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Strikingly similar examples of edifice collapse and directed blast are the 18May 1980 eruption of Mount St. Helens
(MSH),Washington, USA, and the 30March1956eruptionof BezymiannyVolcano (BZ), Kamchatka, Russia. In these
cases, flank failures led to near-instantaneous decompression and fragmentation of intra-edifice cryptodome
magma, which produced catastrophic, laterally directed blasts. In both instances, the blast products consisted of
juvenile material with bimodal density/vesicularity distributions: low- and high-density modes at 1900 and
2400 kg m−3 for BZ, 1600 and 2300 kg m−3 forMSH, although the proportion of high-densitymaterial is greater at
BZ. Blast materials also exhibit striking variety in groundmass crystallinity (b40 to N90 vol.%) despite having fairly
uniform pheno-crystallinities, suggesting that degassing-driven groundmass crystallization occurred to varying
extents within cryptodome magma at both volcanoes. New bulk-rock H2O and ∂D measurements confirm that
progressive open-system outgassing occurred prior to both blasts. The correlations between crystallinity, clast
density, and bulk H2O contents suggest that syn-blast magma expansion was modulated both by non-uniform
volatile distribution within the cryptodome and rheological controls associated with non-uniform crystal content.
Spatial heterogeneities in volatiles and crystallinity within a given cryptodome are attributed to distance from the
wallrockmargin, which probably correlateswith timing ofmagma injection. The greater proportion of high-density
material at BZ is speculatively related to lower blast energy compared with MSH.
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1. Introduction

The similarities between the 30March1956 eruption of Bezymianny
Volcano (abbreviated hereafter as BZ), Kamchatka, Russia, and the 18
May1980eruption ofMount St. Helens (MSH) inWashington,USAhave
been noted by numerous authors (Lipman et al., 1981; Voight et al.,
1981; Cashman and Taggart, 1983; Bogoyavlenskaya et al., 1985;
Crandell and Hoblitt, 1986; Belousov, 1996; Belousov et al., 2007). Each
eruptive sequence began with pronounced deformation of the volcanic
edifice related to the emplacement of a shallow cryptodome, lasting
2 months atMSH and 4–6 months at BZ (Gorshkov, 1959; Lipman et al.,
1981). The cryptodome-relateddeformation eventually destabilized the
flank of each edifice, leading to edifice collapse and a subsequent
directed blast (Voight, 1981; Voight et al., 1981; Belousov and
Bogoyavlenskaya, 1988), distributed over an area of 500 km2 at BZ
and 600 km2 at MSH (Hoblitt et al., 1981; Moore et al., 1981; Belousov,
1996). Pyroclasts at both BZ and MSH are bimodally distributed with
respect to density and vesicularity (Hoblitt and Harmon, 1993;
Belousov, 1996). A climactic eruption, includingbothpyroclastic density
currents and an eruption column N20 km in height followed each blast
(Christiansen and Peterson, 1981; Belousov, 1996), and dome growth
subsequently occurredwithin the collapse crater (Alidibirov et al., 1990;
Cashman, 1992; Pallister et al., 2008).

Differences in thedensity andvesicularitydistributions of apyroclastic
deposit can result from contrasting syn-explosive fragmentation process-
es (e.g. Gurioli et al., 2005; Adams et al., 2006). Consequently, a better
understanding of cryptodome fragmentation may be achieved through
study of pre-explosive outgassing and crystallization processes preserved
in blast materials. This study examines and compares volatile distribu-
tions and crystallization conditions within the cryptodomes at BZ and
MSH prior to the directed blasts, and investigates the effects of these
conditions on the density distributions of blast pyroclasts.
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1.1. Mechanisms and products of directed blasts

The term “directed blast,” first coined by Gorshkov (1959) in
describing the 1956 BZ eruption, refers to a large, highly destructive,
laterally directed volcanic explosion or series of explosions, resulting
in a pyroclastic density current (Hoblitt, 2000; Belousov et al., 2007;
Voight et al., 2009). Directed volcanic blasts result from the
fragmentation of a shallow gas-pressured magma body, the emplace-
ment of which destabilizes the volcanic edifice (Gorshkov, 1959,
1963; Lipman et al., 1981; Voight, 1981; Voight et al., 1981; Belousov
and Bogoyavlenskaya, 1988; Belousov, 1996; Belousov et al., 2007).
The loss of confining pressure during an edifice collapse allows rapid
growth of pressurized bubbles, and fragmentation, driven by the
release of the gas pressure (Alidibirov and Dingwell, 1996). The
bubbles originated from volatiles released by magmatic degassing
during ascent and emplacement (Alidibirov, 1995; Navon et al., 1998).
Syn-eruptive diffusion of volatiles into bubbles may also occur, as
suggested by breadcrust bombs with low (~1200 kg/m3) internal
densities (Hoblitt et al., 1981; Alidibirov et al., 1997).

While flank failure can trigger eruptions of various types, the high-
energy directed blasts seen at BZ and MSH cannot be generated
without a volatile-rich, shallow magma body (Belousov et al., 2007).
For example, the 1964 eruption of Shiveluch in Kamchatka, and the
1933 eruption of Harimkotan in the Kurile Islands, included flank
collapses that were followed by Plinian eruptions with no directed
blast in between (Belousov et al., 2007). Other recent directed blasts
have been reported at Soufrière Hills Volcano, Montserrat (Ritchie
et al., 2002) and Augustine, Alaska (Siebert et al., 1995). Comparative
studies of the BZ and MSH blasts, as well as with other similar
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Fig. 1. (A,B) Density distributions for BZ and MSH (Belousov et al., 2007) respectively. N=t
distinguished at 2000 kg m−3 after Hoblitt and Harmon (1993), and colored grey and black, res
taken from the fractions indicated in (A), showing the qualitative differences in vesicularity and
OPX = Orthopyroxene, SiO2 = Quartz, Ox = Fe–Ti Oxides, Vesic = Vesicle.
eruptions (e.g. Bogoyavlenskaya et al., 1985; Belousov et al., 2007) can
help determine which features of directed blasts are ubiquitous, and
which are unique to individual eruptions.

