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Reflection seismology

One of the most important applications of seismology involves the probing of
Earth’s internal structure by examining energy reflected at steep incidence angles
from subsurface layers. This technique may loosely be termed reflection seismology
and has been used extensively by the mining and petroleum industries to study the
shallow crust, generally using portable instruments and artificial sources. However,
similar methods can be applied to the deeper Earth using recordings of earthquakes
or large explosions. Because reflected seismic waves are sensitive to sharp changes
in velocity or density, reflection seismology can often provide much greater lateral
and vertical resolution than can be obtained from study of direct seismic phases
such as P and S (analyses of these arrivals may be termed refraction seismology).
However, mapping of reflected phases into reflector depths requires knowledge
of the average background seismic velocity structure, to which typical reflection
seismic data are only weakly sensitive. Thus refraction experiments are a useful
complement to reflection experiments when independent constraints on the velocity
structure (e.g., from borehole logs) are unavailable.

Reflection seismic experiments are typically characterized by large numbers of
sources and receivers at closely spaced and regular intervals. Because the data
volume generally makes formal inversions too costly for routine processing, more
practical approximate methods have been widely developed to analyze the results.
Simple time versus distance plots of the data can produce crude images of the subsur-
face reflectors; these images become increasingly accurate as additional processing
steps are applied to the data.

Our discussion in this chapter will be limited to P-wave reflections, as the sources
and receivers in most reflection seismic experiments are designed to produce and
record P waves. Our focus will also mainly be concerned with the travel time
rather than the amplitude of seismic reflections. Although amplitudes are some-
times studied, historically amplitude information has assumed secondary impor-
tance in reflection processing. Indeed often amplitudes are self-scaled prior to
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plotting using automatic gain control (AGC) techniques. Finally, we will consider
a two-dimensional geometry, for which the sources, receivers, and reflectors are
assumed to lie within a vertical plane. Recently, an increasing number of reflection
surveys involve a grid of sources and receivers on the surface that are capable of
resolving three-dimensional Earth structure. Most of the concepts described in this
chapter, such as common midpoint stacking and migration, are readily generalized
to three dimensions, although the data volume and computational requirements are
much greater in this case.

Reflection seismology is a big topic, and only a brief outline can be presented
here. For additional details, the reader is referred to texts such as Yilmaz (1987),
Sheriff and Geldart (1995), and Claerbout (1976, 1985).

7.1 Zero-offset sections

Consider a collocated source and receiver at the surface above a horizontally layered
velocity structure (Fig. 7.1). The downward propagating P waves from the source
are reflected upward by each of the interfaces. The receiver will record a series of
pulses at times determined by the two-way P travel time between the surface and
the interfaces. If the velocity structure is known, these times can easily be converted
to depths.

Now imagine repeating this as the source and receiver are moved to a series
of closely spaced points along the surface. At each location, the receiver records
the reflected waves from the underlying structure. By plotting the results as a
function of time and distance, an image can be produced of the subsurface structure
(Fig. 7.2). For convenience in interpreting the results, these record sections are
plotted with downward increasing time (i.e., upside down compared with the plots

source & receiver

*

t

reflection seismogram

Figure 7.1 Seismic waves from a surface source are reflected by subsurface layers, producing a
seismogram with discrete pulses for each layer. In this example, the velocity contrasts at the
interfaces are assumed to be small enough that multiple reflections can be ignored.
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Figure 7.2 The structural cross-section on the left is imaged by an idealized zero-offset seismic
reflection profile on the right. Here we have assumed that velocity is approximately constant
throughout the model (except for thin reflecting layers) so that time and depth scale linearly.

in Chapter 4). Another convention, commonly used in reflection seismology, is to
darken the positive areas along the seismograms, increasing the visibility of the
reflected pulses.

If the large-scale P velocity is constant throughout the region of interest, then
time in this image scales linearly with depth and we can readily convert the verti-
cal axis to depth. If velocity increases with depth, a somewhat more complicated
transformation is necessary. Because the velocity structure is often not known very
accurately, most reflection seismic results are plotted as time sections, rather than
depth sections.

This example is termed a zero-offset section because there is assumed to be no
separation between the sources and receivers. More generally, reflection data are
recorded at a variety of source–receiver offsets, but the data are processed in order to
produce an equivalent zero-offset section that is easier to interpret than the original
data. In the idealized example shown in Figure 7.2, the zero-offset section provides
a clear, unbiased image of the reflectors. However, in practice there are several
factors that can hinder construction and interpretation of such a section:

1. Single records are often noisy and zero-offset data may be contaminated by near-source
reverberations. Improved results may be obtained by including different source–receiver
offsets to increase the number of data and then averaging or stacking the records to
increase the signal-to-noise ratio of the reflected pulses.

2. The layer spacing may be short compared to the source duration, producing overlap-
ping arrivals that make it difficult to distinguish the individual reflectors. This may
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be addressed through a process termed deconvolution, which involves removing the
properties of the source from the records, providing a general sharpening of the image.

3. Lateral variations in structure or dipping layers may result in energy being scattered away
from purely vertical ray paths. These arrivals can bias estimates of reflector locations
and depths. By summing along possible sources of scattered energy, it is possible to
correct the data for these effects; these techniques are termed migration and can result
in a large improvement in image quality.

4. Uncertainties in the overall velocity structure may prevent reliable conversion between
time and depth and hinder application of stacking and migration techniques. Thus it is
critical to obtain the most accurate velocity information possible; in cases where outside
knowledge of the velocities are unavailable, the velocities must be estimated directly
from the reflection data.

We now discuss each of these topics in more detail.

