the relative distance from the shoreline to the 

baseline yij is calculated for shoreline times tj.  Thus,  yij = y(xi ,t j ) , where transect index i 

ranges from 0 to I-1, and time index j ranges from 1 to J.  The Kailua Beach data set is 

the collection of cross-shore positions relative to the baseline over all transects (Figure 

4.5).  
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Figure 4.4  Shoreline vectors are overlaid on a 2005 aerial photomosaic (from the University of 
Hawaii Coastal Geology Group) of Kailua Beach.  Shore-normal transects (thin yellow lines) are 
cast off a baseline (black line) that follows the general shape of the coast.  Inset shows a small-
scale shoreline deviation from the baseline, following the near-shore topography.  Upper inset 
shows a plot of cross-shore position versus time, along one transect    
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Table 4.1  Dates of shoreline surveys, sources of data, and estimated position errors.  

Date Source Error (m) 
1928 T-Sheet 10.78 
1949 Aerial Photo 7.56 
1963 Aerial Photo 7.79 
1967 Aerial Photo 7.53 
1971 Aerial Photo 7.70 
1975 Aerial Photo 7.77 
1978 Aerial Photo 9.22 
1982 Aerial Photo 7.63 
1988 Aerial Photo 9.18 
1996 Aerial Photo 7.35 
2005 Aerial Photo 7.41 

 

 

 

                      
Figure 4.5  Shoreline data, relative to baseline, from Kailua, Hawaii.  Transects are 
spaced 20 meters apart.   
 

 

4.3 Procedure 

We use least squares regression to estimate parameter values for a system of 

shoreline equations penalized by an additional set of equations.  The influence that the 

penalty equations have on the estimates is governed by regularization parameters.  We 

employ the BIC statistic to find the appropriate value of the regularization parameter.  
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We use the following simple forward model for shoreline change over time: 

 

  yij = bi + ri (t j− t )+nij , (4.1) 

 

in which bi and ri are the intercept and rate, respectively, at alongshore location xi, and nij 

is noise.  It is straightforward to include additional terms in this model, such as 

acceleration (e.g., Frazer, Genz, and Fletcher, 2009; Romine et al., 2009) or a storm 

function (Anderson, Frazer, and Fletcher, 2010).  We opted not to include acceleration 

here because it can result in unstable long-term (decades) predictions.  Also, a previous 

study by Romine et al. (2009) found that purely linear models outperformed models with 

acceleration terms in fitting data at Kailua Beach with polynomial basis functions.  We 

do not include a storm function because we found no storm signal in the Kailua Beach 

data set.  However, such terms are easily added to the shoreline change equation above 

and incorporated into the remaining procedure. 

 As a comparison to regularized-ST, we also analyzed the data using cubic B-

splines as alongshore basis functions (Anderson and Frazer, in review).  In basis function 

methodology, the parameter vector consists of basis function coefficients; Frazer, Genz, 

and Fletcher (2009) present a thorough explanation of basis functions in shoreline change 

modeling.  The forward model for B-splines is  

 

 
  
yij = τk0

(0)Bk0 (xi )
k0=0

K0

∑ + (t j− t ) τk1
(1)Bk1 (xi )

k1=0

K1

∑   (4.2) 

 

where the Bk (x)  are cubic B-splines and the  τk  are their coefficients.       

 

4.3.1 Second Order Regularization 

  Regularization is most easily implemented by adding constraint equations in the 

following way.  Consider the system of equations (4.1) in matrix form as   d =Gm+η , 

where d is an  N×1  column vector of N observed shoreline positions, m is an  M×1 

column vector of M model parameters, G is an  N×M  system matrix, and  η  is an  N×1  
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column vector of errors with zero mean and covariance matrix Cdd.  We control model 

roughness by augmenting the system with equations that set the second alongshore 

derivative of the parameters to zero.  We approximate the second derivative by the 

centered second difference matrix L, 

    

  

  

L=
1

(Δx)2

1 −2 1
1 −2 1


1 −2 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,  (4.3) 

 

where  Δx  is the spacing between transects. Thus Lm approximates the second derivative 

of the parameter vector m.  In coding, the equation Lm = 0  becomes   0= γLm+ε , where 

0 is an  (M −2)×1  column vector of 0s, ε is an  (M −2)×1  column vector of independent 

and identically distributed (iid) errors with zero mean and unit variance (i.e. the 

covariance matrix is the identity matrix), and γ  is the regularization parameter.  

Together the forward shoreline model equations and the roughness constraints 

are: 

 

 
  

d =Gm+η
0= γLm+ε

  (4.4)   

 

with  η ~ N(0,Cdd )  and  ε ~ N(0,I) .  It follows that the least squares solution to the 

augmented system of equations (4.4) is found (e.g. Hastie, Tibshirani, Friedman, 2009) 

by minimizing 

 

   (d−Gm)
T Cdd

−1(d−Gm)+γ 2mT LT Lm .  (4.5) 

 

 It can be seen that when γ = 0, the regularization terms disappear, leaving only the sum 

of squared residuals typically seen in least squares regression.  As γ approaches infinity, 
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the second derivative penalty term is given so much weight that the parameters are forced 

to be linear in the alongshore direction.     

Taking the differential of (4.5) and setting it to zero, we find that the model vector 

m that minimizes (4.5) for a given γ is 

 

   m̂= (GTCdd
−1G+γ 2LT L)−1GTCdd

−1d   (4.6) 

 

with estimated model covariance matrix (e.g., Menke, 2012) 

 

 
  
Ĉm = GTCdd

−1G+γ 2LT L( )−1 .  (4.7) 

 

The vector of fitted values is then  

 

   d̂ = Hd   (4.8) 

 

where 

 

   H =G(GTCdd
−1G+γ 2LT L)−1GTCdd

−1   (4.9) 

 

is the data resolution matrix, also known as the “hat” matrix.   