The range in vesicularity among clasts at BZ and MSH confers
distinctions in coloration, with the dense clasts clearly darker. Thus in
early studies at MSH, such dense clasts were dismissed as accidental
until Hoblitt and Harmon (1993) demonstrated that they were indeed
juvenile. Whereas the MSH clasts span a continuous spectrum with
respect to density and vesicularity, the frequencies of dense and
vesicular clasts are bimodally distributed (Fig. 1). Thus Hoblitt and
Harmon (1993) divided the two density modes of the blast dacite at
MSH into “black” and “grey” categories, with black corresponding to
the dense clasts and grey the more vesicular, with a separation at
about 2000 kg/m3. Blast deposits at BZ also are bimodally distributed
(Fig. 1; Belousov, 1996; Belousov et al., 2007), although here the high-
density clasts contribute ~65 vol.% of the deposit, compared to 28 vol.
% at MSH (Hoblitt and Harmon, 1993; Belousov et al., 2007). The same
cutoff value of 2000 kg/m3 is used herein to differentiate the dense
and vesicular material from bothMSH and BZ blast deposits. However,
“low density” and “high density” are employed, because density – not
color – is the primary criterion distinguishing the two populations.

1.2. Volatile loss, crystallization and fragmentation of cryptodomes

Silicic dome lavas are outgassed relative to magma in crustal
storage reservoirs, primarily because of the dependence of volatile
solubility on confining pressure (e.g. Moore et al., 1998). Moreover,
H2O loss increases magma liquidus temperature and creates an
effective undercooling that drives crystallization (Westrich et al.,
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1988; Swanson et al., 1989; Geschwind and Rutherford, 1995;
Hammer and Rutherford, 2002), as has been inferred for domes at
MSH (Cashman, 1992; Blundy and Cashman, 2001), Unzen (Nakada
and Motomura, 1999) and Merapi (Hammer et al., 2000).

The style and history of magma outgassing influences how bubbles
within a melt expand during explosive fragmentation, and ultimately
controls the post-eruptive clast densities and vesicularities. Hoblitt
and Harmon (1993) concluded that heterogeneous volatile loss
through the permeable margins of the MSH cryptodome was the
cause of the bimodal clast density distributions, whereby the magma
destined to become the high-density material had lost sufficient
volatiles during ascent and storage within the cryptodome to prevent
syn-blast vesiculation. This conclusion was supported by Alidibirov
et al. (1997), who suggested that the heterogeneous outgassing prior
to fragmentation led to a heterogeneous distribution of bubbles
within the MSH cryptodome prior to fragmentation, and that this
variation in vesicularity was preserved upon fragmentation. Thus the
material that remained dense was volatile-poor prior to the blast, and
experienced no syn-blast bubble growth, while material that
expanded fragmented the cryptodome. Crystallization, and specifi-
cally changes in crystal content, can also exert control on vesiculation.
Klug and Cashman (1994) demonstrated that increased pre-fragmen-
tation microlite contents restricted bubble growth in MSH grey
pumice to a degree not seen in the relatively crystal-poor white
pumice.

While the high groundmass crystallinity and pervasive cracking of
both BZ andMSH blast material precludes the study of vesicle textures
to understand syn-fragmentation vesiculation processes (e.g. Adams
et al., 2006), the solid phases in the blast products remain sufficiently
pristine to enable investigation of volatile and crystallization condi-
tions within the BZ cryptodome and allow these conditions to be
compared to both new and previously published estimates of these
conditions at MSH. Therefore, the specific goals for this study are to
compare the pre-blast outgassing at BZ to the better-established
models for MSH; to investigate the effects of degassing (transfer of
volatile species from melt to bubbles) and outgassing (the transfer of
volatiles from the magma body to the external ambient environment)
on the bulk and groundmass crystallinity and phase compositions at
both BZ and MSH; to evaluate the effects of pre-blast outgassing and
crystallization on bubble expansion during fragmentation, in light of
existing models; and to investigate the effects that outgassing and
crystallization have on the post-eruptive clast density distributions.

2. Methods

2.1. Sampling and density/vesicularity measurements

BZ blast products were sampled in 2008 from two locations to the
southwest of Bezymianny Volcano (Fig. 2). At least 110 juvenile clasts
from 16 to 32 mm were sampled at each location. Clast density and
vesicularity were calculated using the method of Houghton andWilson
(1989), using silicone spray as awaterproofingmediumand assuming a
dense-rock equivalent (DRE) value of 2700 kg/m3 for both MSH and BZ
(Hoblitt and Harmon, 1993; Belousov et al., 2007). Seven MSH clasts
were taken fromthe sample set of Belousov et al. (2007, locations shown
in Fig. 2). At both MSH and BZ, only juvenile material was sampled;
accidental clasts were discarded. Representative clasts from each
sample suite were chosen for bulk H2O analysis, representing modal,
minimum, maximum and intermediate density values (Fig. 1). Clasts
were also selected for standard petrographic analysis of phase
proportions and compositional analysis of glass and feldspar.