7.2 Common midpoint stacking

Consider a source recorded by a series of receivers at increasing distance. A pulse
reflected from a horizontal layer will arrive earliest for the zero-offset receiver, while
the arrivals at longer ranges will be delayed (Fig. 7.3). If the layer has thickness
h and a uniform P velocity of v, then the minimum travel time, t0, defined by the
two-way vertical ray path, is

t0 = 2h

v
. (7.1)

More generally, the travel time as a function of range, x, may be expressed as

t(x) = 2d

v
, (7.2)

where d is the length of each leg of the ray path within the layer. From the geometry,
we have

d2 = h2 + (x/2)2,

4d2 = 4h2 + x2.
(7.3)

Squaring (7.2) and substituting for 4d2, we may write

v2t2 = x2 + 4h2 (7.4)
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Figure 7.3 A reflected ray path (top) and the corresponding travel time curve as a function of
source−receiver separation (bottom). For a constant velocity model, the travel times form a
hyperbola.

or

v2t2

4h2 − x2

4h2 = 1, (7.5)

and we see that the travel time curve has the form of a hyperbola with the apex at
x = 0. This is often expressed in terms of t0 rather than h by substituting 4h2 = v2t2

0
from (7.1) to obtain

t2

t2
0

− x2

v2t2
0

= 1. (7.6)

Solving for t we have

t(x) =
√

t2
0 + x2

v2

= t0

√

1 +
(

x

vt0

)2

. (7.7)
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For small offsets (x ≪ vt0) we may approximate the square root as

t(x) ≈ t0

[
1 + 1

2(x/vt0)
2
]
. (7.8)

The difference in time between the arrival at two different distances is termed the
moveout and may be expressed as

!t = t(x2) − t(x1) = t0

√
1 + (x2/vt0)2 − t0

√
1 + (x1/vt0)2 (7.9)

≈ t0

[
1 + 1

2(x2/vt0)
2
]

− t0

[
1 + 1

2(x1/vt0)
2
]

≈ x2
2 − x2

1

2v2t0
, (7.10)

where the approximate form is valid at small offsets. The normal moveout (NMO)
is defined as the moveout from x = 0 and is given by

!tNMO = t0

√
1 + (x/vt0)2 − t0 (7.11)

≈ x2

2v2t0
. (7.12)

These equations are applicable for a single homogeneous layer. More complicated
expressions can be developed for a series of layers overlying the target reflector or
for dipping layers (e.g., see Sheriff and Geldart, 1995).Alternatively, the ray tracing
theory developed in Chapter 4 can be applied to solve for the surface-to-reflector
travel time for any arbitrary velocity versus depth function v(z). Thus, a general
form for the NMO equation is

!tNMO(x) = 2[t(z, x/2) − t(z, 0)], (7.13)

where t(z, x) is the travel time from the surface to a point at depth z and horizontal
offset x.

A typical seismic reflection experiment deploys a large number of seismometers
to record each source (these instruments are often called geophones in these appli-
cations, or hydrophones in the case of pressure sensors for marine experiments).
This is repeated for many different source locations. The total data set thus consists
of nm records, where n is the number of instruments and m is the number of sources.
The arrival time of reflectors on each seismogram depends on the source–receiver
offset as well as the reflector depth. To display these results on a single plot, it is
desirable to combine the data in a way that removes the offset dependence in the
travel times so that any lateral variability in reflector depths can be seen clearly.
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Figure 7.4 The source and receiver locations for a common midpoint (CMP) gather.

Figure 7.5 The left plot shows reflection seismograms at increasing source−receiver distance.
The right plot shows the same profile after applying a NMO correction to each time series. Note
that this removes the range dependence in the arrival times.The NMO corrected records can
then be stacked to produce a single composite zero-offset record.

This is done by summing subsets of the data along the predicted NMO times to
produce a composite zero-offset profile. Data are generally grouped by predicted
reflector location as illustrated in Figure 7.4.

Seismograms with common source–receiver midpoints are selected into what is
termed a gather.ANMO correction is then applied to the records that shifts the times
to their zero-offset equivalent (as illustrated in Fig. 7.5). Notice that this correction
is not constant for each record but varies with time within the trace. This results in
pulse broadening for the waveforms at longer offsets, but for short pulse lengths
and small offsets this effect is not large enough to cause problems. Finally the NMO
corrected data are summed and averaged to produce a single composite record that
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represents the zero-offset profile at the midpoint location. This is called common
midpoint (CMP) stacking, or sometimes common depth point (CDP) stacking. The
number of records, n, that are stacked is called the fold. For data with random
noise, stacking can improve the signal-to-noise ratio of the records by a factor of√

n. CMP stacking can also minimize the influence of contaminating arrivals, such
as direct body waves or surface waves (Rayleigh waves, termed ground roll by
reflection seismologists, are often the strongest arrival in reflection records), that
do not travel along the predicted NMO travel time curves and thus do not stack
coherently.

CMP stacking has proven to be very successful in practice and is widely used
to produce reflection profiles at a minimum of computational expense. However, it
requires knowledge of the velocity-depth function to compute the NMO times and
it does not explicitly account for the possibility of energy reflected or scattered from
non-horizontal interfaces. We will discuss ways to address some of these limitations
later in this chapter, but first we examine source effects.

7.3 Sources and deconvolution

The ideal source for reflection seismology would produce a delta function or a very
short impulsive wavelet that would permit closely spaced reflectors to be clearly
resolved. In practice, however, more extended sources must be used and the finite
source durations can cause complications in interpreting the data. For example, an
airgun is often used for marine seismic reflection profiling. This device is towed
behind a ship and fires bursts of compressed air at regular intervals. This creates a
bubble that oscillates for several cycles before dissipating, producing a complicated
“ringy’’ source-time function (e.g., Fig. 7.6). The reflection seismograms produced
by such a source will reproduce this source-time function for each reflector. This is
not too confusing in the case where there are only a few, widely separated reflectors.
However, if several closely spaced reflectors are present then it becomes difficult
to separate the real structure from the source.

