DISLOCATIONS

I Main Topics
A Dislocations and other defects in solids
B Significance of dislocations
C Planar dislocations
D Displacement and stress fields for a screw dislocation (mode III)

II Dislocations and other defects in solids
A Dislocations
 1 Originally, extra (or missing) planes or partial planes of material
 (e.g., atoms)
 2 Surfaces across which displacements are discontinuous
 3 Evidence for dislocations from electron microscopy
B Point defects
 1 Originally, extra (or missing) volumes (e.g., atoms)
 2 Displacements are discontinuous across point defects

III Significance of dislocations
A They account for permanent plastic deformation in crystals
B They account for the low observed strength of crystals relative to
 theoretical predictions
B They provide useful quantitative description of relative motions
 across surfaces across a broad range of scale (crystals [10^{-6} m] to
 plate boundaries [10^{6} m]) – ~12 orders of magnitude!
C They induce tremendous stress concentrations and account for large
 deformations under small “average” stresses
IV Planar dislocations
A Represented mathematically as infinitely long cut with a straight edge
B **Relative** displacement (of one side of the dislocation relative to the other) across a dislocation is called the Burger's vector b.
C Screw dislocation
 1 Accommodate a tearing motion
 2 Displacement is exclusively parallel to the dislocation edge
 3 Analogy: a lock washer or a 360° spiral staircase
 4 Macroscopic geologic use: to model faults
D Edge dislocation
 1 Accommodate opening or sliding motions
 2 Displacement is exclusively perpendicular to the dislocation edge
 3 Displacement can be parallel or perpendicular to the dislocation plane
 4 Analogy: an extra row of corn kernels on a cob of corn
 5 Macroscopic geologic use: to model dikes or faults

V Displacement and stress fields for a screw dislocation (mode III)
A Displacement parallel to the dislocation edge increases uniformly along a spiral-like circuit from one side of the dislocation to the other (for a right-handed screw dislocation, point your right thumb along the dislocation edge; displacement parallel to the edge increases in the direction your fingers curl.
B Angular position: $\theta = \tan^{-1}(y/x)$
C Expressions for displacements and strains
 1 Cartesian displacements:
 \[u = u_x, \quad v = u_y, \quad w = u_z \]
 2 Normal strains:
 \[\varepsilon_{xx} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \right), \quad \varepsilon_{yy} = \frac{1}{2} \left(\frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \right), \quad \varepsilon_{zz} = \frac{1}{2} \left(\frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} \right) \]
 3 Shear strains:
 \[\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right), \quad \varepsilon_{yx} = \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right), \quad \varepsilon_{zx} = \frac{1}{2} \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial x} \right) \]
 4 Cylindrical displacements:
 \[u_r, \quad u_\theta, \quad u_z = w \]
 5 Normal strains:
 \[\varepsilon_{rr} = \frac{1}{2} \left(\frac{\partial u}{\partial r} + \frac{\partial u}{\partial r} \right), \quad \varepsilon_{\theta \theta} = \frac{1}{r} \left(\frac{\partial u}{\partial \theta} + \frac{1}{r} \frac{\partial u}{\partial \theta} \right), \quad \varepsilon_{zz} = \frac{1}{2} \left(\frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} \right) \]
 6 Shear strains:
 \[\varepsilon_{r \theta} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial u}{\partial r} - \frac{u_\theta}{r} \right), \quad \varepsilon_{\theta r} = \frac{1}{2} \left(\frac{\partial u}{\partial \theta} + \frac{1}{r} \frac{\partial u}{\partial \theta} \right), \quad \varepsilon_{r z} = \frac{1}{2} \left(\frac{\partial u}{\partial r} + \frac{\partial u}{\partial r} \right) \]
Polar coordinates

\(u_r = 0 \)

\(u_\theta = 0 \)

\(w = b \frac{\theta}{2\pi} \)

Cartesian coordinates

\(u = 0 \)

\(v = 0 \)

\(w = b \frac{\tan^{-1} y}{x} \)

2 Strain

Polar coordinates

\(\varepsilon_{r\theta} = \varepsilon_{\theta r} = 0 \)

\(\varepsilon_{r\theta} = \varepsilon_{\theta r} = \frac{b}{2\pi r} \)

\(u_{rz} = u_{zr} = 0 \)

\(\varepsilon_{rr} = 0 \)

\(\varepsilon_{\theta\theta} = 0 \)

\(\varepsilon_{zz} = 0 \)

Cartesian coordinates

\(\varepsilon_{xy} = \varepsilon_{yx} = 0 \)

\(\varepsilon_{yz} = \varepsilon_{zy} = \frac{b}{2\pi (x^2 + y^2)} = \frac{b}{2\pi r^2} \)

\(\varepsilon_{xz} = \varepsilon_{zx} = -\frac{b}{2\pi (x^2 + y^2)} = \frac{-b y}{2\pi r^2} \)

\(\varepsilon_{yy} = 0 \)

\(\varepsilon_{yy} = 0 \)

\(\varepsilon_{zz} = 0 \)

3 Stress (\(G = \text{shear modulus} \))

\(\sigma_{r\theta} = \sigma_{\theta r} = 0 \)

\(\sigma_{r\theta} = \sigma_{\theta r} = \frac{Gb}{2\pi r} \)

\(\sigma_{rr} = \sigma_{\theta\theta} = 0 \)

\(\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = 0 \)

\(\sigma_{yy} = \sigma_{yy} = \sigma_{zz} = 0 \)

4 Key points

a) Only the shear stresses acting on or in the z direction are non-zero

b) The stresses are singular (i.e., go to infinity) near the dislocation end: a powerful stress concentration exists there.

c) This theoretical singular stress concentration exists no matter how small the relative displacement \(b \) is.
SUPERPOSITION OF TWO (INFINITE) SCREW DISLOCATIONS (A,B) TO FORM A FINITE DISPLACEMENT DISCONTINUITY (C)
(View along the -z direction)

\[w_A = \frac{b\theta_A}{2\pi} = \frac{b}{2\pi} \tan^{-1}\left(\frac{y'}{x'}\right) = \frac{b}{2\pi} \tan^{-1}\left(\frac{y}{x-a}\right) \]

\[w_B = \frac{b\theta_B}{2\pi} = \frac{b}{2\pi} \tan^{-1}\left(\frac{y''}{x''}\right) = \frac{b}{2\pi} \tan^{-1}\left(\frac{y}{x+a}\right) \]

\[w_C = \frac{b(\theta_A - \theta_B)}{2\pi} = \frac{b}{2\pi} \left[\tan^{-1}\left(\frac{y}{x-a}\right) - \tan^{-1}\left(\frac{y}{x+a}\right)\right] \]

\[w_C (\theta_A = -\pi, \theta_B = 0) = -\frac{B}{2} \]
\[w_C (\theta_A = 0, \theta_B = 0) = 0 \]
\[w_C (\theta_A = \pi, \theta_B = 0) = \frac{B}{2} \]
\[w_C (\theta_A = \pi, \theta_B = \pi) = 0 \]