2.2. Electron microprobe analysis

All analyses of phase compositionswere performed on the JEOL JXA-
8500F Field Emission Hyperprobe at the University of Hawaii - Manoa,
using a 15 keV electron beam and beam current of 10 μA (15 μA for
plagioclase). Na- and K-loss aswell as Si “grow in” (Morgan and London,
1996)were correctedusingTime-Dependant Intensity (TDI) corrections
incorporated in ProbeForWindows software (Donovan et al., 2007), and
by analyzing Si, Na and K first. Concentrations were obtained from raw
counts using a ZAF intensity correction. Samples were chosen from
across a range of densities in order to evaluate differences in phase
chemistry among clasts of differing bulk density and crystallinity.
Further details of electron microprobe methodology are included in
Appendix A.
2.3. Bulk-rock H2O measurement

Bulk H2O contents were obtained through Karl Fischer Titration
(KFT) at the University of Alaska Fairbanks using a Mitsubishi
coulometric moisture meter, model CA-06, v. 4.2, coupled with VA-21
vaporizer. Clasts were crushed to ≤200 μm and pre-dried overnight at
110 °C in a vacuum oven. 15–20 mg of powder were then heated in the
VA-21 for 15 min at 150 °C todrive off any remaining adsorbedH2O, and
heated again at 1000 °C to release H2O fromhydrous phases. Desiccated
N2 gas carried the liberated H2O into the titration cell; the reaction
between H2O and iodine, generated coulometrically in the titration cell,
allowed for quantitative H2O measurement (Behrens, 1995; Kato,
1999). Raw analyses were corrected against frequent measurements
of standard WW2 (Westrich, 1987, 0.324 wt.% H2O); these measure-
ments were also used to calculate analytical uncertainty. Analyses were
corrected for H2O unreleased from hydrous phases at 1000 °C (e.g.
Behrens and Stuke, 2003); further details are included in Appendix B.
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2.4. Manometry

The deuterium/hydrogen ratio of a volcanic rock can reveal its pre-
eruptive degassing history (e.g. Taylor, 1986). Amphibole H2O content
and bulk-rock hydrogen isotopic content of a subset of BZ blast clasts
were obtained by manometry at the Université de Lausanne. Because
of the difficulties of accurately measuring D/H ratios in samples with
low bulk H2O (b0.15–0.2 wt.%, Dr. T.W. Venneman, pers. comm.) and
possible kinetic effects on D/H partitioning at low H2O contents
leading to anomalous deuterium enrichment (Anderson and Fink,
1989), samples yielding b0.25 wt.% H2O were not included in
interpretations. Samples were analyzed with a TC-EA coupled to a
DeltaPlus XL isotope ratio mass spectrometer (IRMS). 5–10 mg of
powdered sample (≤120 μm) were dried at 150 °C, then heated
rapidly in flowing He gas to 1450 °C, liberating H2 from H2O. The
flowing He gas carried the liberated H2 into the IRMS. Five BZ blast
clasts were analyzed for hydrogen isotopes using the method of Sharp
et al. (2001); amphibole H2O content was determined using the
method of Vennemann and O'Neil (1993) on a separate from the MSH
white pumice clast SH-084 (described by Rutherford et al., 1985).
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3. Results

3.1. Bulk-rock compositions

Bulk-rock compositions, obtainedbyX-rayfluorescence (AppendixA),
are the same for low-andhigh-densityBZblastmaterials (Table1).Aswas
the case at MSH (Hoblitt and Harmon, 1993), BZ low- and high-density
materials are chemically indistinguishable not only from each other but
also from post-blast juvenile pumice produced during later phases of the
climactic eruption (Belousov, 1996; Ozerov et al., 1997), indicating that
each of these components is derived from the same juvenile magma.
Physical differences between the low- and high-density materials at BZ
are thus interpreted as the result of post-formation crystallization and
vesiculation processes – a finding that echoes Hoblitt andHarmon (1993)
for MSH – rather than as the differences between separate magmas
erupted simultaneously.
Table 1
Bulk XRF chemical analyses of BZ blast andesite. Oxides are in wt.% with all Fe as Fe2O3,
trace elements in ppm.

Low/high density LD LD LD LD HD HD

SiO2 60.5 61.1 60.3 60.7 61.0 61.0
TiO2 0.63 0.61 0.59 0.59 0.62 0.58
Al2O3 18.4 18.3 17.8 17.5 18.3 18.6
Fe2O3

* 6.77 6.68 6.46 6.48 6.82 6.55
MnO 0.15 0.15 0.14 0.14 0.15 0.14
MgO 2.73 2.50 2.75 2.71 2.65 2.38
CaO 6.91 6.65 6.54 6.30 6.68 6.75
Na2O 3.08 3.09 3.60 3.50 3.11 3.08
K2O 1.22 1.26 1.30 1.32 1.25 1.24
P2O5 0.18 0.18 0.18 0.18 0.18 0.19
Total 100.5 100.4 99.7 99.4 100.7 100.5
LOI 0.26 0.30 0.25 0.41 0.01 −0.04
Sc 10 9 9 10 10 8
V 76 62 61 65 69 63
Co 8 7 8 7 8 7
Ni 6 5 9 6 8 4
Zn 72 71 66 66 71 71
Rb 24 25 27 27 25 25
Sr 354 355 354 340 353 365
Y 20 20 19 20 19 19
Zr 110 113 113 120 114 113
Ba 265 275 295 294 271 273
Pb 3 3 3 2 3 3
3.2. Phase proportions

Phase modes for BZ and MSH blast material were determined
from manual point counting of thin sections and backscatter
electron images (Appendix A). Perhaps the most striking observation
to be drawn from the phase proportions (Table A4-1) is the strong
correlation between density and groundmass crystallinity, with dense
material having significantly higher groundmass crystal content than
less dense material (Fig. 3). As phenocryst populations are sub-equal
in both BZ and MSH clasts (Table A4-1), the elevated groundmass
crystal contents of the high-density material imply elevated bulk
crystal contents (Fig. 3); only one high-density clast is less than 80%
crystalline, while no low-density material exceeds 80%. Also note-
worthy is that one of the dense MSH clasts is holocrystalline.

