
GG605: Lava Flow Rheology and Morphology (Fall 2017) 

Project IV: Thermo-rheological flow model 
 

 

Set: November 21st 

Due: December 12th 
 

General instructions: The aim of this project is to build on the notions and quantitative 

analyses of flow rheology and velocity (Project 1), effusion rates and viscosity (Project 2), 

heat loss and cooling (Project 3) to construct your own thermo-rheological model of lava 

flow propagation. 

 

The basis of this project is the FLOWGO model initially distributed by Harris and Rowland 

(2001) and recently revised (Harris and Rowland 2015). This model simulates downflow 

changes in rheology. The foundation of the model is a series of heat loss equations (identical to 

Project 3). The model moves a ‘control volume’ of lava in one-meter increments down a pre-

existing channel of known at-vent dimensions. At each increment step, the model calculates core 

cooling and crystallization, and hence the temperature and crystallinity-dependent rheological 

parameters: viscosity and yield strength. After setting up the initial inputs, the model is self-

adaptive, allowing the control volume to move down-channel until cooling and crystallization 

cause its velocity to fall to zero. 

 

We will simulate the flow conditions of the Mauna Ulu 1974 channel that we visited. Harris 

(unpublished) made measurements of the channel width from when the tube-fed part of the flow 

progressively gave way to the channelized part began (~1650 m from the vent), down to the 

portion of the flow that became dispersed (i.e. non-channelized) at ~ 6000 m from the vent. The 

flow continued for another ~2600 m after becoming dispersed. 

  

Hint: it helps to try and draw simplified diagrams of your system/lava to visualize where 

different heat/gains losses and parameters come into play. 

 

Step 1: Setting up the modified Jeffrey’s equation  

 

The foundation of the FLOWGO model is Jeffrey’s velocity equation modified to account for 

yield strength by Moore (1987) (see Project 1 for details): 
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   (Semi-circular channel) (Eq. 1a) 
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   (Wide Channel)  (Eq. 1b) 

 



Where h is the channel/flow depth, τ0 the yield strength, τb the shear stress at the base of the flow, 

and ηbulk is bulk viscosity (melt+bubbles+crystals). B is a shape constant (3 for wide, 8 for semi-

circular). 

 

The basal shear stress τb is defined as:  

 

 sinb bulkh g            (Eq. 2) 

 

Where g is acceleration due to gravity, ρbulk is bulk lava flow density (vesicles+crystals+melt), 

and α is slope.   

 

To solve equation 1a or b, we will first need to set a ‘typical depth’ h. Let’s begin with the 

minimum depth over the most proximal section of the channel (C8), i.e. 1.9 m. For simplicity, 

we will first assume that channel width (w) is equal to height (h). 

 

Step 2: Setting up initial Rheological parameters 

 

The following other inputs are also needed to solve Eq. 1a or b:  

 

The lava flow density ρbulk is related to the dense rock equivalent density (ρDRE, crystals+melt) 

and the lava flow vesicle fraction ϕB by: 

 

 1bulk B DRE             (Eq. 3) 

 

The yield strength τ0 can be expressed as a function of temperature and crystal content ϕC () 

following: 
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     (Eq. 4) 

 

Where τ0
liq is the yield strength at liquidus conditions (0.01 Pa for basalt) and b is a constant 

(here equal to 0.08 K-1 for basalt) that also depends on lava composition. Terupt is the at vent 

temperature, and Tcore is the temperature at the core of the flow. 

 

Note: this form combines the Ryerson et al. (1988) expression for crystal-content-dependence 

  2.85

0 6500C C   with an expression for T-dependence    
0 0, exp 1erupt coreb T Tliq

CT  
  

  
 from 

Dragoni (1989), similar to the form of Chester et al. (1985 we saw in class). 

 

The bulk viscosity ηbulk is a function of composition (+volatiles), temperature, crystal, and 

bubble content. Here, we will take the approach of Harris and Allen (2008) to calculate the three-

phase viscosity using expressions that incorporate relative sizes of crystals and bubbles: 

 

Case 1: Size of crystals < Size of bubbles 
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Case 2: Size of crystals = Size of bubbles 
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Case 3: Size of crystals > Size of bubbles 
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meltWhere  is the melt viscosity. For the 1974 lavas, we will assume that the crystals and 

bubbles had similar sizes. As you have done for project 2, the melt viscosity can be obtained 

using the all-encompassing general model of Giordano et al. (2008), or, more simply, using a 

melt viscosity model applicable to Hawaiian basalt only (e.g. Dragoni 1989): 

 

   
0 exp erupt corea T Terupt

melt T 


         (Eq. 6) 

 

Where η0
erupt is the bulk viscosity at eruption temperature Terupt and a 

is a constant (here equal to 0.04 K-1 for basalt) that also depends on 

lava composition. To calculate η0
liq - the viscosity of the 1974 Mauna 

Ulu lava at eruption temperature - use your Giordano et al. (2008) 

spreadsheet or matlab code using Terupt = 1170°C, and a lava 

composition shown on the right. 