The combination of the Earth response with the source-time function is termed
convolution (see Appendix E) and may be written as

u(t) = s(t) ∗ G(t) ≡
∫ ts

0
s(τ)G(t − τ) dτ, (7.14)

where u(t) is the recorded seismogram, s(t) is the effective source-time function
(i.e., what is actually recorded by the receiver; we assume that s(t) includes the
receiver response and any near-source attenuation), G(t) is the Earth response,
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Figure 7.6 (a) A schematic example of a typical source-time function s(t) produced by an airgun
in a marine experiment. A series of bubble pulses are produced by pressure reverberations
within the water. (b) An idealized example of the Earth response function G(t) showing a number
of reflected pulses. (c) The result of convolving (a) and (b).While single isolated reflectors can still
be identified, closely spaced reflectors produce a complex time series that cannot easily be
unraveled.

and ts is the duration of the source. Recovering G(t) from u(t) in this case is
termed deconvolution and is often an important part of reflection seismic processing.
However, it is not always clear how best to perform deconvolution and this has been
the subject of considerable research. The problem appears simpler in the frequency
domain (see Appendix E) where convolution is expressed as a product, that is,

u(ω) = s(ω)G(ω), (7.15)

where u(ω), s(ω), and G(ω) are the Fourier transforms of u(t), s(t), and G(t). Thus,
in principle, frequency-domain deconvolution is straightforward:

G(ω) = u(ω)

s(ω)
. (7.16)

The desired time series G(t) can then be obtained from the inverse Fourier transform
of G(ω). The difficulty with this approach is that (7.16) is exact and stable only for
noiseless data and when s(ω) does not go to zero. In practice, some noise is present
and the effective source-time function is usually band-limited so that s(ω) becomes
very small at the low- and high-frequency limits. These complications can cause
(7.16) to become unstable or produce artifacts in the deconvolved waveform. To
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address these difficulties, various methods for stabilizing deconvolution have been
developed. Often a time-domain approach is more efficient for data processing, in
which case a filter is designed to perform the deconvolution directly on the data.

Although deconvolution is an important part of reflection data processing, no
deconvolution method is perfect, and some information is invariably lost in the
process of convolution with the source-time function that cannot be recovered.
For this reason, it is desirable at the outset to obtain as impulsive a source-time
function as possible. Modern marine profiling experiments use airgun arrays that
are designed to minimize the amplitudes of the later bubble pulses, resulting in
much cleaner and less ringy pulses than the example plotted in Figure 7.6a.

Another important source-time function is produced by a machine that vibrates
over a range of frequencies. This is the most common type of source for shallow
crustal profiling on land and is termed vibroseis after the first commercial applica-
tion of the method. The machine produces ground motion of the form of a modulated
sinusoid, termed a sweep,

v(t) = A(t) sin[2π(f0 + bt)t]. (7.17)

The amplitude A(t) is normally constant except for a taper to zero at the start and end
of the sweep. The sweep lasts from about 5 to 40 s with frequencies ranging from
about 10 to 60 Hz. The sweep duration is long enough compared with the interval
between seismic reflections that raw vibroseis records are difficult to interpret. To
obtain clearer records, the seismograms, u(t), are cross-correlated with the vibroseis
sweep function.

The cross-correlation f(t) between two real functions a(t) and b(t) is defined as

f(t) = a(t) ⋆ b(t) =
∫ ∞

−∞
a(τ − t)b(τ) dτ, (7.18)

where, following Bracewell (1978), we use the five-pointed star symbol ⋆ to denote
cross-correlation; this should not be confused with the asterisk ∗ that indicates con-
volution. The cross-correlation integral is very similar to the convolution integral
but without the time reversal of (7.14). Note that

a(t) ∗ b(t) = a(−t) ⋆ b(t) (7.19)

and that, unlike convolution, cross-correlation is not commutative:

a(t) ⋆ b(t) ̸= b(t) ⋆ a(t). (7.20)
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Cross-correlation of the vibroseis sweep function v(t) with the original seismogram
u(t) yields the processed time series u′(t):

u′(t) = v(t) ⋆ u(t) =
∫ ts

0
v(τ − t)u(τ) dτ, (7.21)

where ts is the sweep duration. From (7.14) and replacing s(t) with v(t),
we obtain

u′(t) = v(t) ⋆ [v(t) ∗ G(t)] (7.22)

= v(−t) ∗ [v(t) ∗ G(t)] (7.23)

= [v(−t) ∗ v(t)] ∗ G(t) (7.24)

= [v(t) ⋆ v(t)] ∗ G(t) (7.25)

= v′(t) ∗ G(t), (7.26)

where we have used (7.19) and the associative rule for convolution. The cross-
correlation of v(t) with itself, v′(t) = v(t) ⋆ v(t), is termed the autocorrelation of
v(t). This is a symmetric function, centered at t = 0, that is much more sharply
peaked than v(t). Thus, by cross-correlating the recorded seismogram with the vi-
broseis sweep function v(t), one obtains a time series that represents the Earth
response convolved with an effective source that is relatively compact. These re-
lationships are illustrated in Figure 7.7. Cross-correlation with the source function
is a simple form of deconvolution that is sometimes termed spiking deconvolu-
tion. Notice that the resulting time series is only an approximation to the desired
Earth response function G(t). More sophisticated methods of deconvolution can
achieve better results, but G(t) can never be recovered perfectly since v(t) is band-
limited and the highest and lowest frequency components of G(t) are lost in the
convolution.

7.4 Migration

Up to this point, we have modeled reflection seismograms as resulting from reflec-
tions off horizontal interfaces. However, in many cases lateral variations in structure
are present; indeed, resolving these features is often a primary goal of reflection
profiling. Dipping, planar reflectors can be accommodated by modifying the NMO
equations to adjust for differences between the updip and downdip directions. How-
ever, more complicated structures will produce scattered and diffracted arrivals that
cannot be modeled by simple plane-wave reflections, and accurate interpretation
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(a)

(b)

(c)

(d)

Figure 7.7 (a) An example of a vibroseis sweep function v(t). (b) A hypothetical Earth response
function G(t). (c) The result of convolving (a) and (b). (d) The result of cross-correlating (a) with (c).

of data from such features requires a theory that takes these arrivals into account.
Most of the analysis techniques developed for this purpose are based on the idea
that velocity perturbations in the medium can be thought of as generating secondary
seismic sources in response to the incident wavefield, and the reflected wavefield
can be modeled as a sum of these secondary wavelets.

7.4.1 Huygens’ principle

Huygens’ principle, first described by Christiaan Huygens (c. 1678), is most com-
monly mentioned in the context of light waves and optical ray theory, but it is
applicable to any wave propagation problem. If we consider a plane wavefront
traveling in a homogeneous medium, we can see how the wavefront can be thought
to propagate through the constructive interference of secondary wavelets (Fig. 7.8).
This simple idea provides, at least in a qualitative sense, an explanation for the be-
havior of waves when they pass through a narrow aperture.
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Figure 7.8 Illustrations of
Huygens’ principle. (a) A plane
wave at time t + !t can be
modeled as the coherent sum
of the spherical wavefronts
emitted by point sources on the
wavefront at time t. (b) A small
opening in a barrier to incident
waves will produce a diffracted
wavefront if the opening is
small compared to the
wavelength.