Future shoreline location is predicted by extrapolating from the model whose 

parameters we have just estimated.  For future time t f , and location xi, let  qxi = qxi (t f )  

be an  M×1 column vector, which we refer to as the prediction kernel.  The predicted 

position of the shoreline at location xi and future time t f  is then    

  

  ŷ(xi ,t f )= qxi
T m̂   (4.10) 

 

with estimated variance 



	   66	  

 

   σ̂xi
2 = qxi

T Ĉmqxi .  (4.11) 

 

A   100(1−ε)%  confidence interval for ŷ  is given by 

 

   ŷ(xi ,t f )= qxi
T m̂± z1−ε/2σ̂xi   (4.12) 

 

in which   z1−ε/2  is the value of the standard normal distribution with associated cumulative 

distribution   1−ε / 2 .  When the data variance is estimated, Student’s t-distribution is 

used to estimate confidence intervals for parameters.  Here we assume a known variance 

estimated as in Romine et al. (2009), so the posterior distribution is normal. 

 Although errors are assumed a priori for each data value, we do estimate the 

correlations between these errors as in Chapter 3.  Our procedure for estimating error 

correlations is given in Appendix A.  Correlations appear in an  N×N  matrix called the 

covariance structure matrix Ccorr .  The structure matrix is then scaled by the a priori error 

estimates to obtain the data covariance matrix as 

 

  Cdd =W 1/2CcorrW
1/2 ,  (4.13) 

 

where W 1/2  is the diagonal matrix containing the a priori error estimates,  

 

 W
1/2 = diag( σ 1, σ 2,..., σ N ) .       (4.14) 

 

Due to the large time intervals between surveys (~10 years), data are not 

considered correlated in time.  However, data correlation in the alongshore direction is 

present because of the small spacing (20 meters) between transects.  Violation of 

assumption of data independence “can cause dramatic differences in the inferences which 

may be legitimately drawn from a set of observations, Box (1954), Zellner and Tiao, 

(1964)” (from Box and Tiao, 1973).  Anderson and Frazer (in review) confirm that 
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different assumptions about data independence caused differences in parameter estimates 

and their uncertainties in the shoreline problem.   

 

4.3.2 Selecting the Regularization Parameter 

We take a Bayesian approach to model selection, and determine the appropriate 

regularization parameter by means of the BIC given in Appendix B.  Alternative model 

selection techniques are deferred to the Discussion section.  The BIC is a statistic that is a 

measure of posterior model probability (see Appendix B).  As with other information 

criteria, the lower the BIC, the better the model. We cannot minimize the BIC 

analytically, so we find the minimum by searching over a range of regularization 

parameters, calculating the BIC statistic for each parameter value.  In order to use the 

spline method for comparison we also give an analogous BIC for that method; the BIC 

for spline selection is a simplification of the one for regularization. The residual sum of 

squares,  

 

  RSS= (d−Gm̂)T Cdd
−1(d−Gm̂)  

 

appears in both BIC equations.  For selecting the optimal number of basis functions in the 

spline method we use 

 

 
 
BIC1 =RSS+ ln Cm

−1 .  (4.15) 

 

Here,    denotes the matrix determinant and Cm is the model covariance matrix (Eqn. 

4.7).  For selecting the optimal regularization parameters we use 

 

   BIC2 =BIC1 +γr
2r̂T LT L r̂+γb

2b̂T LT L b̂−2(M / 2−2)ln(γrγb ) , (4.16) 
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in which L is the second derivative operator (Eqn. 4.3) with M / 2 − 2  rows, γ r  is the 

regularization parameter for rate, γ b  is the regularization parameter for intercept, and M 

is the length of the parameter vector m = [rT , bT ]T .  For the purposes of model selection,  

the covariance matrix Cdd is assumed constant; it is possible to compare models with 

different Cdd and L, but additional terms are required (see Appendix B). Figure 4.6a 

shows the ΔBIC scores, the BIC score relative to the lowest (best) score, for all pairs of 

regularization parameters tested.  The model with the lowest BIC score has a rate 

regularization parameter of 3.2 × 105 and an intercept regularization parameter of 9.0 × 

102.  

As the numerical values of the regularization parameters have no intuitive value it 

is desirable, though not strictly necessary, to estimate the effective number of model 

parameters associated with each regularization parameter.  In regression methodology, 

this number is called the regression degrees of freedom.  For basis function methods, this 

number is simply the number of basis functions, i.e., the number of components in the 

parameter vector m.  For regularization, the length of the parameter vector is fixed at the 

number of transects, but as the regularization parameter increases in value, the effective 

number of parameters declines.  The regression degrees of freedom  dfγ  is defined as the 

trace of the data resolution matrix (hat matrix) given in Eqn. 4.9 (e.g., Hastie, Tibshirani, 

and Friedman, 2009), or  

 

   dfγ = trace(H ) .  (4.16) 

 

To see why the trace of the hat matrix is an intuitively reasonable measure of 

effective number of parameters, first note that the trace of the hat matrix is also the trace 

of the model resolution matrix, G#G , where G#  is the generalized inverse matrix on the 

right hand side of equation (4.6).  Now consider a simple regression system for which 

G#G  is the identity matrix; in that system, the regression degrees of freedom is clearly 

the number of parameters.  Finally, consider a system in which G#G  is a [1/4 1/2 1/4] 

smoothing matrix, which has the value 1/2 for each diagonal entry.  The effective number  
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Figure 4.6  (a) ΔBIC values for regularization models shown plotted against (a) the 
squared regularization parameters and (b) regression degrees of freedom.  In (c) the ΔBIC 
values for the B-spline models are plotted against the number of splines used for intercept 
and rate.   
 

of parameters for this system is the actual number of parameters divided by 2, consistent 

with what one would expect from averaging two parameters into one.  Figure 4.6b shows 
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the ΔBIC values from regularization models as in Figure 4.6a, but plotted against 

corresponding regression degrees of freedom for rate and intercept parameters.  The 

regularization model with the lowest BIC score for Kailua Beach had roughly six (5.5) 

degrees of freedom for rate parameters and 89 degrees of freedom for intercept 

parameters.  This agrees well with the most parsimonious spline model (Figure 4.6c), 

which had six rate basis functions and 82 intercept basis functions.   