 

 

 

Note: For a more precise liquid viscosity model, you are welcome to 

use Giordano et al. (2008) instead of Eq. 6 throughout (not well suited 

for excel calculations but can be more easily done in Matlab). 

 

 

Step 3: Setting up the Heat Loss model 

 

We now need to calculate the heat loss per meter of advance. This will enable us to calculate 

core cooling with distance. First, we need to define our thermal surface.  

 

Thermal structure: We will use a two-component model (e.g. crust with temperature Tc and a 

core with temperature Th), where the effective radiation temperature of the flow surface (Trad) 

can be described by: 

 

Oxide wt.% 

SiO2 50.47 

TiO2 2.64 

Al2O3 13.11 

FeO 11.31 

MnO 0.17 

MgO 8.40 

CaO 11.02 

Na2O 2.39 

K2O 0.53 

P2O5 0.27 

F 0.056 

Cl 0.014 

H2O 0.076 
  

Total 100.45 



 
0.25

4 41rad surf hotT fT f T           (Eq. 7) 

 

And the effective convection temperature (Tconv) by: 

 

 
0.75

1.333 1.3331conv surf hotT fT f T          (Eq. 8) 

 

In which f is the surface fraction occupied by the cold component (crust) at temperature Tcrust 

(K). We discussed in class that in many cases, the exposed ‘hot’ parts of lava flows may not 

actually be as hot as the core (rapid formation of visco-elastic layer etc…). To account for this in 

our model, we will assume that the maximum temperature encountered at the surface is 

somewhat lower than the true core temperature. We will call this a temperature offset or buffer 

Tbuff, which one can express as: 

 

core hot buffT T T  , or, since we are interested in Thot for Eq. 7 and 8, 

 

hot core buffT T T         (Eq. 9) 

 

The crust temperature can be set to be constant through the model, or vary according to the Hon 

et al. (1994) model we discussed in class: 

 

  140 log 303 273.15surfT t           (Eq. 10a) 

 

Note that this is the Hon et al. 1994 expression simply converted to K. To solve this equation, we 

will need to estimate time (t) since the beginning of the flow emplacement using: 
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V x


          (Eq. 10b) 

 

Where Δx is our distance step and V(x) is the mean velocity at each distance increment. 

 

Note that through these instructions I’ll be using small deltas (δ) to express incremental changes 

(e.g. per meter, per degree), whereas big delta (Δ) refers to change integrated over a given value 

(e.g. over the 200 m distance step). For distance, ‘x’ refers to the position in x, and ‘X’ is the 

cumulative distance. 

 

We now need to estimate the fraction of crust f. Harris et al. (2007) proposed that crust growth 

depended on flow/channel velocity V (Eq. 1a and b) and followed an exponential growth law of 

form: 

 

   1 2expf V g g V        (Eq. 11) 

 



Where g1 and g2 are constants that depend on lava composition and properties (here taken to be 

0.9 and -0.16 respectively). Note that it is velocity variations here controlling the amount of crust 

cover. Alternatively, one can also set crust cover f to be constant downstream (0 to 1). 

 

Heat losses: We will only consider heat losses associated with radiation, conduction, and forced 

convection for this exercise. These are written: 

 

Forced convection: 

 

 air

force H air P conv ambQ C C U T T w        (Eq. 12) 

 

in which CH is the square of the ratio of wind speed to the slip speed of wind across the ground 

(taken to equal to 0.0036), air

PC  is the heat capacity of air (J kg-1 K-1), ρair is the air density, and U 

is mean wind speed (m s-1). Compared to the previous version you worked on for Project 3, the 

heat loss is integrated along the channel width (w is added) to get ‘sectional’ heat loss at different 

distances travelled (W m-1) instead of heat loss per unit area (W m-2). Also, the air density and 

specific heat capacities can be calculated using: 
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           (Eq. 13a) 

 

947 0.191air

P meanC T         (Eq. 13b) 

 

Note: These forms save you from checking the look up tables like you did in Project 3. 