3.3. Bulk and glass H2O contents

Analyses of BZ material (Fig. 4) indicate a somewhat similar result
to the findings of Hoblitt and Harmon (1993) for MSH clasts, although
the difference between high- and low-density material in terms of
both bulk and glass H2O content seems less clear (Fig. 4). Using the
method of Alidibirov et al. (1997), glass H2O contents can be
estimated by mass balance, whereby the bulk H2O content of a clast
is a function of the hydrous phases it contains:

XH2O
WR = XH2O

Hbl * XHbl
WR

� �
+ XH2O

Glass * XGlass
WR

� �
: ð1Þ

Hornblende (Hbl) and Glass are the hydrous phases, XHBL and XGlass

are the weight fractions of that phase in the material of interest in the
bulk rock (WR), and the XH2O terms represent the weight fraction of
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H2O in the designated hydrous phase or bulk rock. Solving for the H2O
concentration in glass by algebraic manipulation:

XH2O
Glass =

XH2O
WR − XH2O

Hbl * XHbl
WR

� �

XGlass
WR

: ð2Þ

Post-blast glass H2O contents are derived for all BZ and MSH clasts
analyzed by KFT (Fig. 4).

The numerous uncertainties associated with each parameter on the
right side of Eq. (2) lead to fairly large uncertainties in calculated glass
H2O contents. The uncertainties associated with the calculation, ±0.3–
0.9 wt.%, generally compare favorably to the uncertainties associated
with estimating glass H2O contents by electron microprobe as the
difference between analytical totals and 100% (±0.7 wt.%, Devine et al.,
1995;±1 wt.%, Kinget al., 2002).However, they are still large relative to
calculated concentration values. Nevertheless, the average calculated
glass H2O content at BZ (~1–1.5 wt.%) and the value calculated by
Alidibirov et al. (1997) for MSH glass (~1 wt.%) are (as expected) well
below the initial melt H2O contents of 5–6 and 4.6 wt.% for BZ andMSH,
respectively (Kadik et al., 1986; Rutherford et al., 1985). Blast products
at both sites are significantly outgassed with respect to initial magma-
storage values.

Glass H2O contents can be used to estimate minimum pressures
within the volcanic edifices prior to eruption. The average calculated
glass H2O concentrations correspond tomelt H2O solubility pressures of
~10–20 MPa (Moore et al., 1998). Of course, the measurements cannot
include volatiles lost during the blast by diffusion into new or pre-
existing vapor bubbles. However, Navon et al. (1998) suggest that
nucleation could be severely restricted in relatively degassed, viscous
silicic magmas such as those in the BZ andMSH domes, while Alidibirov
(1995) and Alidibirov et al. (1997) suggest that syn-eruptive mass
transfer to pre-existing bubbles could benegligible, especially in smaller
clasts. However, the 10–20 MPa range is consistent with the pre-blast
conditions assumed for MSH by the models of Kieffer (1981a) and
Alidibirov (1995), andwith estimates of pre-blast lithostatic pressure at
MSH (Eichelberger andHayes, 1982). Notably, the release of 10–20 MPa
of confining pressure is sufficient to fragment all but the densest
pyroclastic material ejected by the blast stages of both volcanoes
(Spieler et al., 2004).

3.4. Phase compositions

BZ clasts exhibit subtle evolution in plagioclase compositions
between the low- and high-density materials (Fig. 5, Table A4-2).
While microlites in low- and high-density clasts span approximately
the same range of An contents (roughly An30–An50), high-density
clasts have microlites with 2–3 mol% higher Or contents at a given An
content. At MSH, the distinction between microlites in low- and high-
density materials is less clear (Fig. 5, Table A4-2); microlite
compositions are similar between across all densities, although the
most albitic grains all occur in the densest, holocrystalline clast.

BZ glasses (Table A4-3) progress from more primitive to more
evolved compositions with increasing clast density and crystal
content along the 0.1 MPa cotectic (Fig. 6), indicating melt evolution
driven by low-pressure crystallization (Blundy and Cashman, 2001).
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MSH glasses (Table A4-3) also progressively evolve with increasing
crystallinity (Fig. 6). However, unlike BZ, compositions “overshoot”
the 0.1 MPa cotectic, and are supersaturated with silica.