The bending of the ray paths at the edges of the gap is termed diffraction. The
degree to which the waves diffract into the “shadow’’ of the obstacle depends upon
the wavelength of the waves in relation to the size of the opening. At relatively long
wavelengths (e.g., ocean waves striking a hole in a jetty), the transmitted waves
will spread out almost uniformly over 180◦. However, at short wavelengths the
diffraction from the edges of the slot will produce a much smaller spreading in the
wavefield. For light waves, very narrow slits are required to produce noticeable
diffraction. These properties can be modeled using Huygens’ principle by comput-
ing the effects of constructive and destructive interference at different wavelengths.

7.4.2 Diffraction hyperbolas

We can apply Huygens’ principle to reflection seismology by imagining that each
point on a reflector generates a secondary source in response to the incident wave-
field. This is sometimes called the “exploding reflector’’ model. Consider a single
point scatterer in a zero-offset section (Fig. 7.9). The minimum travel time is
given by

t0 = 2h

v
, (7.27)
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scatterer will produce a
curved ‘‘reflector’’ in a
zero-offset section.

where h is the depth of the scatterer and v is the velocity (assumed constant in
this case). More generally, the travel time as a function of horizontal distance, x, is
given by

t(x) = 2
√

x2 + h2

v
. (7.28)

Squaring and rearranging, this can be expressed as

v2t2

4h2 − x2

h2 = 1 (7.29)

or

t2

t2
0

− 4x2

v2t2
0

= 1 (7.30)

after substituting 4h2 = v2t2
0 from (7.27). The travel time curve for the scattered

arrival has the form of a hyperbola with the apex directly above the scattering point.
Note that this hyperbola is steeper and results from a different ray geometry than
the NMO hyperbola discussed in Section 7.2 (equation (7.5)). The NMO hyperbola
describes travel time for a reflection off a horizontal layer as a function of source–
receiver distance; in contrast (7.30) describes travel time as a function of distance
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Zero-offset sectionModel

Figure 7.10 The endpoint of a horizontal reflector will produce a diffracted arrival in a
zero-offset section.The reflector itself can be modeled as the coherent sum of the diffraction
hyperbola from individual point scatterers.The diffracted phase, shown as the curved heavy line,
occurs at the boundary of the region of scattered arrivals.

away from a point scatterer at depth for zero-offset data (the source and receiver
are coincident).

7.4.3 Migration methods

Consider a horizontal reflector that is made up of a series of point scatterers, each
of which generates a diffraction hyperbola in a zero-offset profile (Fig. 7.10). Fol-
lowing Huygens’ principle, these hyperbolas sum coherently only at the time of
the main reflection; the later contributions cancel out. However, if the reflector
vanishes at some point, then there will be a diffracted arrival from the endpoint
that will show up in the zero-offset data. This creates an artifact in the section that
might be falsely interpreted as a dipping, curved reflector.

Techniques for removing these artifacts from reflection data are termed migration
and a number of different approaches have been developed. The simplest of these
methods is termed diffraction summation migration and involves assuming that
each point in a zero-offset section is the apex of a hypothetical diffraction hyperbola.
The value of the time series at that point is replaced by the average of the data from
adjacent traces taken at points along the hyperbola. In this way, diffraction artifacts
are “collapsed’’ into their true locations in the migrated section. In many cases
migration can produce a dramatic improvement in image quality (e.g., Fig. 7.11).

Aproper implementation of diffraction summation migration requires wave prop-
agation theory that goes beyond the simple ideas of Huygens’ principle. In partic-
ular, the scattered amplitudes vary as a function of range and ray angle, and the
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Figure 7.11 Original (top) and migrated (bottom) reflection data from a survey line across the
Japan trench (figure modified from Claerbout, 1985; data from the Tokyo University
Oceanographic Research Institute).

Huygens secondary sources are given, for a three-dimensional geometry, by the time
derivative of the source-time function (in the frequency domain this is described
by the factor −iω, a π/2 (90-degree) phase shift with amplitude proportional to
frequency). In the case of a two-dimensional geometry, the secondary sources are
the “half-derivative’’of the source function (a 45-degree phase shift with amplitude
scaled by the square root of frequency). These details are provided by Kirchhoff
theory, which is discussed later in this chapter. The diffraction hyperbola equation
assumes a uniform velocity structure, but migration concepts can be generalized
to more complicated velocity models. However, it is important to have an accu-
rate velocity model, as use of the wrong model can result in “undermigrated’’ or
“overmigrated’’ sections.
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In common practice, data from seismic reflection experiments are first processed
into zero-offset sections through CMP stacking. The zero-offset section is then
migrated to produce the final result. This is termed poststack migration. Because
CMP stacking assumes horizontal layering and may blur some of the details of the
original data, better results can be obtained if the migration is performed prior to
stacking. This is called prestack migration. Although prestack migration is known
to produce superior results, it is not implemented routinely owing to its much greater
computational cost.

7.5 Velocity analysis

Knowledge of the large-scale background seismic velocity structure is essential for
reflection seismic processing (for both stacking and migration) and for translating
observed events from time to depth. Often this information is best obtained from
results derived independently of the reflection experiment, such as from borehole
logs or from a collocated refraction experiment. However, if such constraints are not
available a velocity profile must be estimated from the reflection data themselves.
This can be done in several different ways.