 

4.4 Kailua Beach Results 

We find that Kailua Beach is generally accreting, with an overall long-term rate of 

0.36 m yr-1 (± 0.06 m yr-1 standard deviation).  There is general agreement, as shown in 

Figure 4.7a, among the shoreline change rates calculated by the three methods of analysis 

that we tested.  Maximum accretion rates for each of the three methods are between 0.61  

 

 
Figure 4.7  Shoreline change rates (a) and intercepts (b) calculated via three methods: 1) 
regularization, 2) B-spline basis function, and 3) single transect are shown surrounded by 
their 95% confidence bands.  The confidence intervals for the spline method are similar 
in size to those for regularized-ST. 
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Table 4.2  For each method, the number of parameters Np or regression degrees of 
freedom df are given for rate and intercept.  For the regularization method, the square of 
the regularization parameter γ is given in brackets.  Minimum and maximum rates 
calculated by the different methods are given along with corresponding transect locations 
in brackets.  The total change in area estimated by each model over years 1928-2005 are 
denoted by ΔArea.  The overall bias in predicted change shows that both the 
regularization and spline models imposed biases toward net accretion, but the biases are 
not significant given the uncertainty in ΔArea.      
 

 ST Regularized-ST Spline 
Nprate / dfrate [γ2

rate] 204 5.5  [1.1 × 109] 6 
Npint / dfint [γ2

int] 204 89  [8.0 × 105] 82 
Max rate (m/yr) [transect] 0.61 [69] 0.72 [84] 0.66 [105] 
Min rate (m/yr) [transect] -0.10 [178] 0.09 [190] -0.05 [183] 

ΔArea ± std (m2) 124,459  
(± 44,649) 

126,899 
(± 35,852) 

124,785  
(± 37,440) 

Bias (m2) -- 2440 325 
Bias/Area -- 0.0026 0.020 

 

and 0.72 m yr-1 (Table 4.2), and are located near the center of the beach.  Romine et al. 

(2009) analyzed Kailua Beach data using polynomial basis functions with similar results.  

This is consistent with the occurrence of seaward moving vegetated dunes that have 

formed on the ocean side of many coastal properties.  

The regularized-ST rates are the smoothest alongshore.  Because of this, the 

regularized-ST method is the only one whose long-term rates do not indicate erosion at 

Kailua Beach Park, located at the south end of the study area, from the Kaelepulu Stream 

to the Kailua boat ramp (transects 170-203).  However, the 95% confidence intervals for 

these rates indicate the possibility of long-term erosion in this area.  Erosion rates at the 

beach park were found to be minimal by the spline and ST methods, as illustrated by 

seventy-year model predictions (Figure 4.8).  Short-term erosion since 2000 has occurred 

at Kailua Beach Park where trees have been undermined, leaving a scarp in the shorefront 

dune.  Historic shorelines appear to be highly variable in this portion of the beach.  

Evidence of grading and redistribution of sediment in the area can be seen in past aerial  
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Figure 4.8  Seventy-year shoreline prediction for ST (cyan), spline (yellow), and 
regularized-ST (black).  Ninety-five percent confidence bands are shown for the 
regularized-ST.  The most recent (2005) shoreline (low water mark) is shown in dark 
blue for reference.   
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photographs.  Recent attempts have been made to mitigate erosion at the park by placing 

sand, collected from Kaelepulu Stream mouth, onto the beach face fronting the park.   

The maximum accretion rates for the three methods that we tested are all located 

within a stretch of shoreline (transects 69, 84, and 105) adjacent to a broad sand field at 

the head of a winding, and roughly shore-normal sand channel.  Our analyses indicate 

that sediment is accumulating mostly near the head of the sand channel, but they do not 

tell us the alongshore direction of net sediment movement.   

Noda (1989) found that Kailua Beach does not receive significant sand influx 

from neighboring shorelines because it is bounded by basalt and limestone.  Harney and 

Fletcher (2003) found that less than 2% of the sediment that seasonally moves on and off 

of Kailua Beach is from modern sand production.  Since accretion cannot be accounted 

for by new sediment production from the reef, Norcross, Fletcher, and Merrifield (2002) 

suggest that the source of accretion is found in offshore sand deposits.  With the zone of 

maximum accretion found to be close to the sand channel, it is possible that offshore sand 

travels landward via the sand channel, and is deposited onto Kailua beach.  Richmond et 

al. (2002) and Cacchione et al. (2002) documented onshore sediment transport within the 

sand channel during weak to moderate trade wind conditions; and offshore transport with 

stronger trade winds.  They were unable to identify net annual or seasonal transport.  

Norcross, Fletcher, and Merrifield (2002) also found high shoreline variability in the  

alongshore direction which they propose is the result of seasonal wind and wave climates 

causing sand to move in alternating directions along the beach.   

 

4.4.1 Method Comparison for Kailua Beach 

 Of the three modeling techniques that we tested, rates calculated by the single 

transect method vary the most, as expected, while the regularized rates and spline rates 

both have a significantly smoother, long wavelength signal alongshore (Figure 4.7).  The 

most parsimonious spline model was found to have six basis functions for representing 

rates alongshore, consistent with the roughly six regression degrees of freedom for rates 

from the most parsimonious regularization model. This is reflected in the similar 

“smoothness” of the modeled rates alongshore (Figure 4.7a).  However, the two methods 
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differ in the shape that the rates follow alongshore, especially toward the south end of the 

beach.  In the spline model, each spline basis function (B-spline) has a prescribed shape 

that is scaled by a coefficient value.  Figure 4.9 shows the six B-splines (not scaled) used  

                          
Figure 4.9  The six cubic B-splines (alongshore basis functions) used to represent rate 
parameters alongshore in the spline model.   
 

in representing rates.  The shape of each B-spline influences the final shape of the spline, 

and it can be seen that the B-splines near the ends are narrower than those toward the 

center.  This has a noticeable effect on the final model when only a few B-splines are 

used, as in the Kailua Beach rates.  The regularized rates, on the other hand, are not 

confined to any particular alongshore shape, but they are constrained to be smooth by 

constraining their second derivatives. 

 The intercept parameters (Figure 4.7b), which represent mean shoreline positions 

relative to the baseline, are better resolved in the alongshore direction, than are rates.  