3.5. Hydrogen isotopes

Hydrogen isotopic compositions of eruptive products are modified
frommagma reservoir values by open- and closed-system fractionations
due to degassing prior to the blast (Taylor et al., 1983; Taylor, 1986;
Newman et al., 1988; Dobson et al., 1989; Hoblitt and Harmon, 1993;
Harford et al., 2003). Fractionation paths are modeled for BZ (see
Appendix C for model details), assuming an initial ∂D value for BZ melt
of−45‰ (Pineauet al., 1999), andan initialmeltH2Ocontentof 5.5 wt.%
(Kadik et al., 1986), and compared to the fractionation curves of Hoblitt
and Harmon (1993). Although the sample set for BZ is limited, ∂D data
for both blast and post-blast material is best explained by shallow open-
system fractionation (Fig. 7), related to the outgassing of the cryptodome
material during ascent, emplacement and storagewithin the edifice. This
is also the case for MSH (Hoblitt and Harmon, 1993).
4. Discussion

4.1. Origin of holocrystalline MSH material

Holocrystalline non-juvenile material is present in the MSH blast
deposits; thus, the juvenile nature of the clast analyzed here must be
verified. The holocrystalline high-density MSH clast (Fig. 3) shows no
signs of alteration, and is indistinguishable in hand specimen from
other high-density dacite. This clast contains the same phase
assemblage of plagioclase, orthopyroxene, quartz, amphibole with
well-developed reaction rims, Fe–Ti oxides, trace apatite and K-
feldspar, as found in other 1980 MSH eruption products (Rutherford
et al., 1985; Rutherford and Hill, 1993). The compositions of
plagioclase crystals span the same range (though also extending it)
as in glass-bearingMSH blast clasts (Fig. 5). This clast was analyzed for
major element chemistry by XRF, and has almost the exact same
major element composition as the low-density and glass-bearing
high-density MSH material reported both herein (Table 2) and in
Hoblitt and Harmon (1993). Therefore, this holocrystalline clast is
interpreted as juvenile MSH material that attained 100% crystallinity.
At 880 °C (the inferred magmatic temperature for MSH, Rutherford
et al., 1985), and under very low-pressure (10–20 MPa) conditions,
MSHmagma is at near-solidus, or possibly sub-solidus conditions (see



Table 2
Comparative XRF analyses of holocrystalline and glass-bearing MSH blast dacite. Oxides
are in wt.% with all Fe as Fe2O3.

Vol.% crystals 69 69 69 78 100

SiO2 64.7 65.0 64.9 64.7 64.4
TiO2 0.64 0.62 0.63 0.59 0.64
Al2O3 17.3 17.6 17.4 17.6 17.2
Fe2O3

* 4.49 4.52 4.52 4.56 4.52
MnO 0.07 0.08 0.08 0.08 0.07
MgO 1.78 1.79 1.87 1.86 1.86
CaO 4.87 4.89 4.80 4.92 4.89
Na2O 4.60 4.49 4.59 4.41 4.59
K2O 1.36 1.35 1.36 1.33 1.33
P2O5 0.09 0.09 0.10 0.10 0.08
Total 99.9 100.4 100.2 100.1 99.6
LOI 1.09 0.80 0.67 0.14 −0.01

0.00

0.10

0.20

0.30

0.40

W
t.

 %
 H

2O
 (

G
la

ss
)

0.00

0.50

1.00

1.50

2.00

 0.40  0.60  0.80   1.00

W
t.

 %
 H

2O
 (

B
u

lk
)

A

B

BZ MSH

High-ρ

Low-ρ

0.50

Groundmass φ

Fig. 8. Groundmass crystal fraction (ϕ) of BZ andMSH blast material related to bulk (A) and
glass (B) H2O content. More degassed material generally shows higher crystal contents than
more volatile-rich clasts, though this is not uniformly the case.

270 O.K. Neill et al. / Journal of Volcanology and Geothermal Research 198 (2010) 264–274
Fig. 3 of Rutherford and Hill, 1993). The holocrystalline clast probably
represents a portion of the MSH blast material that approached
equilibrium at sub-solidus conditions, and may represent some of the
first-intruded magma, which had the longest time to crystallize
within the cryptodome.

4.2. Evolution of crystallinity and phase compositions

The progression of groundmass glass compositions towards more
evolved compositions with increasing density and groundmass
crystallinity (Fig. 6) probably results from progressive crystallization,
which leads to the disparity in overall crystal content between low-
and high-density materials. Primitive MSH matrix melt compositions
from the most vesicular, least crystalline low-density material studied
here are similar to the most evolved grey Plinian clasts analyzed by
Blundy and Cashman (2001) and are more silica-rich than would be
expected even at 0.1 MPa (Fig. 6). Crystallization of quartz in the
groundmass then returns the MSH samples to cotectic proportions in
more microlite-rich material, with the initial silica excess a result of
the kinetically-induced “lag” in quartz nucleation and crystallization
observed by Brugger et al. (2003). At BZ, no such overshoot is
observed; quartz is nearly ubiquitous in the post-blast Plinian-phase
samples (Gorshkov and Bogoyavlenskaya, 1965; Plechov et al., 2008),
indicating that the onset of quartz crystallization probably occurred
earlier (with respect to melt differentiation) than at MSH. Instead, BZ
matrix melt evolves essentially along the 0.1 MPa cotectic with
increasing crystallinity.