One approach is to examine the travel time behavior of reflectors in CMP gathers.
From (7.7), we have for a reflector overlain by material of uniform velocity v:

t2(x) = t2
0 + x2

v2 (7.31)

= t2
0 + u2x2, (7.32)

where u = 1/v is the slowness of the layer. From observations of the NMO offsets
in a CMP gather, one can plot values of t2 versus x2. Fitting a straight line to these
points then gives the intercept t2

0 and the slope u2 = 1/v2. Velocity often is not
constant with depth, but this equation will still yield a velocity, which can be shown
to be approximately the root-mean-square (rms) velocity of the overlying medium,
that is, for n layers

v2 ≈
∑n

i=1 v2
i!ti∑n

i=1!ti
, (7.33)

where !ti is the travel time through the ith layer.
Another method is to plot NMO corrected data as a function of offset for different

velocity models to see which model best removes the range dependence in the data
or produces the most coherent image following CMP stacking. As in the case of the
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t2(x2) plotting method, this will only resolve the velocities accurately if a reasonable
spread in source–receiver offsets are available. Zero-offset data have no direct
velocity resolution; the constraints on velocity come from the NMO offsets in the
travel times with range. Thus, wider source–receiver profiling generally produces
better velocity resolution, with the best results obtained in the case where receiver
ranges are extended far enough to capture the direct refracted phases. However,
even zero-offset data can yield velocity information if diffraction hyperbolas are
present in the zero-offset profiles, as the curvature of these diffracted phases can
be used to constrain the velocities. One approach is to migrate the section with
different migration velocities in order to identify the model that best removes the
artifacts in the profile.

7.5.1 Statics corrections

Often strong near-surface velocity heterogeneity produces time shifts in the records
that can vary unpredictably between sources and stations. This could be caused
by topography/bathymetry or a sediment layer of variable thickness. The result-
ing “jitter’’ in the observed reflected pulses (Fig. 7.12) can hinder application
of stacking and migration techniques and complicate interpretation of the results.
Thus, it is desirable to remove these time shifts prior to most processing of the
results. This is done by applying timing corrections, termed statics corrections, to
the data. In the case of the receivers, these are analogous to the station terms (the

Figure 7.12 Small time shifts on individual records produce offsets in reflectors in CMP gathers
(left plot) that prevent coherent stacking of these phases in data processing.These shifts can be
removed by applying static corrections (right plot).
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average travel time residual at a particular station for many different events) used
in travel time inversions for Earth structure. Statics may be computed by tracking
the arrival time of a reference phase, such as a refracted arrival. Often automatic
methods are applied to find the time shifts that best smooth the observed reflectors.
The goal is to shift the timing of the individual records such that reflectors will stack
coherently. This problem is tractable since the time shifts are generally fairly small,
and solutions for the time shifts are overdetermined in typical reflection experiments
(multiple receivers for each source, multiple sources for each receiver).

7.6 Receiver functions

A wide-used technique in global seismology that has many parallels to reflection
seismology is the seismic receiver function (Langston, 1977). The method exploits
the fact that upcoming P waves beneath seismic stations will generate P-to-S
converted phases at any sharp interfaces below the receiver. This SV -polarized
wave is termed the Ps phase (see Figure 7.13) and will follow the direct P phase
by a time that increases with the depth of the interface.

Thus in principle we could estimate the depth of the discontinuity from the Ps−P

time, but in practice Ps is only rarely observed clearly on individual seismograms
because it is usually obscured by the coda of the P wave. However, Ps should have
the same shape as the direct P pulse (essentially the source-time function of the

P

SV

PPs PpSs
PpPs

PpPpPpSp

P

Figure 7.13 An upcoming P wave incident on a near-surface velocity discontinuity will generate
a number of first-order converted and reflected phases.
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earthquake as modified by attenuation along the ray path), and thus, just as in the
vibroseis example discussed above, Ps can often be revealed by deconvolving the P

pulse from the rest of the seismogram. The deconvolved waveform is termed the
receiver function. For the steeply incident ray paths of distant teleseisms, P appears
most strongly on the vertical component and Ps on the radial component. Thus, the
simplest approach extracts the direct P pulse from the vertical channel and performs
the deconvolution on the radial component. However, somewhat cleaner results can
be obtained by applying a transformation to estimate the upcoming P and SV wave
field from the observed vertical and radial components. This transformation must
include the effect of the free-surface reflected phases (i.e., the downgoing P and
SV pulses) on the observed displacement at the surface.

Following Kennett (1991) and Bostock (1998), we may express the upcoming
P and SV components at the surface as

[
P

SV

]
=
[

pβ2/α (1 − 2β2p2)/2αηα
(1 − 2β2p2)/2βηβ −pβ

] [
UR

UZ

]
, (7.34)

where UR and UZ are the radial and vertical components, p is the ray parameter, α
and β are the P and S velocities at the surface, and the P and S vertical slownesses
are given by ηα =

√
α−2 − p2 and ηβ =

√
β−2 − p2. Note that here we adopt the

sign convention, opposite to that in Bostock (1998), that the incident P wave has
the same polarity on the vertical and radial seismometer components.

This transformation has been applied to the vertical and radial channels in Figure
7.14 and shows how the resulting P and SV components isolate the different phases.
In particular, note that the direct P arrival appears only on the P component, while
Ps appears only on the SV component. The reverberated phases are seen separately
on the P and S components according to whether the upcoming final leg beneath
the receiver is P or SV . The resulting receiver function is plotted at the bottom of
Figure 7.14, and in this case has pulses at times given by the differential times of Ps,
PpPs and PpSs with respect to the direct P arrival. In general, the receiver-function
pulse shapes are more impulsive and symmetric than that of the P waveform, but
their exact shape will depend on the deconvolution method and the bandwidth of
the data.

Analysis of receiver functions is similar to reflection seismology in many re-
spects. Both methods study seismic phases resulting from velocity jumps at inter-
faces beneath receivers and require knowledge of the background seismic velocities
to translate the timing of these phases into depth. Both often use deconvolution and
stacking to improve the signal-to-noise ratio of the results. When closely spaced
seismic receivers are available (for example, a seismometer array), migration meth-
ods can be used to image lateral variations in structure and correct for scattering
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Figure 7.14 Seismograms showing the response of a simple model of a 35 km thick crust to an
upcoming mantle P wave.The bottom trace shows the receiver function computed by
deconvolving the windowed P pulse on the P-component trace from the S-component trace.The
time scale for the top four traces is the same, but the receiver function timing is relative to the P
arrival, which is why the receiver function pulses are shifted compared to the pulses in the other
traces.

artifacts. However, receiver function analysis is complicated by the multiple arrivals
generated by single interfaces (see Figure 7.14), and when several discontinuities
are present at different depths, it can be difficult to separate out the effects of Ps

phases from possible reverberations from shallower discontinuities.
If results are available for sources at different epicentral distances from the re-

ceiver (i.e., which will arrive at different ray parameters), it is sometimes possible
to distinguish the reverberated phases from Ps by noting their different moveout
with distance. In particular, the differential time TPs − TP shrinks with epicentral
distance (i.e., decreasing ray parameter) while TPpPs −TP and TPpSs −TP increase
with epicentral distance. For shallow discontinuities (less than about 150 km), the
timing of these arrivals can safely be computed using a plane-wave approximation
for the incident P wave, which assumes that all of the arrivals have the same ray
parameter. However, for deeper features, such as the transition-zone discontinuities
near 410 and 660 km depth, the curvature of the wavefront should be taken into
account (Lawrence and Shearer, 2006).