 

Like in project 3, Tmean is the average temperature of the boundary layer: 

 

 0.5mean amb surfT T T         (Eq. 14) 

 

Radiation: 

 
4

rad radQ T w         (Eq. 15) 

 

Remember that T is in K, and that is the Stefan Boltzmann constant (5.67×10-8 W m-2 K-4) and ε 

is emissivity (~0.95 for lava).  

 

Conduction through base: 

core base
cond

base

T T
Q k w

h


         (Eq. 16) 

 

In which k is the lava thermal conductivity and core base

base

T T

h


 is the temperature gradient across the 

basal crust, with hbase the distance between the core interior and the point at which Tbase (here 



assumed to be 500°C) is reached. For hbase, we can assume that this distance is 19% of the total 

thickness: 

  

0.19baseh h          (Eq. 17) 

 

We previously assumed that thermal conductivity k was constant but it depends in fact on 

temperature and on porosity (or vesicularity ϕb in our case) of the lava. We will only account for 

the vesicularity-dependence, using (Peck 1978): 

 

 
2

1.929 1.554 bk           (Eq. 18) 

 

 

Heat budget and cooling rate 

 

In contrast to the scenarios we talked about in class, where there often is advection of new lava 

included in the heat budget, here, we will assume that there are no further advection heat gains 

(e.g. no more input of lava once we release our ‘control volume’). Thus:  

 

Qadv = 0 

 

As in Project 3, you can now calculate heat loss and core cooling per meter of advance 
T

x





using: 

 

 
force rad cond

bulk L

Q Q QT

x V hC w
T



 

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      

 

Where V is the mean flow velocity (m s-1), is ρbulk bulk lava density, CL is the latent heat of 

crystallization (3.5×105 J kg-1), 
T




 is the volume fraction of crystallization per degree cooling 

and h is flow depth (m).  

 

Assuming that effusion rate can be expressed as the product of width, depth, and velocity: 

 

rE whV          (Eq. 19) 

 

The degree of cooling is now: 
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force rad cond
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        (Eq. 20) 

 



This gives us core cooling per meter. To obtain the core temperature change over the x = 200 m 

step that we are considering, we can simply calculate: 

 

  
T

T x x
x




             (Eq. 21)   

 

Finally, we can use this change in temperature to update the core temperature for the next 

distance step: 

 

     core coreT x x T x T x         (Eq. 22) 

 

 

Crystallization rate 

 

By now you know that as lava flow temperature decreases crystallization occurs. Several 

assumptions can be made: (1) crystal content increases linearly with decreasing temperature (e.g. 

Harris and Rowland 2001), (2) crystal content increases linearly but at different rates depending 

on which phase(s) are crystallizing (e.g. Riker and Cashman 2009), or (3) Crystal content 

increases non-linearly (more realistic but requires more complex model inputs, e.g. from the 

MELTS program). Here, we will use assumption (2), where: 

 

From eruption temperature to 1160°C: 

 

0.00083
T




 K-1        (Eq. 23a) 

 

Below 1160°C: 

 

0.002
T
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
 K-1        (Eq. 23b) 

 

We can now calculate the mass fraction of crystallization per meter 
x




from: 

 

T

x x T
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To obtain total fraction of crystals grown for any given position we can use: 

 

   c cx x x x
x
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
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Step 4: Moving and evolving the control volume down flow 

 

We now need to move the control volume downslope, adapting the core temperature, 

crystallinity, yield strength, viscosity as we go (see flow chart for detailed ‘map’). We need to 

make the following changes: 

 

(1) We need to conserve mass. We will do this by assuming that depth is constant and width is 

variable. In short, the effusion rate at each point downflow (Er) should match the at-vent 

effusion rate i.e., 
rE whV . Thus, if V is varying and h is constant, w must vary to keep Er 

constant so that: 

 

rE
w

hV
          (Eq. 26) 

 

(2) Now we need to reduce the core temperature by ΔT. 

 

(3) Viscosity and yield strength will need to be recalculated using this new core temperature and 

the new crystallinity calculated. 

 

(4) Check that: 

 

- Your Thot calculation uses the new core temperature 

- Your fcrust calculation uses the new velocity 

- Your Trad and Tconv calculations use the new Thot and fcrust values 

- Your Qrad calculation uses the new Trad and w values 

- Your Qforce calculation uses the new Tconv and w values 

- Your Qcond calculation uses the new Tcore and w values 

- Your new 
T

x




 calculation use the new Qrad, Qforce, and Qcond values. 