Some of these fluctuations around the baseline can be linked to details in reef topography 

near the shoreline.  For example, between transects 120 and 135, intercept values follow 
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a sinuous pattern which mimics the shape of the landward extent of the offshore reef 

(Figure 4.4 inset).  Other deviations from the baseline may be due to persistent physical 

conditions in combination with reef topography that are not apparent in aerial photos, or 

simply due to noise inherent in the data.  Given the large number of parameters allowed 

by the BIC in determining intercepts alongshore, reducing intercept parameters in the 

alongshore direction may provide only a small benefit as opposed to calculating an 

intercept at each transect.  Anderson and Frazer (in review) found the same 

disproportionally high number of intercept parameters compared to rate parameters using 

B-splines when they analyzed shoreline data from Assateague Island and Ocean City, 

Maryland.  This suggests that calculating the mean shoreline position at each transect and 

using this as a new baseline, as done by Frazer, Genz, and Fletcher (2009), simplifies the 

modeling process without greatly compromising model parsimony.    

If both the regularization and spline models are permitted to have the maximum 

number of parameters, both will approach the ST model.  Thus, we can use the difference 

between parsimonious shoreline model estimates and ST estimates as an indicator of the 

bias that has been traded for model simplicity.  For each method, we hind-cast shoreline 

positions and calculate the total change in area over the 77-year time span of our data set 

(1928-2005).  The formula for total area change is 

 

 
ΔA= (Δx)(yi1− yiJ )

i=0

I−1

∑ , 

 

where Δx is the distance between transects (20 meters).  The total area added to Kailua 

Beach between 1928 and 2005 is estimated at 1.24 (± 0.46) × 105 m2, 1.25 (± 0.37) × 105 

m2, and 1.27 (± 0.36) × 105 m2 by the ST, spline, and regularization models, respectively.  

The bias in overall area for the spline method is 325 m2; about 10 times smaller than the 

2440 m2 bias for the regularization method.  

Upon inspection of the estimated rate parameters, the bias in the regularization 

model appears to be primarily due to rates showing more accretion at the southern end of 

the beach.  Additionally, both of the bias values are significantly less than the standard 
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errors for each calculated total area, which were roughly 36,000 m2.  We do not believe 

that the positive bias indicates an overall accretionary bias in regularization methodology 

over all datasets, but rather it reflects the bias over a specific portion of shoreline that is 

known to be highly variable.  Application of the regularization method to many datasets 

is needed to better assess bias. 

Biases in intercept and rate both contribute to the resulting bias in the predicted 

shoreline location; but the influence of rate bias on a future shoreline location is 

significantly greater than that of the intercept.  This is because change in shoreline 

position over time does not depend on the intercept parameter.  

 

4.5 Discussion 

 

4.5.1 Model Selection 

Model selection is a very active area of research in which consensus is rare. 

Recent reviews are given by Claeskens and Hjort (2008), and Ando (2010).  For selecting 

regularization parameters we tested the L-curve method (Aster, Borchers, and Thurber, 

2012; Hansen and O’Leary, 1993), and well-known information criteria such as AIC 

(Burnham and Anderson, 2002).  We also investigated the generalized cross-validation 

method (Golub, Heath, and Wahba, 1979; Wahba, 1990).  None of them were entirely 

satisfactory when applied to the problem of this paper.   

In the L-curve technique for selecting a regularization parameter one plots the 

misfit RSS against the roughness Lm 2  on a log-log scale (Aster, Borchers and Thurber 

2012).  This is done for a range of regularization parameters.  The curve usually has an L-

shape, and one selects the value of γ corresponding to the “corner” of this curve nearest 

the origin.  We found the position of the corner was not always easily identifiable.  

The generalized cross-validation equation (GCV) (Golub, Heath, and Wahba, 

1979; Wahba, 1990) is also problematic because it depends on the assumption that noise 

is uncorrelated.  Altman (1990) and Diggle and Hutchinson (1989) found that GCV 

performed poorly on data with correlated errors.      
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We find derivations of the AIC and its variants to be opaque (although we have 

used these variants in the past), and it is not clear to us how to apply AIC fairly to both 

the spline method and the regularization method.  Also, most derivations of AIC appear 

to assume uncorrelated data errors, sometimes referred to as identically distributed 

independent (iid) data, which is clearly not the case for our problem. Accordingly, for 

this paper we derived our own information criteria from the first-principle Bayesian 

formalism of likelihood and prior (Appendix B). Our BIC1 is a version of the Schwartz 

BIC (Schwartz 1978), but without the assumption of iid data (Robert, 2007, p. 352). 

Cross-validation splits the data, often into multiple groups, and uses one portion 

of the data as the validation data and the remaining portions as training data (e.g., Hastie, 

Tibshirani, and Friedman, 2009).  A measure of model error is calculated based on the 

discrepancy between model estimates from the validation data and the training data.  

Cross-validation will select the model with the smallest error.  This is a nonparametric 

method, so there are no assumptions about the distribution of data errors.  However, it 

can be computer-intensive (hours on a desktop workstation) depending on the way data 

are split into groups.  If computing power is not an issue, cross-validation appears to 

provide an adequate method for shoreline model selection, an alternative to the BIC 

formulas we use.  

 

4.5.2 Practical Issues in Applying Different Methods 

The regularization method and basis function methods have some interesting 

parallels, as well as notable differences in application; Table 4.3 summarizes the 

differences in the methods.  The basis functions that have been previously applied to 

shoreline studies are Legendre polynomials, trigonometric functions (sinusoids), principal 

components (eigenbeaches), and cubic B-splines.  Continuous uncomplicated sandy 

shorelines can be nicely represented using any of the basis functions or regularization.  

Shorelines reflecting uneven variation in rates alongshore, typically due to complex 

offshore topography, complicate the application of parsimonious methods.  Pacific island 

shorelines, especially, tend to be naturally complex due to the intricate fringing reefs that 
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surround most of them.  Shorelines everywhere are susceptible to construction of jetties, 

piers, and other features that alter long-term shoreline trends on small spatial scales.     

Frazer, Genz, and Fletcher (2009) illustrate how both Legendre polynomials and 

trigonometric functions cause alongshore ringing in calculated shoreline change rates due 

to an alongshore discontinuity in actual trends.  The alongshore discontinuity in their 

example was a point of rapid accretion that caused rates to appear like a delta function 

alongshore.  This could also happen on a shoreline at the location of a pier, jetty, or small 

rocky outcrop.  Principal components regression (eigenbeaches) easily accommodates 

alongshore discontinuities, but as data are used in calculating the principal components, 

they are contaminated by noise and, traditional parametric methods of estimating 

uncertainty are inappropriate.  A nonparametric method, such as the bootstrap should be 

used to estimate model parameter uncertainty.   