The P-to-SV converted Ps phase is sensitive almost entirely to the S velocity
jump at interfaces, whereas the reverberated phases are also sensitive to the P
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Figure 7.15 A cross-section of the Himalayan crust, produced from a common conversion point
(CCP) stack of receiver functions computed for a line of seismic stations crossing Nepal. A clear
Moho conversion is seen, indicating that the crustal thickness increases from ∼45 km under India
to ∼75 km beneath Tibet. Figure adapted from Schulte-Pelkum et al. (2005).

velocity and density jumps. Thus, in principle integrated analysis of the complete
P coda wavefield can provide much more information than simple receiver function
studies of Ps alone. Bostock et al. (2001) describe a theory for how this can be done
to image crust and upper-mantle structure by processing three-component data from
seismic arrays.

Receiver functions have become one of the most popular methods in the global
seismologist’s toolbox because they are relatively simple to compute and can pro-
vide valuable results even from only a single station. They have been used to resolve
crustal thickness and depths to the 410 and 660 km discontinuities beneath seis-
mic stations all over the world, and, in subduction zones, to resolve the top of the
subducting slab. Where seismic arrays are present, often from temporary seismic
experiments, they can produce dramatic images of crust and lithospheric structure
as illustrated in Figure 7.15 for a cross-section under the Himalayas.

7.7 Kirchhoff theory†

A more rigorous treatment of Huygens’principle was given by Kirchhoff and forms
the basis for a number of important techniques for computing synthetic seismo-
grams. Descriptions of applications of Kirchhoff methods to seismology may be
found in Scott and Helmberger (1983) and Kampmann and Müller (1989). Kirch-
hoff theory was first developed in optics and our derivation until equation (7.56)
largely follows that of Longhurst (1967). Consider the scalar wave equation (e.g.,
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equation (3.31) where φ is the P-wave potential)

∇2φ = 1
c2

∂2φ

∂t2 , (7.35)

where c is the wave velocity. Now assume a harmonic form for φ, that is, at a
particular frequency ω we have the monochromatic function

φ = ψ(r)e−iωt = ψ(r)e−ikct, (7.36)

where r is the position and k = ω/c is the wavenumber. Note that we have separated
the spatial and temporal parts of φ. We then have

∇2φ = e−ikct∇2ψ (7.37)

and

∂2φ

∂t2 = −k2c2ψe−ikct (7.38)

and (7.35) becomes

∇2ψ = −k2ψ. (7.39)

This is a time-independent wave equation for the space-dependent part of φ. It is
also sometimes termed the Helmholtz equation.

Next, recall Green’s theorem from vector calculus. If ψ1 and ψ2 are two contin-
uous single-valued functions with continuous derivatives, then for a closed surfaceS

∫

V
(ψ2∇2ψ1 − ψ1∇2ψ2) dv =

∫

S

(
ψ2
∂ψ1

∂n
− ψ1

∂ψ2

∂n

)
dS, (7.40)

where the volume integral is over the volume enclosed by S, and ∂/∂n is the deriva-
tive with respect to the outward normal vector to the surface. Now assume that both
ψ1 and ψ2 satisfy (7.39), that is,

∇2ψ1 = −k2ψ1, (7.41)

∇2ψ2 = −k2ψ2. (7.42)

In this case, the left part of (7.40) vanishes and the surface integral must be zero:
∫

S

(
ψ2
∂ψ1

∂n
− ψ1

∂ψ2

∂n

)
dS = 0. (7.43)

Now suppose that we are interested in evaluating the disturbance at the point P ,
which is enclosed by the surface S (Fig. 7.16). We set ψ1 = ψ, the amplitude of
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Figure 7.16 A point P surrounded by a
surface S of arbitrary shape. Kirchhoff’s
formula is derived by applying Green’s
theorem to the volume between S and an
infinitesimal sphere " surrounding P.

the harmonic disturbance. We are free to choose any function for ψ2, provided it
also satisfies (7.39). It will prove useful to define ψ2 as

ψ2 = eikr

r
, (7.44)

where r is the distance from P . This function has a singularity at r = 0 and so
the point P must be excluded from the volume integral for Green’s theorem to be
valid. We can do this by placing a small sphere , around P . Green’s theorem may
now be applied to the volume between , and S; these surfaces, together, make up
the integration surface. On the surface of the small sphere the outward normal to
this volume is opposite to the direction of r and thus ∂/∂n can be replaced with
−∂/∂r and the surface integral over , may be expressed as

∫

,

(
ψ2
∂ψ

∂n
− ψ

∂ψ2

∂n

)
dS =

∫

,

[
−eikr

r

∂ψ

∂r
+ ψ

∂

∂r

(
eikr

r

)]

dS

=
∫

,

[
−eikr

r

∂ψ

∂r
+ ψ

(
−eikr

r2 + ikeikr

r

)]

dS.

