GG612
Lecture 3

Strain and Stress
Should complete infinitesimal strain by adding rotation.

Outline

<table>
<thead>
<tr>
<th>Matrix Operations</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td></td>
</tr>
<tr>
<td>1 General concepts</td>
<td>1 Stress vector</td>
</tr>
<tr>
<td>2 Homogeneous strain</td>
<td>2 Stress at a point</td>
</tr>
<tr>
<td>3 Matrix representations</td>
<td>3 Principal stresses</td>
</tr>
<tr>
<td>4 Squares of line lengths</td>
<td></td>
</tr>
<tr>
<td>5 E (strain matrix)</td>
<td></td>
</tr>
<tr>
<td>6 ε (infinitesimal strain)</td>
<td></td>
</tr>
<tr>
<td>7 Coaxial finite strain</td>
<td></td>
</tr>
<tr>
<td>8 Non-coaxial finite strain</td>
<td></td>
</tr>
</tbody>
</table>
Main Theme

• Representation of complicated quantities describing strain and stress at a point in a clear manner

Vector Conventions

• $X = \text{initial position}$
• $X' = \text{final position}$
• $U = \text{displacement}$
Matrix Inverses

- \(AA^{-1} = A^{-1}A = [I] \)
- \([AB]^{-1} = [B^{-1}][A^{-1}] \)
- \(ABB^{-1}A^{-1} = A[I][A^{-1}] = [I] \)
- \([AB][AB]^{-1} = [I] \)
- \([B^{-1}A^{-1}] = [AB]^{-1} \)

Matrix Inverses and Transposes

- \(a\cdot b = [a^T][b] \)
- \([AB]^T = [B^T][A^T] \)
- \(A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n \end{bmatrix} \)
- \(B = \begin{bmatrix} b_1 & b_2 & \cdots & b_m \end{bmatrix} \)
- \(AB = \begin{bmatrix} a_1\cdot b_1 & a_2\cdot b_1 & \cdots & a_n\cdot b_1 \\ a_1\cdot b_2 & a_2\cdot b_2 & \cdots & a_n\cdot b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1\cdot b_m & a_2\cdot b_m & \cdots & a_n\cdot b_m \end{bmatrix} \)

\([AB]^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_m \end{bmatrix} \)

\(B^T A' = \begin{bmatrix} b_1 & b_2 & \cdots & b_m \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \cdots & b_m \end{bmatrix} \)

\([AB]^T = B^T A' \)
Rotation Matrix \([\mathbf{R}]\)

- Rotations change the orientations of vectors but not their lengths
- \(\mathbf{X} \cdot \mathbf{X} = |\mathbf{X}| |\mathbf{X}| \cos \theta_{xx}\)
- \(\mathbf{X} \cdot \mathbf{X} = X' \cdot X'\)
 - \(X' = RX\)
- \(\mathbf{X} \cdot \mathbf{X} = [\mathbf{RX}] \cdot [\mathbf{RX}]\)
- \(\mathbf{X} \cdot \mathbf{X} = [\mathbf{X}^T \mathbf{R}^T] [\mathbf{RX}]\)
- \([\mathbf{X}^T] [\mathbf{X}] = [\mathbf{X}^T \mathbf{R}^T] [\mathbf{RX}]\)
- \([\mathbf{X}^T] [\mathbf{I}] [\mathbf{X}] = [\mathbf{X}^T] [\mathbf{R}^T] [\mathbf{R}] [\mathbf{X}]\)
- \([\mathbf{I}] = [\mathbf{R}^T] [\mathbf{R}]\)
- But \([\mathbf{I}] = [\mathbf{R}^{-1}] [\mathbf{R}], \) so
- \([\mathbf{R}^T] = [\mathbf{R}^{-1}]\)

Rotation Matrix \([\mathbf{R}]\)