Alongshore discontinuities can be accommodated in a straightforward way with 

cubic B-splines, but extra care must be taken; because if a discontinuity is allowed, 

additional knots must be placed at the discontinuity (deBoor 1978): one extra knot for a 

discontinuity in the second derivative, two extra knots for a discontinuity in the first 

derivative and three extra knots for a discontinuity in rate.  In regularized-ST, a 

discontinuity in the alongshore derivative of rate is allowed by removing a single row of 

the second derivative matrix L; to allow a jump in rate, the rows corresponding to the 

transects that bracket the discontinuity are removed. The BIC1 formula for use with 

splines remains the same for models with and without discontinuities.  However, if one 

wishes to compare models with and without discontinuities, extra terms corresponding to 

the pseudo-determinant of L must be retained in BIC2 (see Appendix B).  

Although B-splines and regularization both provide flexibility in the amount of 

variation allowed in parameters alongshore, we find that regularization is easier to apply.  

Selecting the most parsimonious model with B-splines depends on equal knot spacing, so 

adding extra knots at a particular alongshore position disrupts the knot spacing on either 

side.  Model complexity in regularization relies only on the regularization parameters, so 

variations in alongshore smoothing have no effect on those parameter.  
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Table 4.3  The effects of using different basis functions on model estimates.   
*Eigenbeaches basis functions are not independent of the data; additional care is required 
for selecting a parsimonious number of basis functions (e.g., cross-validation)  
**Requires modifying second derivative matrix L to circumvent Gibbs effect 
***Requires careful knot placement to circumvent Gibbs effect 
Cdd corr. – covariance matrix must account for spatially correlated errors 
Nonparametric – requires nonparametric estimation method (e.g., bootstrap) 
 

Method Parsimonious Defined 
Everywhere? 

Gibbs 
Effect 

Error Est. 
Issues 

ST N N N Independent 

Regularized ST Y N N** Cdd corr. 

B
as

is
 F

un
ct

io
ns

 

Spline 
(B-splines) Y Y N*** Cdd corr. 

Polynomial 
(Legendre, 

Trigonometric) 
Y Y Y Cdd corr. 

Eigenbeaches 
(Principal 

components) 
Y* 

 N N Cdd corr.; 
Nonparametric 

 
 

Another consideration when analyzing shoreline data is the extent of the region 

from which shorelines are included in a single regression analysis.  Using Legendre 

functions or trigonometric functions requires sections of the beach that are discontinuous 

alongshore to be analyzed separately because these basis functions are ineffective in 

representing alongshore discontinuities.  If those sections are located in separate littoral 

cells, separate analysis is probably desirable anyway because the two beaches may have 

different natural smoothing in the alongshore direction.  Conversely, if the beaches are 

located in the same littoral cell and separated by a feature such as a river mouth, or if the 

analysis is focused on identifying a dominant degree of smoothing or aperture of 

variation over a large region then simultaneous regression of all data is beneficial.  In 

those cases, we believe that B-splines or regularization are the most accurate, although 

principal component regression may also provide interesting information about the 

region, depending on the focus of the analysis.  
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As mentioned above in the introduction, our focus is on methods that provide 

information about long-term trends in shoreline change for long-term planning purposes.  

An obvious, but often overlooked, aspect of shoreline change modeling is the practicality 

of applying the results of scientific studies to planning initiatives.  Although the efficacy 

of scientific results adopted in non-scientific arenas is not the focus of this paper, it is 

worth mentioning that the simplicity of a model can impact its usability.  When shoreline 

change statistics are used to determine the setback for building structures, coastal 

decision-makers and coastal property owners naturally take great interest in how that 

setback is determined, especially given the relatively high market value of coastal 

properties.  The continuing wide application of the single transect method is therefore not 

surprising, because it is relatively easy to understand and explain, while the concept of 

basis function expansions can be difficult to explain.  Its connection with ST may thus 

make regularized-ST the most palatable method for planning applications. 

 

4.5.3 Unknown Variance 

For some shoreline data sets the data errors are unknown or uncertain.  In these 

situations, a best-estimate scaling factor is typically used to estimate the amplitude of 

predicted error, based on the data residuals.  For example, Anderson and Frazer (in 

review) modeled the data covariance matrix as    Cd =α Cd where α is the best-estimate 

constant of proportionality that scales  
Cd , the estimated covariance structure matrix, 

weighted by a priori uncertainty estimates (the covariance matrix used in this paper).  For 

unregularized models, such as the spline model, the best estimate of α is 

 

  α̂= (d−Gm̂)T Ĉdd
−1(d−Gm̂) / (N−df ) , 

 

where df is the regression degrees of freedom (Eqn. 4.16).  It is possible to estimate α 

when using regularization, but the calculation is not straightforward because the best-fit 

model parameters depend on α, and one must iterate to find both the value of α and the 

value of the parameters. 
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We tested this procedure on our Kailua Beach data, and found that the α was 

always less than, but close to, one, regardless of how much smoothing was imposed on 

the model.  This indicates that the estimated a priori errors slightly exceed the data errors 

estimated from the data residuals, and so it is conservative to use the a priori errors.       
 

4.6 Conclusion 

 A regularization technique for modeling long-term shoreline change in a 

parsimonious manner is presented and compared with the ST and B-spline methods.  The 

technique is demonstrated on historic shoreline data from Kailua, Hawaii.  The analysis 

of Kailua Beach data indicates long-term accretion of Kailua Bay focused near the 

opening of a sand-filled channel toward the center of the beach, consistent with previous 

studies of the area (Noda, 1989; Norcross, Fletcher, and Merrifield, 2002; Romine et al., 

2009).  There is general agreement between the three methods tested.  Both the spline and 

regularized-ST methods (parsimony methods) produce shoreline change rates that are 

smooth alongshore, compared to ST.  The parsimony methods both used about six 

parameters to characterize the variation in rates alongshore.  On the other hand, intercept 

parameters estimated by the parsimony methods showed much higher alongshore 

variation, compared to rates, and closely resembled those calculated by ST.  This 

phenomenon, also seen in data analysis of Assateague Island and Ocean City, MD, 

(Anderson and Frazer, in review) suggests that there is little benefit in attempting to 

reduce the number of intercept parameters.  While the variation in rates and intercepts 

alongshore in the spline model were influenced by the shape of individual basis 

functions, the regularized rates and intercepts appeared to “trim the hills and fill the 

valleys” as a result of the smoothing constraints.  