While cooling-induced crystallization has been observed in other
shallow magma bodies such as dikes (e.g. Cashman, 1993) and lava
lakes (e.g. Wright and Okamura, 1977), it seems unlikely to be the
cause of the compositional evolution of BZ and MSH glasses. Direct
and remote measurements of temperatures within post-1980 MSH
extrusive domes were consistent with measurements of magmatic
temperatures by mineral geothermometers (Rutherford et al., 1985),
indicating that the temperature in the interior of such domes does not
deviate much from crustal magmatic storage conditions over time
scales comparable to the periods leading up to the BZ and MSH blasts
(Dzurisin et al., 1990; Schneider et al., 2008). Furthermore, the latent
heat released due to crystallization is likely to be significant in these
domes, and could also serve to counteract any effects of cooling
(Blundy et al., 2006), either by adiabatic gas expansion (e.g. Sparks
and Pinkerton, 1978) or heat loss to the ambient country rock. Based
on both conductive cooling models and cooling rates determined by
studies of progressive magnetization (Dzurisin et al., 1990), Hoblitt
and Harmon (1993) estimate that the chilled margins of the BZ and
MSH cryptodomes would be no wider than a few meters, probably
accounting for b5% of the total volume of each cryptodomes. The same
geometry is assumed here for the BZ cryptodome. Because the high-
density material accounts for ~65% of the total volume of juvenile
products at BZ (Belousov et al., 2007) and 28% of the deposits at MSH
(Hoblitt and Harmon, 1993), it is unlikely that cooling-driven
crystallization could generate the crystallinity disparity between
low- and high-density materials (Figs. 3, 8). Hoblitt and Harmon
(1993) assumed that the MSH cryptodome was a near-spherical body
cooling from the outside, a reasonable approximation given the
geometry, endogenous growth and cooling behavior observed in non-
fragmented silicic cryptodomes (e.g. Goto and McPhie, 1998; Stewart
and McPhie, 2003). Furthermore, magma emplacement flux was
highest in the earliest stages of cryptodome emplacement (Voight
et al., 1981), implying that the rudimentary geometry of the
cryptodome was likely established early in the cryptodome-building
stage.

Cashman (1988, 1992) inferred magmatic degassing as the likely
driving force for groundmass crystallization within the MSH dome. The
same process is probably operative at BZ, and therefore the difference in
groundmass crystallinity between low- and high-density materials likely
reflects the differential degassing of BZ and MSH cryptodome melts
(Fig. 8). The degassing of cryptodome magma at both MSH and BZ led to
an increase in liquidus temperatures, resulting in an effective under-
cooling that drove microlite growth (e.g. Geschwind and Rutherford,
1995). At both BZ andMSH, degassing of the decompressedmagma body
appears sufficient to drive groundmass crystallization within the entire
cryptodome (Cashman, 1992). Furthermore, assuming the magma
intruding into the cryptodomes was fairly homogeneous (Gorshkov and
Bogoyavlenskaya, 1965; Plechov et al., 2008), more time would be
required to achieve the highly evolved melt compositions and crystal-
linities (Fig. 3) observed inhigh-densitymaterial. Thus, theportions of the
cryptodomemagma that became high-density pyroclastic material likely
experienced longer residence time in the cryptodome.

4.3. Models for the formation of bimodal density distributions

The origin of bimodal density distributions associated with directed
blasts has been addressed previously in varying degrees of detail
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(Hoblitt andHarmon,1993;Alidibirov et al., 1997;CashmanandHoblitt,
2004; Belousov et al., 2007). Thedominantmechanism is inferred to bea
heterogeneous distribution of volatileswithin cryptodomemagmaprior
to fragmentation. This interpretation is partly supported by the data
presented herein (Fig. 4). If portions of themagma that remained dense
lackedboth volatiles and vesicles prior to the blast (Hoblitt andHarmon,
1993; Alidibirov et al., 1997), it would be impossible for these portions
to experience bubble growth during fragmentation. However, the new
measurements of crystallinity (Fig. 3) and bulk H2O (Fig. 4) suggest that
another process is also important.

The amountof volatile energy stored in cryptodomebubbles cannotbe
quantified accurately fromanalysis of blast depositmaterial. However, the
variety of post-blast volatile contents of BZ and MSH material does
indicate that portions of the cryptodome magma retained significant
volatiles, while other portions were completely outgassed and conse-
quently lost the potential for bubble expansion and fragmentation syn-
blast. Admittedly, some of the high-density material is volatile-poor (i.e.,
b0.2 wt.%) compared to low-density clasts (≥0.2 wt.%; Fig. 4). However, a
majority of high-density clasts analyzed contains bulk H2O comparable in
concentration to that of low-density clasts (0.3–0.4 wt.%). In fact, the bulk
H2O contents of low- and high-density BZ andMSHmaterials analyzed in
this study and by Hoblitt and Harmon (1993) range from ~0.2–1 and
~0.05–0.75 wt.%, respectively (Fig. 4A). The glassH2Ocontents of the low-
and high-density materials may range from ~0.5 to 1.5 and ~0 to 3 wt.%,
respectively (Fig. 4B), allowing for the high degrees of uncertainty and
assuming syn-eruptive mass transfer is minimal (Alidibirov et al., 1997).
In other words, there is no sharp contrast in bulk or glass H2O between
low- and high-density materials at BZ and MSH; instead, the significant
overlap in both glass and bulk H2O indicates that a portion of the high-
density material at BZ and MSH had not outgassed, and like the low-
density material, was volatile-charged prior to the fragmentation. If
volatile content is thedominant controlling factor indeterminingwhether
or not a clast experiences bubble expansion during a volcanic blast, why
then did some volatile-charged material not experience syn-blast bubble
expansion?