2D Example

\[
\mathbf{R} = \begin{bmatrix}
\cos \theta & \sin \theta \\
-sin \theta & \cos \theta
\end{bmatrix} : [\mathbf{X}'] = [\mathbf{R}] [\mathbf{X}]
\]

\[
\begin{bmatrix}
X' \\
Y'
\end{bmatrix} = \begin{bmatrix}
\cos \theta & \sin \theta \\
-sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} \rightarrow
\begin{bmatrix}
X' = \cos \theta x + \sin \theta y \\
Y' = -\sin \theta x + \cos \theta y
\end{bmatrix} \rightarrow \begin{bmatrix}
x'^2 + y'^2 = x^2 + y^2
\end{bmatrix}
\]

\[
\mathbf{R}^T = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

\[
\mathbf{R} \mathbf{R}^T = \begin{bmatrix}
\cos \theta & \sin \theta \\
-sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

\[
\mathbf{R}^T = \mathbf{R}^{-1}
\]
General Concepts

Deformation = Rigid body motion + Strain

Rigid body motion

Rigid body translation
- Treated by matrix addition
 \[[X'] = [X] + [U] \]

Rigid body rotation
- Changes orientation of lines, but not their length
- Axis of rotation does not rotate; it is an eigenvector
- Treated by matrix multiplication
 \[[X'] = [R] [X] \]

General Concepts

- Normal strains
 Change in line length
 - Extension (elongation) = \(\Delta s/s_0 \)
 - Stretch = \(S = s'/s_0 \)
 - Quadratic elongation = \(Q = (s'/s_0)^2 \)

- Shear strains
 Change in right angles

- Dimensions: Dimensionless
Homogeneous strain

• Parallel lines to parallel lines (2D and 3D)
• Circle to ellipse (2D)
• Sphere to ellipsoid (3D)

\[
\begin{bmatrix}
X'
\end{bmatrix} = \begin{bmatrix} F \end{bmatrix} \begin{bmatrix} X \end{bmatrix}
\]
\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\
y\end{bmatrix}
\]
\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix} F \end{bmatrix}^{-1} \begin{bmatrix} X' \end{bmatrix}
\]
\[
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} x' \\
y'
\end{bmatrix}
\]
Matrix Representations: Positions (2D)

dx' = \frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy

dy' = \frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy

\begin{bmatrix}
 dx' \\
 dy'
\end{bmatrix} =
\begin{bmatrix}
 \frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial y} \\
 \frac{\partial y'}{\partial x} & \frac{\partial y'}{\partial y}
\end{bmatrix}
\begin{bmatrix}
 dx \\
 dy
\end{bmatrix}

\begin{bmatrix}
 dX'
\end{bmatrix} = [F][dX]

If derivatives are constant (e.g., at a point)

\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}

\begin{bmatrix}
 X'
\end{bmatrix} = [F][X]
Matrix Representations
Displacements (2D)

\[
du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy
\]

\[
dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy
\]

\[
\begin{bmatrix}
 du \\
 dv
\end{bmatrix}
= \begin{bmatrix}
 \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
 \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix}
\begin{bmatrix}
 dx \\
 dy
\end{bmatrix}
\]

\[
[dU] = [J_u][dX]
\]

Matrix Representations
Displacements (2D)

\[
u = \frac{\partial u}{\partial x} x + \frac{\partial u}{\partial y} y
\]

\[
v = \frac{\partial v}{\partial x} x + \frac{\partial v}{\partial y} y
\]

\[
\begin{bmatrix}
 u \\
 v
\end{bmatrix}
= \begin{bmatrix}
 \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
 \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[
[U] = [J_u][X]
\]

If derivatives are constant (e.g., at a point)
Matrix Representations
Positions and Displacements (2D)

\[U = X' - X \]
\[U = FX - X = FX - IX \]
\[U = [F-I]X \]
\[[F-I] = J_u \]
\[J_u = \begin{bmatrix} a - 1 & b \\ c & d - 1 \end{bmatrix} \]

Matrix Representations
Positions and Displacements

Lagrangian: f(X)
\[[X'] = [F][X] \]
\[U = X' - X = FX - X \]
\[U = FX - IX = [F - I]X \]

Eulerian: g(X')
\[[X] = [F^{-1}][X'] \]
\[U = X' - X = X' - F^{-1}X' \]
\[U = [I - F^{-1}]X' \]
Squares of Line Lengths

\[s^2 = |\vec{X}| \cdot |\vec{X}| \cos(\theta_{\vec{X}\vec{X}}) \]
\[s^2 = \vec{X} \cdot \vec{X} = X^T X \]
\[s^2 = X^T X \]

\[s'^2 = \vec{X}' \cdot \vec{X}' \]
\[s'^2 = [FX]^T [FX] \]
\[s'^2 = X^T F^T FX \]