 Two Bayesian Information Criteria are presented for selecting the most 

parsimonious model: one for selecting the appropriate regularization parameters in 

regularized-ST, the other for selecting the suitable number of basis functions for basis 

function methods.  The BIC provides an objective model selection criterion for data with 

correlated noise.   
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 In applying basis function and regularization methods, spline basis functions (B-

splines), principal component regression, and regularization methodologies provide the 

most flexibility in handling alongshore discontinuities often seen in shoreline behavior.  

Principal component regression was not favored because its basis functions include noise 

from the data and it requires nonparametric methods of estimating uncertainty. For 

shorelines with discontinuities, the model selection process for regularized-ST is easier to 

code than the B-spline method.  Finally, the way that regularization imparts varying 

degrees of smoothness to alongshore rates may be easier to explain to clients than the 

action of basis functions, making it a practical choice for use in long-term planning.         

 

4.7 Appendix A.  Estimating Data Correlation 

The covariance structure matrix Ccorr  is estimated by an iterative process 

following the procedure presented Chapter Three.  We start by setting Ccorr  to the 

identity matrix.  We weight Ccorr  by the data errors (Eqn. 4.14) to form the first 

covariance matrix.  The covariance matrix is then used in the least squares procedure to 

find the model parameter vector.  We subsequently calculate the vector of fitted data 

(Eqn. 4.8).  The fitted data is used to produce residuals; defined as   ρij = d̂ij−dij , the 

difference between the fitted data and the observed data.  Subscripts i and j are 

alongshore location indices and time indices, respectively.  We estimate the 

autocorrelation function of the residuals and use it to construct the correlation matrix 

Ccorr  using the following equation 

 

 
  
cii ' jj ' = ρi, j

2
i∑j∑( )

−1
ρk , jρk+ i '−i , j

k=1

I−i '−i

∑
j=1

J

∑ ⋅δ jj ' ,  (4.A1) 

 

in which i and i’ are location indices, j and j’ are time indices, and  δ jj '  is the Kronecker 

delta used to enforce our assumption that data are not correlated in time.  Matrix entries 

are damped with the taper function  
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T i '− i( )= cosl

π i '− i
2(I−1)

 (4.A2) 

 

to ensure that the matrix is positive definite.  The rate of decay for this function is 

controlled by l.  We tried l = 3,6, and 10 for selected combinations of regularization 

parameters and found that they all produced nearly identical parameter vectors.  We used 

l = 6, which causes the correlation to go nearly to zero by about lag 3/4 I.  In all cases, the 

correlation matrix has ones along the diagonal and entries decline in size with distance 

from the diagonal.   

We repeat the process, beginning with weighting the new correlation matrix by 

the data errors to produce the next covariance matrix estimate.  This process is repeated 

until correlation matrices from successive iterations are sufficiently close.  Our stopping 

criterion is 
 
Ccorr
(u ) −Ccorr

(u−1)
2

<10−3 Ccorr
(u−1)

2
 where u is the number of iterations and 

 
 2  

denotes the matrix 2-norm, also called the spectral norm.  Depending on the 

regularization parameter, two to three iterations are required for convergence. 

The correlation matrix estimated in the procedure explained above depends on the 

regularization parameters.  To select the particular correlation matrix to use in our study, 

we estimate correlation matrices for a range of regularization parameters that give results 

similar to ST at the lower limit and alongshore-linear behavior at the upper limit.  We 

then use the BIC, as explained in the main text and Appendix B, to select the appropriate 

pair of regularization parameters (one each for rate, intercept).  The correlation matrix 

that is generated with the selected regularization parameters is used in the final analysis.  

 

4.8 Appendix B.  Bayesian Information Criteria 

We take a Bayesian approach to model selection, and determine the appropriate 

model by maximizing the posterior probability of a model given the data.  Our Bayesian 

Information Criterion (BIC) is defined as 

 

   BIC=−2 ln(p(ψ | y))   (4.B1) 
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where  p(ψ | y)  is the posterior probability of model  ψ  given data vector y .  Thus, the 

model with the maximum posterior probability is the one whose BIC score is the 

minimum of all candidate model scores.  

 To find the posterior probability, we begin with  

 

   p(ψ,m, y)= p(ψ,m, y) ,  (4.B2) 

 

the joint distribution of  ψ , y, and parameter vector m.  Applying Bayes’ Theorem to both 

sides gives 

 

   p(ψ,m | y)p(y)= p(y |ψ,m)p(ψ,m)   (4.B3) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	    = p(y |ψ,m)p(m |ψ)p(ψ) .	  	  

 

Integration of (4.B3) over the parameter vector m and division by p(y)  gives 

 

 
  
p(ψ | y)= p(y)−1 p(ψ) p(y |ψ,m)p(m |ψ)∫ dm .  (4.B4) 

 

We assume p(y)  is constant over all models, so (4.B4) becomes 

 

 
  
p(ψ | y)∝ p(ψ) p(y |ψ,m)p(m |ψ)∫ dm .  (4.B5) 

  

Two versions of the BIC are presented here: BIC1 for spline models, and BIC2 for 

regularized-ST. (More accurately, BIC1 is applicable to any basis function model that is 

not regularized, and BIC2 is applicable to any basis function model that is regularized; 

recall that ST can be regarded as a basis function model with delta-like basis functions.) 

As mentioned above, the residual sum of squares RSS is the same in both ICs: 

 

  RSS= (y−Gm̂)T Cdd
−1(y−Gm̂) , (4.B6) 
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in which y is the data vector, G is the system matrix, m̂  is the maximum likelihood 

estimate of the model parameter vector m, and Cdd is the data covariance matrix.  