(7.45)

Now let us change this to an integral over solid angle- from the point P , in which
dS on , subtends d- and dS = r2 d-. Then

∫

,
=
∫

around P

(
−reikr ∂ψ

∂r
− ψeikr + rikψeikr

)
d-. (7.46)

Now consider the limit as r goes to zero. Assuming that ψ does not vanish, then
only the second term in this expression survives. Thus as r → 0

∫

,
→
∫

−ψeikrd-. (7.47)
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As the surface, collapses around P , the value ofψ on the surface may be assumed
to be constant and equal to ψP , its value at P . Thus

∫

,
→

∫
−ψPeikrd- (7.48)

= −ψP

∫
eikrd- (7.49)

= −ψP

∫
d- since eikr → 1 as r → 0 (7.50)

= −4πψP . (7.51)

From (7.43) we know that
∫
S+, = 0, so we must have

∫
S = +4πψP , or

4πψP =
∫

S

[
eikr

r

∂ψ

∂n
− ψ

∂

∂n

(
eikr

r

)]

dS (7.52)

=
∫

S

[
eikr

r

∂ψ

∂n
− ψeikr ∂

∂n

(
1
r

)
− ikψeikr

r

∂r

∂n

]

dS, (7.53)

since ∂
∂n = ∂

∂r
∂r
∂n . This is often called Helmholtz’s equation. Since φ = ψe−ikct

(7.35), we have

ψ = φeikct (7.54)

and (7.53) becomes

φP = 1
4π

e−ikct

∫

S

[
eikr

r

∂ψ

∂n
− ψeikr ∂

∂n

(
1
r

)
− ikψeikr

r

∂r

∂n

]

dS

= 1
4π

∫

S

[
e−ik(ct−r)

r

∂ψ

∂n
− ψe−ik(ct−r) ∂

∂n

(
1
r

)
− ikψe−ik(ct−r)

r

∂r

∂n

]

dS.

(7.55)

This expression gives φ(t) at the point P . Note that the term ψe−ik(ct−r) =
ψe−ikc(t−r/c) is the value of φ at the element dS at the time t − r/c. This time
is referred to as the retarded value of φ and is written [φ]t−r/c. In this way, we can
express (7.55) as

φP = 1
4π

∫

S

(
1
r

[
∂φ

∂n

]

t−r/c

− ∂

∂n

(
1
r

)
[φ]t−r/c + 1

cr

∂r

∂n

[
∂φ

∂t

]

t−r/c

)

dS,

(7.56)
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Figure 7.17 The ray
geometry for a single point
on a surface dS separating a
source and receiver.

where we have used ∂φ/∂t = −ikcψe−ikct . Equation (7.56) is a standard form for
what is often termed Kirchhoff’s formula; it is found in many optics textbooks and
is also given in Scott and Helmberger (1983). We see that the disturbance at P can
be computed from the conditions of φ over a closed surface surrounding P where
r/c represents the time taken for the disturbance to travel the distance r from dS to
P . We need to know both the value of φ and its normal derivative on dS to compute
this integral.

This is not an especially convenient form to use directly in most seismic appli-
cations. Suppose the value of φ at each point on the surface could be obtained from
a source time function f(t) a distance r0 from dS. Then on dS we have

φ = 1
r0

f(t − r0/c), (7.57)

∂φ

∂t
= 1

r0
f ′(t − r0/c), (7.58)

where the 1/r0 term comes from the geometrical spreading of the wavefront.
If θ0 and θ are the angles of the incoming and outgoing ray paths from the surface

normal (Fig. 7.17), then

∂r0

∂n
= cos θ0 and

∂r

∂n
= cos θ, (7.59)

∂φ

∂n
= ∂φ

∂r0

∂r0

∂n
(7.60)

= ∂φ

∂r0
cos θ0, (7.61)
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and

∂

∂n

(
1
r

)
= ∂r

∂n

∂

∂r

(
1
r

)
(7.62)

= − 1
r2 cos θ. (7.63)

We can evaluate ∂φ/∂r0 using the chain rule:

∂

∂r0

(
1
r0

f(t − r0/c)

)
= − 1

r2
0

f(t − r0/c) − 1
cr0

f ′(t − r0/c) (7.64)

since ∂
∂r0

= ∂t
∂r0

∂
∂t = −1

c
∂
∂t . Putting (7.57)–(7.64) into (7.56), we have

φP(t) = 1
4π

∫

S

(
−1

rr2
0

cos θ0 + 1
r2r0

cos θ

)

f(t − r/c − r0/c) dS

+ 1
4π

∫

S

( −1
crr0

cos θ0 + 1
crr0

cos θ
)

f ′(t − r/c − r0/c) dS. (7.65)

The negative signs arise from our definition of n̂ in the direction opposing r0; these
terms are positive since cos θ0 is negative. Equation (7.65) may also be expressed
in terms of convolutions with f(t) and f ′(t):

φP(t) = 1
4π

∫

S
δ

(
t − r + r0

c

)(−1

rr2
0

cos θ0 + 1
r2r0

cos θ

)

dS ∗ f(t)

+ 1
4π

∫

S
δ

(
t − r + r0

c

)( −1
crr0

cos θ0 + 1
crr0

cos θ
)

dS ∗ f ′(t).

(7.66)

Notice that the f(t) terms contain an extra factor of 1/r or 1/r0. For this reason
they are most important close to the surface of integration and can be thought of as
near-field terms. In practice, the source and receiver are usually sufficiently distant
from the surface (i.e., λ ≪ r, r0) that φP is well approximated by using only the
far-field f ′(t) terms. In this case we have

φP(t) = 1
4πc

∫

S
δ

(
t − r + r0

c

)
1

rr0
(− cos θ0 + cos θ) dS ∗ f ′(t). (7.67)

This formula is the basis for many computer programs that compute Kirchhoff
synthetic seismograms.
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Figure 7.18 Kirchhoff theory can be used to compute the effect of an irregular boundary on
both transmitted and reflected waves.

7.7.1 Kirchhoff applications

Probably the most common seismic application of Kirchhoff theory involves the
case of an irregular interface between simpler structure on either side. Kirchhoff
theory can be used to provide an approximate solution for either the transmitted or
reflected wavefield due to this interface (Fig. 7.18). For example, we might want to
model the effect of irregularities on the core–mantle boundary, the Moho, the sea
floor, or a sediment–bedrock interface. In each case, there is a significant velocity
contrast across the boundary.

Let us consider the reflected wave generated by a source above an undulating
interface. Assume that the incident wavefield is known and can be described with
geometrical ray theory. Then we make the approximation that the reflected wave-
field just above the interface is given by the plane-wave reflection coefficient for
the ray incident on the surface. This approximation is sometimes called the Kirch-
hoff, physical optics, or tangent plane hypothesis (Scott and Helmberger, 1983).
Each point on the surface reflects the incident pulse as if there were an infinite
plane tangent to the surface at that point. Considering only the far-field terms, we
then have

φP(t) = 1
4πc

∫

S
δ

(
t − r + r0

c

)
R(θ0)

rr0
(cos θ0 + cos θ) dS ∗ f ′(t), (7.68)

where R(θ0) is the reflection coefficient, θ0 is the angle between the incident ray
and the surface normal, and θ is the angle between the scattered ray and the surface
normal (see Fig. 7.19).