E (strain matrix)

\[\frac{s'^2 - s^2}{2} = \frac{dX^T [F^T F - I] dX}{2} \]
\[\frac{s'^2 - s^2}{2} = \frac{dX^T [E] dX}{2} \]
\[E \equiv \frac{[F^T F - I]}{2} \]
\[\varepsilon \text{ (Infinitesimal Strain Matrix, 2D)} \]

\[
E \equiv \left[F^T F - I \right] = \frac{1}{2} \left[\left[J_u + I \right]^T \left[J_u + I \right] - I \right]
\]

\[
E = \frac{1}{2} \begin{bmatrix}
\frac{\partial u}{\partial x} + 1 & \frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} + 1
\end{bmatrix}
\begin{bmatrix}
\frac{\partial u}{\partial x} + 1 & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} + 1
\end{bmatrix}
- \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

If partial derivatives \(<1\), their squares can be dropped to obtain the infinitesimal strain matrix \(\varepsilon\)

\[
\varepsilon = \frac{1}{2} \begin{bmatrix}
\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \right) & \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\
\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right) & \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \right)
\end{bmatrix}
\]

\[J_u = \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix} \quad \varepsilon = \frac{1}{2} \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix} + \frac{1}{2} \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix}
= \frac{1}{2} \left[J_u + J_u^T \right]
\]

\[
J_u = \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \right) & \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\
\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right) & \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \right)
\end{bmatrix}
+ \frac{1}{2} \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix}
= \frac{1}{2} \left[J_u + J_u^T \right]
\]

\[\varepsilon \text{ is symmetric} \quad \omega \text{ is anti-symmetric} \]

Linear superposition
ε (Infinitesimal Strain Matrix, 2D)
Meaning of components

\[
\varepsilon = \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\
\frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{\partial v}{\partial y}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{du}{ds} \\
\frac{dv}{ds}
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{xx} & \varepsilon_{xy} \\
\varepsilon_{yx} & \varepsilon_{yy}
\end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy}
\end{bmatrix}
\]

First column in \(\varepsilon \): relative displacement vector for unit element in x-direction
\(\varepsilon_{yx} \) is displacement in the y-direction of right end of unit element in x-direction

Pure strain without rotation

\[
\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}
\]

ε (Infinitesimal Strain Matrix, 2D)
Meaning of components

\[
\varepsilon = \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\
\frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{\partial v}{\partial y}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{du}{ds} \\
\frac{dv}{ds}
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{xx} & \varepsilon_{xy} \\
\varepsilon_{yx} & \varepsilon_{yy}
\end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix}
\varepsilon_{xy} \\
\varepsilon_{yy}
\end{bmatrix}
\]

Second column in \(\varepsilon \): relative displacement vector for unit element in y-direction
\(\varepsilon_{yx} \) is displacement in the x-direction of upper end of unit element in y-direction

Pure strain without rotation

\[
\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}
\]
\[\varepsilon \text{ (Infinitesimal Strain Matrix, 2D)} \]

Meaning of components

\[\varepsilon = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{\partial v}{\partial y} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{\partial v}{\partial y} \end{bmatrix} \]

- \(\varepsilon_{11} = \varepsilon_{xx} \) = elongation of line parallel to \(x \)-axis
- \(\varepsilon_{12} = \varepsilon_{xy} \) = \((\Delta \theta)/2 \)
- \(\varepsilon_{21} = \varepsilon_{yx} \) = \((\Delta \theta)/2 \)
- \(\varepsilon_{22} = \varepsilon_{yy} \) = elongation of line parallel to \(y \)-axis

\[\frac{\Delta \theta}{2} = \frac{(\psi_2 - \psi_1)}{2} = \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \]

Shear strain > 0 if angle between +\(x \) and +\(y \) axes decreases

\[\omega \text{ (Infinitesimal Strain Matrix, 2D)} \]

Meaning of components

\[\omega = \begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) & 0 & \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) & 0 \end{bmatrix} \]

- \(\omega_{xy} \) = displacement in the \(y \)-direction of right end of unit element in \(x \)-direction

\[\frac{du}{ds} \]

\[\frac{dv}{ds} \]

First column in \(\omega \): relative displacement vector for unit element in \(x \)-direction