Quenching due to cooling along the margins of the cryptodome
potentially locks in elevated volatile contents. Of the BZ and MSH
high-density material, ~65 and 70% respectively of clasts analyzed
have bulk H2O contents greater than 0.2 wt.% H2O, the lower limit
of the vesiculation threshold proposed by Hoblitt and Harmon (1993),
and, ~20 and 30%, respectively, of clasts analyzed have bulk
H2O N0.3 wt.% (the median threshold value). As has been noted,
high-density clasts are 65 and 28% of the total volume of juvenile blast
material from the BZ and MSH eruptions (Hoblitt and Harmon, 1993;
Belousov et al., 2007). Therefore if this sample set is assumed to be
representative, ~10–40 and 9–20 vol.% of the BZ and MSH crypto-
domes, respectively, would have consisted of magma that remained
dense, despite having volatile contents potentially sufficient to
vesiculate during decompression. The calculations of Hoblitt and
Harmon (1993) showed that the quenched margins account for no
more than 5% of the cryptodome (and possibly quite a bit less). Thus,
while post-emplacement quenching along cryptodomemargins could
account for some of the volatile-rich high-density material, it cannot
account for all of this material.

Many factors have been identified as important in controlling the
rheology of magmas in volcanic environments. At high solid fractions
(ϕN0.5), magmas are non-Newtonian substances, with behavior
dependent on strain rate (Stevenson et al., 1996; Vigneresse and
Tikoff, 1999; Lavallée et al., 2007) and on the rate of applied stress
(Dingwell, 1997). The viscosity of the interstitial melt is less
influential at higher solid fractions (Lavallée et al., 2007), although
it does play some role and can vary over several orders of magnitude
depending on melt H2O content and temperature (Giordano et al.,
2008). Crystal size and shape, and heterogeneities therein, control the
effects of crystal–crystal interactions on rheology, such as the onset of
non-Newtonian behavior and development of yield strength (Yu and
Standish, 1993; Hoover et al., 2001; Ishibashi and Sato, 2007).
Although models for the rheological behavior and emplacement of
highly crystalline magmas continue to improve (Costa et al., 2009;
Massol and Jaupart, 2009), no widely-accepted standard model exists
for how highly crystalline magmas respond to applied stress.
Nevertheless, assuming all other parameters (applied stress, temper-
ature, melt viscosity, etc.) are equal, a more crystalline magma is
unquestionably more viscous than a less crystalline magma (Petford,
2003).

As the phenocryst proportions are approximately equal across the
range of clast densities, variations in the bulk crystallinity of BZ and
MSH blast material arise from variations in groundmass crystallinity
and are correlative with clast density (Fig. 3). In fact, the bulk
crystallinity shows a continuum very similar to the density trend seen
in BZ and MSH blast material. If 2000 kg/m3 is the threshold between
low- and high-density materials (Hoblitt and Harmon, 1993), then all
low-density material falls in the range ϕ̣=0.70–0.78, while all high-
density material with a single exception gives ϕ≥0.80 (Fig. 3). In
absolute terms, this range of crystallinity is small. Yet at high crystal
fractions, the difference in bulk viscosity between magma with
ϕ̣=0.70 and ϕ̣=0.80 could be as much as a few orders of magnitude
(Figs. 2 and 3 of Costa et al., 2009, and references therein). Increased
magma viscosity inhibits bubble growth (Thomas et al., 1994;
Toramaru, 1995; Barclay et al., 1995; Proussevitch and Sahagian,
1998), which suggests that rheological factors might have retarded
vesiculation of highly crystalline magma during cryptodome frag-
mentation (Fig. 9). The crystallinity threshold between low- and high-
density materials is similar to the Particle Locking Threshold (PLT) of
Vigneresse et al. (1996). The PLT occurs at ϕ̣N0.70–0.75 (or possibly
higher, depending on the sizes and shapes of the crystals), above
which the melt phase loses connectivity, and the rheology of the
magma passes from Bingham fluid behavior to plastic, high yield-
strength solid behavior (Vigneresse et al., 1996; Hrouda et al., 1999).
The PLT is formulated for magmas crystallizing and deforming in a
plutonic setting, and may not be strictly relevant to volcanic blasts, in
which the applied rates of strain are exceedingly high. However, the
loss of melt connectivity at ϕ̣~0.75 could represent a point where
crystal–crystal interactions prevent vesicles from expanding during a
volcanic blast, thus giving rise to high-density clasts.

4.4. Implications for clast density distributions

Thresholds in crystallinity and volatile content may explain why
the relative abundances of the low- and high-density materials at BZ
contrast with those at MSH. At BZ, the high-density mode is dominant
(~65 vol.% Belousov et al., 2007), while at MSH the low-density mode
is dominant (~72 vol.%, Hoblitt and Harmon, 1993) and is slightly less
dense than the BZ low-density material (Fig. 1). Magma flux probably



272 O.K. Neill et al. / Journal of Volcanology and Geothermal Research 198 (2010) 264–274
peaked in the early stages of cryptodome formation (Voight et al.,
1981; Belousov et al., 2007). At BZ, this magma would have had more
than four months to outgas and crystallize – a process made easier by
the exposure of a small portion of the dome at the summit (Belousov,
1996) – while MSH magma would have had only two months. If the
BZ magma was in the cryptodome longer and could outgas more
easily, it would have had more time to outgas and crystallize beyond
the volatile and crystallinity thresholds for bubble expansion. Thus,
the dominance of the high-density mode and the slightly higher
density of the low-density ejecta at BZ compared with MSH are
plausibly attributed to differences in residence time. Furthermore, if
cryptodome growth was pseudo-endogenous (filled from within, e.g.
Goto andMcPhie, 1998)–as opposed to pseudo-exogeneous, or lobed–
magma in contact with wall rock would have been both oldest with
respect to injection age and more susceptible to gas loss (cf. Hoblitt
and Harmon, 1993).