 

4.8.1 BIC1:  Basis Function Models  

When using basis functions, the model system matrix G has M basis functions, 

one in each column.  We identify a model by its system matrix G, so we substitute G for 

 ψ  in (4.B5).  The posterior probability of G, given data y is then 

  

 
 
p(G | y)∝ p(G) p(y |m,G) p(m |G)dm∫ .  (4.B7) 

 

Here, p(y |m,G)  is the likelihood function by which y is normally distributed with mean 

Gm and covariance Cdd: 

 

 
  
p(y |m,G)=

exp −φ(m)( )
(2π)N /2 Cdd

1/2   (4.B7) 

 
where 
 
   φ(m)= 2−1(y−Gm)T Cdd

−1(y−Gm) .  (4.B8) 

 

Expanding  φ(m)  about m̂  gives  

 

   φ(m)=φ(m̂)+2
−1(m− m̂)T Cmm

−1 (m− m̂)   (4.B9) 

  

where  Cmm = (GTCdd
−1G)−1  and  m̂=CmmG

TCdd
−1y .  We choose a parameter prior p(m |G)  

that is independent of G and define it formally as the limit

  
p(m |G)= lim

σ0→∞
exp(−(2σ0

2 )−1mTm) .  We choose a model prior   p(G)= (2π)
−K /2 , where 

K is the number of columns in G.  Both priors are improper, being chosen for 
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convenience and for consistency with BIC2 to be derived below.  The posterior 

probability can now be written as 

 

 
  
p(G | y)∝

exp −φ(m̂)( )
(2π)K /2 (2π)N /2 Cdd

1/2 exp −2−1(m− m̂)T Cmm
−1 (m− m̂)( )dm∫ .   (4.B10) 

 

The integral in (4.B10) can be simplified by noticing that 

 

 
  

exp −2−1(m− m̂)T Cmm
−1 (m− m̂)( )

(2π)K /2 Cmm
1/2 dm∫ =1   (4.B11) 

  

because 
  
(2π)−N /2 Cmm

−1/2 exp −2−1(m− m̂)T Cmm
−1 (m− m̂)( )  is the normal distribution of m 

with mean m̂  and covariance Cmm , and the integral of a distribution is equal to one.  

Equation (4.B10) can now be written as 

 

 
  
p(G | y)∝

exp −2−1(y−Gm̂)T Cdd
−1(y−Gm̂)( )

(2π)N /2 Cdd
1/2 Cmm

−1/2   (4.B12) 

   

The BIC1 is then  

 

 

 

BIC1 =−2 ln p(G | y)

       = (y−Gm̂)T Cdd
−1(y−Gm̂)+ ln Cmm

−1 + ln Cdd + constant

       = RSS+ ln Cmm
−1 + ln Cdd + constant

.   (4.B13) 

 

Our procedure assumes that the data covariance matrix is constant, so after discarding 

constant terms, the BIC1 becomes 

 

 
 
BIC1 =RSS+ ln Cmm

−1 . (4.B14) 
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When the data covariance must be estimated from the data, instead of being given a 

priori, we retain the term ln Cdd .   

 

4.8.2 BIC2:  Regularization Models 

We first treat the case of a single regularization parameter γ.  The family of 

models is then most conveniently indexed by γ2; substituting γ2 for  ψ  in (4.B5) gives the 

posterior probability of γ2 given data y:  

 

 
  
p(γ 2 | y)∝ p(γ 2 ) p(y |m) p(m | γ 2 )dm∫ .    (4.B15) 

 

Here the likelihood  p(y | γ
2,m)  may be written p(y |m)  because γ does not appear in the 

likelihood equation.  As in BIC1, p(y |m)  is the likelihood by which y is normally 

distributed with mean Gm and covariance Cdd: 

 

  
p(y |m)=

exp −2−1(d−Gm)T Cdd
−1(d−Gm)( )

(2π)N /2 Cdd
1/2 .	  	  

	  
The parameter prior p(m | γ

2 )  is the distribution that constrains the model to be smooth.  

It is a degenerate normal distribution (e.g., Anderson 1958, Chapter 2)  

 

 
  
p(m | γ 2 )= γ

K (L ) exp(−2−1γ 2mT LT Lm)
(2π)K (L )/2 λi +∏

  (4.B16) 

   

in which L is a roughening operator, usually the second derivative matrix (equation 4.3); 

K(L)  is the rank of L, i.e., the number of nonzero singular values of L, which is M − 2  if 

L is the second derivative operator (recall that M  is the length of the parameter vector); 

and λi +∏  is the product of those nonzero singular values.  Then,  
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p(y |m) p(m | γ 2 )=

γK (L ) exp −φ(m,γ 2 )( )
(2π) N+K (L )( )/2 Cdd

1/2 λi +∏
  (4.B17) 

  

where  

 

   φ(m,γ
2 )= 2−1(y−Gm)T Cdd

−1(y−Gm)+2−1γ 2mT LT Lm .  (4.B18) 

 

Expanding  φ(m,γ
2 )  about m̂  gives 

 

   φ(m,γ
2 )=φ(m̂,γ)+2−1(m− m̂)T Cmm

−1 (m− m̂)   (4.B19) 

 

where m̂  and Cmm  are defined in equations (4.6) and (4.7) respectively.  Then, the 

integral of (4.B17) over m is  

 

  

p(y |m) p(m | γ 2 )dm∫ =
γK (L ) exp −φ(m̂,γ)( )

(2π) N+K (L )( )/2 Cdd
1/2 λi +∏

exp −2−1(m− m̂)T Cmm
−1 (m− m̂)( )∫ dm

                                     

                                     =
γK (L ) exp −φ(m̂,γ)( ) Cmm

1/2

(2π)(N+2)/2 Cdd
1/2 λi +∏

 

by noticing that the integral of a normal distribution over m is equal to one, as in (4.B11).   

Including the prior for  γ
2 ,   p(γ

2 )= γ−2 , the non-informative Jeffreys prior, the 

probability of  γ
2  given y can now be written as     

 

 
  
p(γ 2 | y)∝

γK (L )−2 exp −2−1(y−Gm)T Cdd
−1(y−Gm)−2−2γ 2mT LT Lm( ) Cmm

1/2

(2π)(N+2)/2 Cdd
1/2 λi +∏

. (4.B20) 

 

The BIC2 is then 
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BIC2 =−2 ln p(γ 2 | y)

= (y−Gm̂)T Cdd
−1(y−Gm̂)+γ 2m̂T LT Lm̂+ ln Cmm

−1 −2 K(L)−2( )ln(γ)

        + ln Cdd + λi +∑ + constant

= RSS+γ 2m̂T LT L m̂+ ln Cmm
−1 −2 K(L)−2( )ln(γ)

        + ln Cdd + λi +∑ + constant.
 