\(\omega_z \ll 1 \) radian
\(\omega \) (Infinitesimal Strain Matrix, 2D)
Meaning of components

\[
\omega = \begin{bmatrix}
0 & \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) \\
\frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{du}{ds} \\
\frac{dv}{ds}
\end{bmatrix} = \begin{bmatrix}
0 & -\omega_z \\
\omega_z & 0
\end{bmatrix} \begin{bmatrix}
0 \\
\omega_z
\end{bmatrix}
\]

Second column in \(\omega \): relative displacement vector for unit element in y-direction
\(\omega_y \) is displacement in the negative x-direction of upper end of unit element in y-direction

\(\varepsilon \) (Infinitesimal Strain Matrix, 2D)
Meaning of components

\[
\varepsilon = \begin{bmatrix}
\left(\frac{\partial u}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\
\frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & \left(\frac{\partial v}{\partial y} \right)
\end{bmatrix}
\]

\(\varepsilon_{11} = \varepsilon_{xx} = \text{elongation of line parallel to x-axis} \)
\(\varepsilon_{12} = \varepsilon_{yx} = (\Delta \theta)/2 \)
\(\varepsilon_{21} = \varepsilon_{xy} = (\Delta \theta)/2 \)
\(\varepsilon_{22} = \varepsilon_{yy} = \text{elongation of line parallel to y-axis} \)

\[
\frac{\Delta \theta}{2} = \frac{(\psi_2 - \psi_1)}{2} = \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)
\]

Shear strain > 0 if angle between +x and +y axes decreases
Coaxial Finite Strain

\[F = \begin{bmatrix} a & b \\ b & d \end{bmatrix}; \quad [F][X] = \lambda [X] \]

- \(F = F^T \)
- All values of \(X' \cdot X' \) are positive if \(X' \neq 0 \)
- \(F \) is positive definite
 - \(F \) has an inverse
 - Eigenvalues > 0
 - \(F \) has a square root

1. Eigenvectors (\(X \)) of \(F \) are perpendicular because \(F \) is symmetric (\(X_1 \cdot X_2 = 0 \))
2. \(X_1, X_2 \) solve \(d(X' \cdot X')/d\theta = 0 \)
3. \(X_1, X_2 \) along major axes of strain ellipse
4. \(X_1 = X_1'; \quad X_2 = X_2' \)
5. Principal strain axes do not rotate
Non-coaxial Finite Strain

- The vectors that transform \textit{from} the axes of the reciprocal strain ellipse \textit{to} the principal axes of the strain ellipse rotate.
- The rotation is given by the matrix that rotates the principal axes of the reciprocal strain ellipse to those of the strain ellipse.

\[
[X'] = [F][X]
\]
\[
X' \cdot X' = [X][F^T F][X]
\]
\[
[F^T F] \text{ is symmetric}
\]
\[
\text{Eigenvectors of } [F^T F] \text{ give principal strain directions}
\]
\[
\text{Square roots of eigenvalues of } [F^T F] \text{ give principal stretches}
\]
\[
[X] = [F^{-1}][X']
\]
\[
X \cdot X = [X'][F^{-1}]^T [F^{-1}][X']
\]
\[
[F^{-1}]^T [F^{-1}] \text{ is symmetric}
\]
\[
\text{Eigenvectors of } [F^{-1}]^T [F^{-1}] \text{ give principal strain directions}
\]
\[
\text{Square roots of eigenvalues of } [F^{-1}]^T [F^{-1}] \text{ give (reciprocal) principal stretches}
\]
Non-coaxial Finite Strain

1. The strain ellipse and the reciprocal strain ellipse have the same eigenvalues but different eigenvectors.

2. \([F^T F] = ([F^{-1}]^T [F^{-1}])^{-1}\)

3. \([([F^{-1}]^T [F^{-1}])^{-1} = ([F^{-1}]^{-1} [F^{-1}]^T)^{-1}] = FF^T.\)
Coaxial vs. Non-coaxial Strain

Coaxial
- $F = F^T$ (F is symmetric)
- $FF^T = F^T F = F^2$ (F2 is symmetric)
- $FX = \lambda X$
- $[F^T]^2 X = \lambda^2 X$
- $F = U = V$