4.5. Implications for eruptive style

The H2O preserved in the glasses of blast materials (0.05–2.0 wt.%)
is dwarfed by H2O dissolved in melt at reservoir conditions (≥5 wt.%).
However, while this difference represents the H2O lost during ascent
and emplacement, analytical methods do not permit evaluation of the
amount of H2O present in crypodome magma bubbles, which would
be necessary for full accounting of the H2O budget for these eruptions.
Rather, this analysis of blast materials concerns the processes giving
rise to bimodal distribution of pyroclast densities and the conundrum
of excess dissolved volatiles that remain in the clasts despite having
been available to drive vesiculation.

The negative correlation between crystal content and syn-blast
vesiculation could have significant effects on eruptive style in a
variety of volcanic settings. Spieler et al. (2004) showed that the
amount of energy necessary to fragment a melt increases with
decreasing melt porosity. If high crystal contents exert some control
over bubble expansion, then the efficiency of magma fragmentation
will be in part controlled by the crystallinity of that magma. Belousov
et al. (2002) report the occurrence of similar control during the 1997
eruption of BZ, where the high crystallinity and limited vesiculation of
juvenile material ejected in the opening phases of the eruption
favored the production of block-and-ash flows, while the introduction
of less crystalline, more volatile-charged magma rapidly ascended
from depth enabled reduced clast porosities, less dense eruption
mixtures, and the development of a partially stable eruption column.
The differences in textures reflect mainly the microlite content of the
groundmass. Similarly, Gardner et al. (1998) proposed that crystal-
lization, driven by degassing, increased the energies required for
fragmentation during the 1992 eruption of Crater Peak, Alaska;
eruption termination was attributed to the magma becoming too
crystalline, and by extension, too viscous, to fragment (Gardner et al.,
1998).

These observations could be relevant to the BZ and MSH blasts. To
what degree does magma outgassing and crystallization, prior to the
fragmentation of a silicic cryptodome, influence the forces that propel
a directed blast? Although the BZ blast deposit is volumetrically larger
than MSH, and was produced by a larger cryptodomemass, it covered
an area ~100 km2 smaller (Hoblitt et al., 1981; Belousov, 1996;
Belousov et al., 2007), and was less widely dispersed in lateral
directions (Fig. 2). Furthermore, the MSH blast encountered topo-
graphic features that impeded transport, though they may also have
promoted lateral expansion (Hoblitt et al., 1981; Voight et al., 2009),
whereas the BZ blast traveled across less irregular, more steeply
dipping terrain (Belousov et al., 2007). Was the BZ blast less
powerful? BZ contained a much higher proportion of dense clasts
(Belousov et al., 2007), with corresponding high bulk crystallinity and
lower bulk volatile content in cryptodome magma. This could suggest
that the blast would have been less energetic per unit mass at BZ,
compared to MSH, because the cryptodome magma possessed less
potential volatile energy for expansion, and was less efficient in
expelling the stored energy it did possess. Conversely, the grain size
distributions of the BZ and MSH blast deposits are very similar, with
the BZ blast deposits being very slightly finer overall (Belousov et al.,
2007); this could indicate that the BZ blast was actually more
powerful, causing more efficient fragmentation of the cryptodome
magma, and resulting in finer-grained deposits. Further advanced
models of blast dynamics at MSH and BZ will be useful in addressing
these questions (cf. Kieffer, 1981b; Esposti Ongaro et al., 2008; Voight
et al., 2009).

5. Conclusions

Heterogeneity in the open-system outgassing of the cryptodome at
BZ qualitatively mirrors that observed at MSH (Hoblitt and Harmon,
1993). At both BZ and MSH, interstitial melt in blast material is
significantly degassed relative to initial magma-storage conditions at
depth. While a portion of the high-density clasts are more outgassed
than low-density material at bothMSH and BZ, a significant portion of
high-density clasts appears to contain bulk volatile (H2O) contents
comparable to low-density clasts. Glass H2O contents are also similar,
though they must be considered within the bounds of measurement
precision and error. Therefore the high-density portion of these blast
deposits can only be partially ascribed to inhomogeneous outgassing.
Melt degassing in the volcanic edifices of both BZ and MSH probably
drove significant crystallization after the formation of the crypto-
dome. This crystallization is reflected in the heightened groundmass
crystallinity (and, consequently, bulk crystallinity) of high-density
relative to the low-density material, and in glass compositions, which
become progressively more evolved with increasing clast density.

The difference in crystal content between low- and high-density
materials suggests a link between heightened crystallinity and syn-
blast vesiculation process, such that some of the high-density material
derived from a portion of the cryptodome magma that was unable to
experience bubble growth during the blast due to rheological
considerations (Fig. 9), despite being relatively rich in volatiles. The
remaining high-density material derived from cryptodome magma
that did not vesiculate during the blast due to extensive outgassing
prior to fragmentation (e.g. Hoblitt and Harmon, 1993). The longer
cryptodome-building period at BZ, and themore open nature of the BZ
cryptodome, led to the attainment of critical values of volatile
deficiency and crystal content in a larger proportion of the BZ
cryptodome magma than in the MSH cryptodome. This probably led
to the dominance of the high-density mode at BZ, contrasting with
MSHwhere the cryptodome emplacement period was shorter and the
low-density mode was dominant. Improved models of the fluid
dynamics of the BZ blast will help answer whether a real difference in
the power of the BZ and MSH blasts exists, and what roles pre-blast
outgassing and crystallinity play in such a discrepancy.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.jvolgeores.2010.09.011.
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