- Your 
x




 calculation uses the new 

T

x




 value. 

 

(5) Finally, we need to add the new crystals grown to obtain a new total crystallinity by using: 

 

   c cx x x x
x


 


    

 
 

Step 5: Testing and applying the model 

 

To facilitate setting up your model and completing your mission, you are given the following: 

 

- An excel spreadsheet that contains labeled columns and rows as well as most input 

parameters.  

- Also in the same document, you’ve been given a set of field measurements (distance, width) 

of the channel to compare with your model outputs. 



- A stolen top-secret document from Tom’s computer that shows three rows of the table filled 

with what you might assume are the correct values (hopefully…). The damn CIA… 

- A summary of initial input parameters set (see Table) 

- A flow chart “cheat sheet” to remember the different steps involved and roughly the order to 

follow 

 

Model test 1:  

 

With the initial parameters given to you in the table, and assuming that crystals and bubbles are 

of similar sizes, run a first model up to 6000 m. 

 

Question 1a: Does your simulated flow reach 6000 m? Are the initial model conditions we used 

compatible with the observed distance of 6 km for the Mauna Ulu channel? 

 

Question 1b: Plot the downflow variations in: (i) Flow core temperature, (ii) Total crystallinity, 

(iii) Yield strength, (iv) Viscosity, (v) Velocity, (vi) the three main heat losses on one graph, and 

(vii) channel width on top of the measured field width data. For each plot, say in a couple 

sentences what you observe and how you might interpret the trend. 

 

Question 1c: Write down the effusion rate and velocity you obtain at the vent. Write down 

crystallinity that the maximum distance reached. 

 

Model test 2: 

 

For the channel to extend further downslope, we can change one or several parameters. From 

field estimates at a few locations, we initially assumed that channel depth was equal to width 

(1.9m). Let’s now make the channel deeper. 

 

Question 2a: Set h=5 m. Write down the effusion rate and velocity you obtain at the vent. Write 

down crystallinity that the maximum distance reached. How do those values compare to the 

shallower channel from Model 1? 

 

Question 2b: The 1974 flow was active for 50 hr, and emplaced lava over an area of ~1.38 km2, 

with and average thickness 3-7 m (Note: Thickness is not equivalent to flowing channel depth 

but rather represents accumulated basal unit, overflows, levees). The time-averaged discharge 

rate is therefore between 23-54 m3/s (Harris et al. 2009). How do your model 1 and 2 Er values 

compare with the TADR estimated from volume measurements? If they are different, 

explain why that might be. 

 

Model test 3: 

 

We know from our hike on the Mauna Ulu day that the 1974 flow was not fully channelized 

from the vent. A tube-fed portion of the flow extended from vent to ~1600m. Furthermore, we 

saw plenty of collapsed tube roofs along the way on the transitional part of the channel. But our 

model only applies to channelized flows right? Actually, we can simulate tube flow by 

artificially forcing the channel surface to be 100% crusted. You can do this by setting the 



fraction of crust f to 1. We are going to extend the tube-transported part of our model all the way 

down to 3600 m (not too far from the Chain of Craters road where we left the car). Andy Harris 

also measured tube heights from collapsed skylights of ~1.6 m, we will use this value for flow 

depth h. We will also need to set a lower, fixed surface temperature for the tube roof Tsurf = 60°C, 

i.e. assuming a fairly thick roof.  

 

Note: Remember to only assign these special ‘tube’ conditions (Tsurf, f) to the first 3600 m of your 

model, the remaining distance should be calculated in ‘channel’ conditions as in Models 1 and 

2. The height h= 1.6m will be the same for tube and channel. 

 

Question 3a: Is this tube-channel hybrid model still capable of feeding dispersed flows beyond 

6km? 

 

Question 3b: Like in Question 1, produce a set of plots of (i) Flow core temperature, (ii) Total 

crystallinity, (iii) Yield strength, (iv) Viscosity, (v) Velocity, (vi) the three main heat losses on 

one graph, and (vii) channel width on top of the measured field width data. For each plot, say in 

a couple sentences what you observe and how you might interpret the trend. 

 

Question 3c: How does the effusion compare with the other models and the estimated TADR for 

the eruption? 

 

Question 3d: Which of the three models do you prefer and why? 

 

 

 

 

 

Bonus/extra credit points: Change any other two (or more) parameter values of your choice and 

explain how/why they modify flow behavior. Remember to at write down Er, V, distance 

reached, or any other parameter you deem important for me to understand your model. 

 

 

 

 