Non-coaxial
- $F \neq F^T$ (F is not symmetric)
- $F^T F \neq F^2$ (but both symmetric)
- $FX = \lambda X$
- $[F^T]^2 X_1 = \lambda_1^2 X_1 ; \lambda_1 = \lambda \neq \lambda$
- $[F^T] X_2 = \lambda_2^2 X_2 ; X \neq X_1 \neq X_2$
- $F = RU = R[F^T]^{1/2} = VR = [F^T F]^{1/2} R$

\[F = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \quad F^T = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \]

\[FF^T = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \]

\[F = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \quad F^T = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix} \]

\[FF^T = \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix} \]
Polar Decomposition Theorem

Suppose
(1) \([F] = [R][U]\),
where \(R\) is a rotation matrix and \(U\) is a symmetric stretch matrix. Then
(2) \(FF^T = [RU]^T[RU] = U^T R^T RU = U^T U\)

However, \(U\) is postulated to be positive definite, so
(3) \(U^T U = U^2 = FF^T\)

Since \(FF^T\) gives squares of line lengths, if \(U\) gives strains without rotations, it too should give the same squares of line lengths. Hence
(4) \(U = (FF^T)^{1/2}\)

From equation (1):
(5) \(R = FU^{-1}\)

Polar Decomposition Theorem

Suppose
(1) \([F] = [V][R^*]\),
where \(R^*\) is a rotation matrix and \(V\) is a symmetric stretch matrix. Then
(2) \(FF^T = [VR^*]^T[VR^*] = VR^*R^{-1}V^T = VR^*R^{-1}V^T = VV^T\)

However, \(V\) is postulated to be positive definite, so
(3) \(VV^T = V^2 = FF^T\)

Since \(FF^T\) gives squares of line lengths, if \(V\) gives strains without rotations, it too should give the same squares of line lengths. Hence
(4) \(V = (FF^T)^{1/2}\)

From equation (1):
(5) \(R^* = V^{-1}F\)
Polar Decomposition Theorem

Proof that the polar decompositions are unique.

Suppose different decompositions exist

\[F = R_1U_1 = R_2U_2 \]

\[X' \cdot X' = [FX] \cdot [FX] = [FX]^T [FX] = X'^T F^T FX \]

\[F^T F = \begin{bmatrix} R_1U_1 \end{bmatrix}^T \begin{bmatrix} R_1U_1 \end{bmatrix} = U_1^T R_1^T R_1 U_1 = U_1^T R_1^T R_1 U_1 \]

\[= U_1^T U_1 = U_1 \]

\[F^T F = \begin{bmatrix} R_2U_2 \end{bmatrix}^T \begin{bmatrix} R_2U_2 \end{bmatrix} = U_2^T R_2^T R_2 U_2 = U_2^T R_2^T R_2 U_2 \]

\[= U_2^T U_2 = U_2 \]

\[U_1^2 = U_2^2 \]

\[U_1 = U_2 = U \]

\[F = R_1U_1 = R_2U_1 \]

\[R_1 = R_2 = R \]

Polar Decomposition Theorem

• The same procedure can be followed to show that the decomposition \(F = VR^* \) is unique.

These results are very important: \(F \) can be decomposed into only one symmetric matrix that is pre-multiplied by a unique rotation matrix, and \(F \) can be decomposed into only one symmetric matrix that is post-multiplied by a unique rotation matrix.
Polar Decomposition Theorem

Proof that \(F = RU = VR \)

Intuitively, we might expect that \(R = R^* \). This is straightforward to show.

\[
\begin{align*}
F &= VR^* = RV = \left[R R^T\right]VR = R\left[VR^T\right] = R\left[R^T VR^T\right]
\end{align*}
\]

Now consider the character of \(\left[R R^T\right] \) by taking its transpose

\[
\begin{align*}
\left[VR^T\right]^T &= \left[R R^T\right]^T \left[VR^T\right]^T = \left[R^T VR^T\right] = \left[R^T\right]^T \left[VR^T\right]
\end{align*}
\]

The transpose of \(\left[R R^T\right] \) equals \(\left[R^T\right]^T \left[VR^T\right] \), so \(\left[R R^T\right] \) is symmetric (definite-positive) matrix. It also is pre-multiplied by a rotation matrix. That means equation (11) can be re-written as

\[
F = R^* U \quad \text{if}
\]

Equating the two right sides above

\[
F = RU = R^* U \quad \text{if}
\]

The results of (ii) show that the rotation matrix and U-matrix are uniquely defined, so \(R = R^* \), hence

\[
F = RU = VR
\]