If the overlying layer is not homogeneous, then the 1/r and 1/r0 terms must be
replaced with the appropriate source-to-interface and interface-to-receiver geomet-
rical spreading coefficients. In some cases, particularly for obliquely arriving rays,
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Figure 7.19 Ray angles relative to the surface normal for a reflected wave geometry.
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Figure 7.20 This structure will produce both a direct reflected pulse and a diffracted pulse for
the source−receiver geometry shown.

the reflection coefficient R may become complex. If this occurs, then this equation
will have both a real and an imaginary part. The final time series is obtained by
adding the real part to the Hilbert transform of the imaginary part.

The Kirchhoff solution will correctly model much of the frequency dependence
and diffracted arrivals in the reflected wavefield. These effects are not obtained
through geometrical ray theory alone, even if 3-D ray tracing is used. For example,
consider a source and receiver above a horizontal interface containing a verti-
cal fault (Fig. 7.20). Geometrical ray theory will produce only the main reflected
pulse from the interface, while Kirchhoff theory will provide both the main pulse
and the secondary pulse diffracted from the corner. However, Kirchhoff theory
also has its limitations, in that it does not include any multiple scattering or
diffractions along the interface; these might be important in more complicated
examples.
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7.7.2 How to write a Kirchhoff program

As an illustration, let us list the steps involved in writing a hypothetical Kirchhoff
computer program to compute the reflected wavefield from a horizontal interface
with some irregularities.

1. Specify the source and receiver locations.
2. Specify the source-time function f(t).
3. Compute f ′(t), the derivative of the source-time function.
4. Initialize to zero a time series J(t), with sample interval dt, that will contain the output

of the Kirchhoff integral.
5. Specify the interface with a grid of evenly spaced points in x and y. At each grid point,

we must know the height of the boundary z and the normal vector to the surface n̂. We
also require the surface area, dA, corresponding to the grid point. This is approximately
dx dy where dx and dy are the grid spacings in the x and y directions, respectively (if a
significant slope is present at the grid point, the actual surface area is greater and this
correction must be taken into account). The grid spacing should be finer than the scale
length of the irregularities.

6. At each grid point, trace rays to the source and receiver. Determine the travel times to
the source and receiver, the ray angles to the local normal vector (θ0 and θ), and the
geometrical spreading factors g0 (source-to-surface) and g (surface-to-receiver).

7. At each grid point, compute the reflection coefficient R(θ0) and the factor cos θ0 +cos θ.
8. At each grid point, compute the product R(θ0)(cos θ0 + cos θ)dA/(4πcg0g). Add the

result to the digitized point of J(t) that is closest to the total source-surface-receiver
travel time, after first dividing the product by the digitization interval dt.

9. Repeat this for all grid points that produce travel times within the time interval of
interest.

10. Convolve J(t) with f ′(t), the derivative of the source-time function, to produce the final
synthetic seismogram.

11. (very important) Repeat this procedure at a finer grid spacing, dx and dy, to verify that
the same result is obtained. If not, the interface is undersampled and a finer grid must
be used.

Generally the J(t) function will contain high-frequency numerical “noise’’ that is
removed through the convolution with f ′(t). It is computationally more efficient
to compute f ′(t) and convolve with J(t) than to compute J ′(t) and convolve with
f(t), particularly when multiple receiver positions are to be modeled.

7.7.3 Kirchhoff migration

Kirchhoff results can be used to implement migration methods for reflection seismic
data that are consistent with wave propagation theory. For zero-offset data, θ0 = θ
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and r0 = r and (7.68) becomes

φP(t) = 1
2πc

∫

S
δ

(
t − r + r0

c

)
R(θ0)

r2 cos θ dS ∗ f ′(t). (7.69)

To perform the migration, the time derivative of the data is taken and the traces
for each hypothetical scattering point are multiplied by the obliquity factor cos θ,
scaled by the spherical spreading factor 1/r2 and then summed along the diffraction
hyperbolas.

7.8 Exercises

1. (COMPUTER) Recall equation (7.17) for the vibroseis sweep function:

v(t) = A(t) sin[2π(f0 + bt)t].

(a) Solve for f0 and b in the case of a 20-s long sweep between 1 and 4 Hz. Hint:
b = 3/20 is incorrect! Think about how rapidly the phase changes with time.

(b) Compute and plot v(t) for this sweep function. Assume that A(t) =
sin2(πt/20) (this is termed a Hanning taper; note that it goes smoothly to
zero at t = 0 and t = 20 s). Check your results and make sure that you have
the right period at each end of the sweep.

(c) Compute and plot the autocorrelation of v(t) between −2 and 2 s.
(d) Repeat (b) and (c), but this time assume that A(t) is only a short 2-s long taper

at each end of the sweep, that is, A(t) = sin2(πt/4) for 0 < t < 2, A(t) = 1
for 2 ≤ t ≤ 18, and A(t) = sin2[π(20 − t)/4] for 18 < t < 20. Note that this
milder taper leads to more extended sidelobes in the autocorrelation function.

(e) What happens to the pulse if autocorrelation is applied a second time to
the autocorrelation of v(t)? To answer this, compute and plot [v(t) ⋆ v(t)] ⋆
[v(t) ⋆v(t)] using v(t) from part (b). Is this a way to produce a more impulsive
wavelet?

2. A reflection seismic experiment produces the CMP gather plotted in Figure 7.21.
Using the t2(x2) method, determine the approximate rms velocity of the material
overlying each reflector. Then compute an approximate depth to each reflector.
Note: You should get approximately the same velocity for each reflector; do not
attempt to solve for different velocities in the different layers.

3. Consider a simple homogeneous layer over half-space model (as plotted in
Fig. 7.22) with P velocity α1 and S velocity β1 in the top layer and P veloc-
ity α2 in the bottom layer.