(4.B21) 

 

If we are comparing only models that have the same data covariance matrix Cdd and 

roughening operator L, the terms on the third (and fifth) line of (4.B21) do not change.  

Thus, after discarding constant terms, we have the BIC2 in the form 

 
 

  
BIC2 =RSS+γ 2m̂T LT L m̂+ ln Cmm

−1 −2 K(L)−2( )ln(γ) .  (4.B22) 

 

When the data covariance must be estimated from the data, instead of being given a 

priori, we would retain the term ln Cdd .  More important, if we are comparing models 

with different roughness operators, we must retain the term λi +∑ , the logarithm of the 

pseudo-determinant of L.  The roughness matrix will change, for example, if we choose 

not to penalize roughness over a particular alongshore interval, and therefore discard the 

rows corresponding to transects in that interval.  In general, the transect number of a row 

is the number of the column in which the value -2 appears. For example, in equation 4.3, 

the first row gives the roughness (second derivative) at transect 2, and the second row 

gives the roughness at transect 3. 

 

4.8.2.1 Two Regularization Parameters 

In our shoreline problem we smooth the rate and intercept parts of the model 

separately, so the prior p(m |γ 2 )  is replaced by p(r |γ r
2 )p(b |γ b

2 )  where each factor has 

the form (4.B16).  As rate and intercept parameters occur in pairs, the second derivative 

matrix is the same for both r and b, with rank K(L) = M / 2 − 2 . However, the derivation 



	   90	  

is clearer if we allow the two roughness operators to be distinct, Lr  and Lb , say. 

Proceeding as above gives 

 

 

  

BIC2 =−2 ln p(γr
2,γb

2 | y)

= RSS+ ln Cmm
−1 +γr

2 r̂T Lr
T Lr r̂−2 K(Lr )−2( )ln(γr )

  +γb
2 b̂T Lb

T Lb b̂−2 K(Lb )−2( )ln(γb )

  + ln Cdd + λi
(r )

+∑ + λi
(b)

+∑ + constant.

  (4.B23) 

 

In our problem, the roughness operators are the same and do not change, and Cdd  does 

not change, so discarding the last line of (4.B23) and collecting terms gives BIC2 as in 

equation (4.B22). 

 
  



	   91	  

 
 
 

Chapter 5 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 

 
In this dissertation, shoreline response to a storm was investigated and two new 

shoreline change methods were introduced.  In Chapter Two, analysis of Assateague 

Island data suggests that storm-induced shoreline change can be modeled as the sum of a 

transient component that is recovered in a few years and a component that persists until 

sediment is mobilized by a subsequent storm.  This suggests that long-term shoreline 

change may be coarsely modeled as the cumulative sum of persistent storm components.  

Since long-term datasets do not have the temporal resolution to model each storm, it is 

probably best model such data with a trend and transient storm component only.  

Transient-persistent modeling may be used to generate a rough estimate of long-term rate 

in short-term, temporally dense shoreline data containing a storm by taking the persistent 

component from the storm and dividing it by the expected time interval between storms.  

In Chapter Three, alongshore correlation in shoreline change prediction is 

addressed by using a linear combination of B-splines to represent spatial variations of 

model parameters.  In addition to model parsimony, proper treatment of correlated noise 

was investigated because differences in noise handling techniques affect mean parameter 

estimates, as well as estimated uncertainties.  Correlated noise was best addressed by 

including a full covariance matrix in the regression model, constructed iteratively from 

data residuals.  

In Chapter Four, a second order Tikhonov regularization technique for modeling 

long-term shoreline change in a parsimonious manner is presented and compared with the 

ST and B-spline methods.  There is general agreement between the three methods tested, 

but both the spline and regularized-ST methods (parsimony methods) produce shoreline 

change rates that are smooth alongshore, compared to ST.  On the other hand, intercept 

parameters estimated by the parsimony methods closely resembled those calculated by 

ST, suggesting that there is little benefit in attempting to reduce the number of intercept 
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parameters.  The regularized-ST and B-spline methods both provide flexibility in 

handling alongshore discontinuities often seen in shoreline behavior, but the regularized-

ST method may be a more practical choice for use in long-term planning because it is 

more straightforward to implement and easier to explain to clients. 

The work in this dissertation addresses some deficiencies in shoreline change 

modeling, yet there remains room for improving shoreline analysis and long-term 

prediction.  For example, an inherent limitation in applying long-term historical data 

trends as a means for indicating future shorelines is that it relies on an underlying 

assumption that shorelines will continue to behave the same way as they have in the past.  

This is not necessarily the case.  Climate-induced sea level rise is expected to alter 

historical rates of relative sea level change on a global scale, and future improvements of 

climate and sea level models may provide regionally specific estimates of sea level rise.  

A commonly used method for predicting potential shoreline recession due to increased 

sea level is the Bruun rule (Bruun, 1962, 1988).  Considerable controversy exists in the 

literature as to the efficacy of the Bruun rule (e.g., Thieler et al., 2000; Cooper et al., 

2004), so there is a need to understand how better to apply it to different coastal regimes.  

There is also scope for combining the Bruun rule with historical change rates, perhaps by 

using the probability calculus of Tarantola and Valette (1982)  

Another limitation of the simple cross-shore analysis methods presented here is 

that they give no indication of the direction that sediment is moving, as noted in the 

Kailua Beach study; they only identify a change in shoreline position in the cross-shore 

direction.  A natural progression in methodology will be to correlate historic shoreline 

data with physical drivers such as wave energy.  Miller and Dean (2004), Yates et al. 

(2003), and Davidson et al. (2013) begin this work by correlating wave and water level 

data to the distance of shorelines from an equilibrium position.  Identifying the 

equilibrium position is problematic in these methods, but it is a starting point for future 

research.  For example, the concept of relaxation to an equilibrium shoreline could also 

be extended to include alongshore relaxation in addition to time relaxation.  Dean (2002) 

discusses alongshore relaxation methods used in determining the feasibility of beach 
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nourishment projects.  These methods are mostly variations of the Pelnard-Considère 

(1956) diffusion equation.  

Future advances in shoreline detection and innovative methodologies will 

undoubtedly contribute to improved analyses. 
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