Polar Decomposition Theorem

Comparison of eigenvectors and eigenvalues

Now compare the eigenvectors and eigenvalues of \(U \) and \(V \) (see example 3.2.1 of Lai et al.). Suppose \(\hat{X} \) is an eigenvector of \(U \) and \(\lambda \) is an eigenvalue of \(U \).

\[
U\hat{X} = \lambda \hat{X}
\]

\[
RU\hat{X} = \lambda R\hat{X}
\]

\[
\left[RU \right] \hat{X} = \lambda R\hat{X}
\]

\[
\left[RU \right] \|VR\| = F
\]

\[
\|VR\| \hat{X} = \lambda R\hat{X}
\]

\[
V\left[R\hat{X}\right] = \lambda \left[R\hat{X}\right]
\]

So \(RX \) is an eigenvector of \(V \), and \(\lambda \) is an eigenvalue of \(V \). Since \(\lambda \) is also an eigenvalue of \(U \) (see the first step), that means the eigenvalues of \(U \) and \(V \) are the same, even though the eigenvectors are not.

The rotation matrix \(R \) rotates the eigenvectors of \(U \) to the orientation of the eigenvectors of \(V \). This means that the matrix \(U \) describes the principal axes of the reciprocal strain ellipse, and the matrix \(V \) describes the principal axes of the strain ellipse.
Stress

1. Stress vector
2. Stress state at a point
3. Stress transformations
4. Principal stresses

16. STRESS AT A POINT

16. STRESS AT A POINT

I Stress vector (traction) on a plane
A \(\tau = \lim_{A \to 0} \frac{\vec{F}}{A} \)
B Traction vectors can be added as vectors
C A traction vector can be resolved into normal (\(\tau_n \)) and shear (\(\tau_s \)) components
 1 A normal traction (\(\tau_n \)) acts perpendicular to a plane
 2 A shear traction (\(\tau_s \)) acts parallel to a plane
D Local reference frame
 1 The n-axis is normal to the plane
 2 The s-axis is parallel to the plane

III Stress at a point (cont.)
A Stresses refer to balanced internal "forces (per unit area)". They differ from force vectors, which, if unbalanced, cause accelerations
B "On-in convention": The stress component \(\sigma_{ij} \) acts on the plane normal to the i-direction and acts in the j-direction
 1 Normal stresses: \(i=j \)
 2 Shear stresses: \(i \neq j \)
16. STRESS AT A POINT

III Stress at a point

C Dimensions of stress: force/unit area

D Convention for stresses
 1 Tension is positive
 2 Compression is negative
 3 Follows from on-in convention
 4 Consistent with most mechanics books
 5 Counter to most geology books

\[\sigma_{ij} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix} \quad \text{2-D} \]

\[\sigma_{ij} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \quad \text{3-D} \]

E In nature, the state of stress can (and usually does) vary from point to point

F For rotational equilibrium,
\[\sigma_{xy} = \sigma_{yx}, \sigma_{xz} = \sigma_{zx}, \sigma_{yz} = \sigma_{zy} \]
16. STRESS AT A POINT

IV Principal Stresses (these have magnitudes and orientations)
A Principal stresses act on planes which feel no shear stress
B The principal stresses are normal stresses.
C Principal stresses act on perpendicular planes
D The maximum, intermediate, and minimum principal stresses are usually designated σ_1, σ_2, and σ_3, respectively.
E Principal stresses have a single subscript.

F Principal stresses represent the stress state most simply

\[
\sigma_\theta = \begin{bmatrix}
\sigma_1 & 0 \\
0 & \sigma_2
\end{bmatrix} \quad \text{2-D, 2 components}
\]

\[
\sigma_\theta = \begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{bmatrix} \quad \text{3-D, 3 components}
\]
19. Principal Stresses

17. Mohr Circle for Trazions

- From King et al., 1994 (Fig. 11)
- Coulomb stress change caused by the Landers rupture. The left-lateral ML=6.5 Big Bear rupture occurred along dotted line 3 hr 26 min after the Landers main shock. The Coulomb stress increase at the future Big Bear epicenter is 2.2-2.9 bars.

