Geology and Geophysics 612: Structural Geology Section

Instructor: Steve Martel, POST 805, 956-7797, smartel@hawaii.edu

Class Themes
The crust of the earth is deformed at many scales, locations, and times; this deformation produces identifiable structures in the crust such as fractures and folds. An appreciation of earth structures has both enormous practical value and profound intellectual implications for how we view this planet. This class deals with ways to recognize and characterize major structures in the earth’s crust and ways to gain insight into how these structures form. The thrust of the structural geology lectures will be to introduce you to how the earth’s crust can be viewed as a mechanical system. Owing to time constraints, the class will focus on macroscopic structures; we will not deal with the microscopic aspects of structural geology.

Our ability to understand geologic structures depends in large part on how we perceive them. Few geologic structures form by trivially simple processes, but depending on how we view geologic structures, they can appear horribly complicated or amenable to understanding; perspective is critically important. The first exercise you do will introduce you to a graphical method for viewing the geometry of geologic structures such that the underlying essential forms emerge clearly.

An undercurrent of the lectures is the usefulness of integrated knowledge. We can think of unrelated pieces of knowledge as unconnected nodes of a net. A cut-up net is not very useful for catching fish. However, if the nodes of a net are connected, a net is a wonderful device for catching fish. It is also light, strong, and flexible. The outstanding feature of a net that makes it so useful then is the connection of the nodes. Similarly, concepts are vastly more powerful when they are connected rather than isolated. The knowledge connection process is not easy to master, but it is a key part of thinking, problem recognition, and problem solution. For these reasons, integrating pieces of knowledge can be very satisfying. Synergistic links in structural geology are forged between disciplines (e.g., mathematics, and physics) and between observations made at different scales.
Introduction/Philosophy/Science

Science
- Possession of knowledge as distinguished from ignorance or misunderstanding;
- Knowledge attained through study and practice
- Knowledge covering general truths or the operation of general laws especially as obtained and tested through the scientific method

Scientific Method
Principles and procedures for the systematic pursuit of knowledge involving the recognition and formulation of a problem, the collection of data through observation and experiment, and the formulation and testing of hypotheses.

Concepts vs. vocabulary; critical thinking vs. cookbooks; fundamentals vs. fashion

Quantitative predictions (Where, when, how big?)
Scientific Method

Complicated natural phenomena

Limited existing observations of natural phenomena

Test hypotheses:
Make new, carefully-considered observations;
analyze observations; interpret analyses in light of theory predictions

Revisit model if necessary & add to stockpile of observations

Form one or more hypotheses

Recognize unexplained phenomena

Simplified conceptual model

Ad hoc theory (i.e., case-specific theory)

General theory (e.g., Newton's Laws of physics)

Note: consider predictive power of ad hoc theories versus general theories
Mechanistic Approach to Structural Geology

<table>
<thead>
<tr>
<th>Topic</th>
<th>Definition</th>
<th>Application to structural geology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive geometry</td>
<td>The representation of the spatial relationships of points lines and planes by means of projections</td>
<td>Used to describe the geometry of deformed or undeformed bodies. Relies on good field work (e.g., preparation of geologic maps)</td>
</tr>
<tr>
<td>Kinematics</td>
<td>The study of the position of bodies through time without regard to the causative forces</td>
<td>Used to describe how a body changes shape and/or position through time</td>
</tr>
<tr>
<td>Mechanics</td>
<td>The study of forces and their effects on bodies, and in particular how bodies deform in response to forces</td>
<td>Used to understand and predict how bodies deform</td>
</tr>
</tbody>
</table>

Geometry of lines and planes

Lines
- Trend: Bearing of the projection of a line into the horizontal plane
- Plunge: Inclination of a line below the horizontal plane

Planes
- Strike: Bearing of a horizontal line contained in a plane/
 Bearing of a line connecting two points of equal elevation in a plane
- Dip: Inclination of a plane below the horizontal plane/
 The maximum inclination of any line contained in a plane

Pole to a plane
- A line that is normal to a plane
Orientations of Lines and Planes

Planes

- **Strike direction**
- **Dip direction**
- **Dip angle**

Right hand rule for strike and dip directions: if thumb on right hand points in the direction of strike the fingers on the right hand should point in the direction of dip.

Lines

Horizontal Line

Need to define orientation of plane for the pitch (rake) to have meaning.

The **Pole** to a plane is a line that is perpendicular to the plane. The trend of the pole is opposite the direction a plane dips. The plunge of a pole and the dip of a plane sum to 90°.
Geologic Conventions for Measuring Orientations

Compass Bearings
By quadrant (relative to north or south). The angle does not exceed 90°
By 360° azimuth (0° - 360°)
Examples

<table>
<thead>
<tr>
<th>Bearing</th>
<th>0°</th>
<th>45°</th>
<th>90°</th>
<th>135°</th>
<th>180°</th>
<th>225°</th>
<th>270°</th>
<th>315°</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0°E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0°E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N90°E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S90°W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N45°E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S45°W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lines
Trend: A compass bearing
Plunge: An inclination below horizontal
Examples: The lines below all plunge at 30°. Their trends vary according to the table above

Planes
Strike: A compass bearing along a horizontal line in a plane
Dip: An inclination below horizontal
Examples: The planes below all dip at 70°. Their strikes vary according to the table above
Direction Cosines from Geologic Angle Measurements
(Spherical coordinates)

Positive z-axis up
y = north; x = east
xy plane is horizontal plane

RIGHT-HANDED COORDINATES

Remember: Trends are azimuths and are measured in a horizontal plane. Plunges are inclinations and are measured in a vertical plane.

The direction cosines \(\alpha \) and \(\beta \) are determined from \(OA' \), the length of \(OA' \) being \(lOA' = lOA \cos \phi = \cos \phi \).

\[
\begin{align*}
\alpha &= \cos \omega_x = (\cos \phi) (\sin \theta) \\
\beta &= \cos \omega_y = (\cos \phi) (\cos \theta) \\
\gamma &= \cos \omega_z = -(\sin \phi) \\
\alpha^2 + \beta^2 + \gamma^2 &= 1
\end{align*}
\]

Orthographic Projection of vector \(OA \) onto \(xy \) plane

Positive z-axis down
x = north; y = east

xy plane is horizontal plane

RIGHT-HANDED COORDINATES

Remember: Trends are azimuths and are measured in a horizontal plane. Plunges are inclinations and are measured in a vertical plane.

The direction cosines \(\alpha \) and \(\beta \) are determined from \(OA' \), the length of \(OA' \) being \(lOA' = lOA \cos \phi = \cos \phi \).

\[
\begin{align*}
\alpha &= \cos \omega_x = (\cos \phi) (\cos \theta) \\
\beta &= \cos \omega_y = (\cos \phi) (\sin \theta) \\
\gamma &= \cos \omega_z = +\sin \phi \\
\alpha^2 + \beta^2 + \gamma^2 &= 1
\end{align*}
\]
Key steps in a kinematic analysis

• Establish sequence of deformational events
• Establish (or infer) intial and final geometry of bodies (e.g., undeformed and deformed states; initial and final positions, etc)
Key steps in a mechanical analysis
• Conceptual model
• Establish boundary conditions (e.g., pressure on boundary conditions)
• Set governing equation (reflect rheology of material)
• Find general solution of governing equation
• Solve governing equation to fit boundary conditions
• Compare with field observations