INTRODUCTION (01)

I Main Topics
 A Engineers, Geologists, & Society
 B Approach to Engineering Geology
 C Importance of case histories
 D Mechanics

II Engineers, Geologists, & Society
 A Engineers
 a Solve problems
 b Quantitative analysis emphasized
 c Models often simplified/simplistic
 B Geologists
 a Study problems
 b Qualitative analysis emphasized (traditionally)
 c See earth as complex (heterogeneous & anisotropic)
 C Society
 a Pays the bills for problems and regulates response
 b Confused by conflicting analyses
 c Sees geologists and engineers as mysterious

III Approach to Engineering Geology
 A Hazard Recognition (Regional & site-specific)
 1 Hazard = condition, process, or potential event that poses a threat to personal or economic health, safety, or welfare
 2 Province of geologist
 B Hazard Characterization (Regional & site-specific)
 1 Characterization: thorough description of system state & history
 a What are the essential (and/or recurring) features/processes?
 b Where are the features? (Geometry)
 c What are their engineering and hydrologic properties?
 d When did the geologic feature (structure/rock/deposit) form?
 2 Province of geologist & engineer
 C Risk Evaluation (Involves probabilities)
 1 Risk = function (product) of probability of occurrence and potential loss. Example: Teton Dam. \(R = (1.5 \times 10^{-4}/\text{yr})(7 \times 10^8) = 10^5/\text{yr} \)
 2 Province of geologist & engineer
D **Risk Assessment**
 1 Province of society at large
 2 **Is the level of risk tolerable?**

III Importance of case histories
 A Learn from the experience of others
 B What has happened can happen
 C Problems occur when all four of the above steps not executed
 D Don't ignore heterogeneity, discontinuities, and anisotropy
 E Demands vs. sufficiency of data often conflict
 1 Too little time
 2 Too little data (typical geologist's problem; exposures incomplete)
 3 Too much data
 4 Incorrect or inadequate data
 F Inadequate understanding of geologic processes \(\Rightarrow\) trouble
 G Investigators with different backgrounds see the same thing differently

IV Mechanics
 A **How do the processes operate?**
 B **What factors are important?**
 C Increasingly emphasized as part of quantitative analyses
 D **What are the assumptions in the analyses?**