19. Principal Stresses

II Cauchy’s formula
 A Relates traction (stress vector) components to stress tensor components in the same reference frame
 B 2D and 3D treatments analogous
 C $\tau_i = \sigma_{ij} n_j = n_j \sigma_{ij}$

Note: all stress components shown are positive

19. Principal Stresses

II Cauchy’s formula (cont.)
 C $\tau_i = n_j \sigma_{ij}$
 1 Meaning of terms
 a $\tau_i =$ traction component
 b $n_i =$ direction cosine of angle between n-direction and j-direction
 c $\sigma_{ij} =$ traction component
 d τ_i and σ_{ij} act in the same direction
19. Principal Stresses

II Cauchy’s formula (cont.)

D Expansion (2D) of \(\tau_i = n_j \sigma_{ji} \)

1. \(\tau_x = n_x \sigma_{xx} + n_y \sigma_{yx} \)
2. \(\tau_y = n_x \sigma_{xy} + n_y \sigma_{yy} \)

\(n_j = \cos \theta_{nj} = a_{nj} \)

E Derivation:
Contributions to \(\tau_x \)

1. \(\tau_x = w^{(1)} \sigma_{xx} + w^{(2)} \sigma_{yx} \)
2. \(\frac{F_x}{A_x} = \left(\frac{A_x}{A_w} \right) F^{(1)}_x + \left(\frac{A_x}{A_y} \right) F^{(2)}_x \)
3. \(\tau_x = n_x \sigma_{xx} + n_y \sigma_{yx} \)

Note that all contributions must act in \(x \)-direction.

\(n_x = \cos \theta_{nx} = a_{nx} \)
\(n_y = \cos \theta_{ny} = a_{ny} \)
19. Principal Stresses

II Cauchy's formula (cont.)
E Derivation:

Contributions to τ_y

1 $\tau_y = w^{(3)}\sigma_{xy} + w^{(4)}\sigma_{yy}$

2 $\frac{F_y}{A_y} = \left(\frac{A_x}{A_y}\right) F^{(3)} + \left(\frac{A_y}{A_x}\right) F^{(4)}$

3 $\tau_y = n_x\sigma_{xy} + n_y\sigma_{yy}$

Note that all contributions must act in y-direction.

$n_x = \cos \theta_{nx} = a_{nx}$

$n_y = \cos \theta_{ny} = a_{ny}$

19. Principal Stresses

II Cauchy's formula (cont.)
F Alternative forms

1 $\tau_i = n_i\sigma_{ji}$

2 $\tau_i = \sigma_{ij}n_j$

3 $\tau_i = \sigma_{ij}n_j$

4 $\begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix}$

5 Matlab

a $t = s'*n$

b $t = s*n$

$\tau_x = n_x\sigma_{xx} + n_y\sigma_{yx}$

$\tau_y = n_x\sigma_{xy} + n_y\sigma_{yy}$

$n_j = \cos \theta_{nj} = a_{nj}$
19. Principal Stresses

III Principal stresses (eigenvectors and eigenvalues)

A

\[
\begin{bmatrix}
\tau_x \\
\tau_y
\end{bmatrix}
= \begin{bmatrix}
\sigma_{xx} & \sigma_{xy} \\
\sigma_{yx} & \sigma_{yy}
\end{bmatrix}
\begin{bmatrix}
\nu_x \\
\nu_y
\end{bmatrix}
\]

Cauchy's Formula

B

Vector components

Let \(\lambda = \left| \begin{array}{cc} \sigma_{xx} & \sigma_{xy} \\
\sigma_{yx} & \sigma_{yy}\end{array} \right| \)

C

The form of (C) is \([A][X=\lambda[X]\), and \([\sigma]\) is symmetric

9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

From previous notes

III Eigenvalue problems, eigenvectors and eigenvalues (cont.)

\(\text{J Characteristic equation: } |A-\lambda I|=0 \)

\(\text{3 Eigenvalues of a symmetric 2x2 matrix } \quad A = \begin{bmatrix} a & b \\
b & d \end{bmatrix} \)

a \(\lambda_1, \lambda_2 = \frac{(a + d) \pm \sqrt{(a + d)^2 - 4(ad - b^2)}}{2} \)

b \(\lambda_1, \lambda_2 = \frac{(a + d) \pm \sqrt{(a + 2ad + d)^2 - 4ad + 4b^2}}{2} \)

c \(\lambda_1, \lambda_2 = \frac{(a + d) \pm \sqrt{(a - 2ad + d)^2 + 4b^2}}{2} \)

d \(\lambda_1, \lambda_2 = \frac{(a + d) \pm \sqrt{(a - d)^2 + 4b^2}}{2} \)

Radical term cannot be negative. Eigenvalues are real.
9. EIGENVECTORS, EIGENVALUES, AND FINITE STRAIN

From previous notes

L Distinct eigenvectors (X_1, X_2) of a symmetric 2x2 matrix are perpendicular

Since the left sides of (2a) and (2b) are equal, the right sides must be equal too. Hence,

4 $\lambda_1 (X_2 \cdot X_1) = \lambda_2 (X_1 \cdot X_2)$

Now subtract the right side of (4) from the left

5 $(\lambda_1 - \lambda_2) (X_2 \cdot X_1) = 0$

• The eigenvalues generally are different, so $\lambda_1 - \lambda_2 \neq 0$.
• This means for (5) to hold that $X_2 \cdot X_1 = 0$.

Therefore, the eigenvectors (X_1, X_2) of a symmetric 2x2 matrix are perpendicular

19. Principal Stresses

III Principal stresses (eigenvectors and eigenvalues)

$$\begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \lambda \begin{bmatrix} n_x \\ n_y \end{bmatrix}$$

D Meaning

1 Since the stress tensor is symmetric, a reference frame with perpendicular axes defined by n_x and n_y pairs can be found such that the shear stresses are zero

2 This is the only way to satisfy the equation above; otherwise $\sigma_{xy} n_y \neq 0$, and $\sigma_{xx} n_x \neq 0$

3 For different (principal) values of λ, the orientation of the corresponding principal axis is expected to differ
19. Principal Stresses

V Example

Find the principal stresses

given \(\sigma_{ij} = \begin{bmatrix} \sigma_{xx} = -4 \text{ MPa} & \sigma_{xy} = -4 \text{ MPa} \\ \sigma_{yx} = -4 \text{ MPa} & \sigma_{yy} = -4 \text{ MPa} \end{bmatrix} \)

First find eigenvalues (in MPa)

\[
\lambda_1, \lambda_2 = \frac{(a + d) \pm \sqrt{(a - d)^2 + 4b^2}}{2} \\
\lambda_1, \lambda_2 = -4 \pm \sqrt{64} = -4 \pm 4 = 0, -8
\]
19. Principal Stresses

IV Example

\[\sigma_{ij} = \begin{bmatrix} \sigma_{xx} = -4 \text{ MPa} & \sigma_{xy} = -4 \text{ MPa} \\ \sigma_{yx} = -4 \text{ MPa} & \sigma_{yy} = -4 \text{ MPa} \end{bmatrix} \]

\[\lambda_1, \lambda_2 = -4 \pm \frac{\sqrt{64}}{2} = -4 \pm 4 = 0, -8 \] Eigenvalues (MPa)

Then solve for eigenvectors (X) using \([A-\lambda I]X = 0\)

For \(\lambda_1 = 0\):

\[\begin{bmatrix} -4 - 0 & -4 \\ -4 & -4 - 0 \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow -4n_x - 4n_y = 0 \Rightarrow n_x = -n_y \]

For \(\lambda_2 = -8\):

\[\begin{bmatrix} -4 - (-8) & -4 \\ -4 & \sigma_{yy} - (-8) \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow 4n_x - 4n_y = 0 \Rightarrow n_x = n_y \]

Note that \(X_1 \cdot X_2 = 0\)

Principal directions are perpendicular
19. Principal Stresses

V Example
Matrix form/Matlab

>> sij = [-4 -4; -4 -4]
sij =
 -4 -4
 -4 -4
>> [v,d]=eig(sij)
v =
 0.7071 -0.7071
 0.7071 0.7071
d =
 8.0000 0.0000
 0.0000 0.0000

Eigenvectors
(in columns)
Corresponding
eigenvalues
(in columns)

Summary of Strain and Stress

• Different quantities with different dimensions
 (dimensionless vs. force/unit area)
• Both can be represented by the orientation and
 magnitude of their principal values
• Strain describes changes in distance between points
 and changes in right angles
• Matrices of co-axial strain and stress are symmetric:
 eigenvalues are orthogonal and do not rotate
• Asymmetric strain matrices involve rotation
• Infinitesimal strains can be superposed linearly
• Finite strains involve matrix multiplication