BASIC CONCEPTS OF KINEMATICS AND DEFORMATION

I Main Topics (see chapters 14 and 18 of Means, 1976)
 A Fundamental principles of continuum mechanics
 B Position vectors and coordinate transformation equations
 C Displacement vectors and displacement equations
 D Deformation

II Fundamental principles of continuum mechanics
 A Relates natural world to the realm of mathematics
 B Densities of mass, momentum, and energy exist (no “holes”)
 C Number of particles is sufficiently large that the notion of an average bulk material behavior is meaningful
 D Examples of continuous properties
 1 Density \(\rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V} \)
 2 Hydraulic conductivity ("permeability")
 E Scale matters (see B, C, and D)

 E Variability
 1 Heterogeneity: material property depends on position
 2 Anisotropy: material property depends on orientation

II Position vectors and coordinate transformation equations
 A \(\mathbf{X} \) = initial (undeformed) position
 B \(\mathbf{X}' \) = final (current, or deformed) position (at time \(\Delta t \))
 C Coordinate transformation equations
 1 \(\mathbf{X}' = f(\mathbf{X}) \) Lagrangian: final position set in terms of initial
 2 \(\mathbf{X} = g(\mathbf{X}') \) Eulerian: initial position set in terms of final
III Displacement vector (U)

A $U = X' - X$

1. x-component: u_x, u_1, or just u
2. y-component: u_y, u_2, or just v
3. z-component: u_z, u_3, or just w

B $U = U(X)$ Lagrangian: displacement in terms of initial position

C $U = U(X')$ Eulerian: displacement in terms of final position

IV Deformation: rigid body motion + change in size and/or shape

A Rigid body translation

1. No change in the length of line connecting any points
2. All points displaced by an equal vector (equal amount and direction); no displacement of points relative to one another
3. $[X'] = [U] + [X]$ matrix addition (U is a constant)

B Rigid body rotation

1. No change in the length of line connecting any points
2. All points rotated by an equal amount about a common axis; no angular displacement of points relative to one another
3. $[X'] = [a][X]$ matrix multiplication; rows in $[a]$ are dir. cosines!

C Change in size and/or shape (distortional strain)

1. The lengths of at least some line segments connecting points in a body change (i.e., the relative positions of points changes)
2. U is not a constant throughout the body (i.e., U varies)
3. Change in linear dimension
 a. Extension (or elongation) \[\varepsilon = \frac{\Delta L}{L_o} = \frac{L_1 - L_o}{L_o} \text{ dimensionless!} \]
 b. Stretch \[s = \frac{L_1}{L_o} = \frac{L_1 - L_o}{L_o} + 1 = \varepsilon + 1 \text{ dimensionless!} \]
4. Change in right angles: $\gamma = \tan \psi$
D Change in volume (dilational strain)

1. Dilation \[\Delta = \frac{\Delta V}{V_o} = \frac{V_1 - V_o}{V_o} \]

Example 1: Consider a rectangular box with sides of length \(a_o, b_o, c_o \), the sides lying along the 1,2,3 axes. Its volume is \(a_o b_o c_o \), or

\[
V_0 = \begin{bmatrix}
a_o & 0 & 0 \\
0 & b_o & 0 \\
0 & 0 & c_o \\
\end{bmatrix} = a_o b_o c_o
\]

Suppose the box is stretched along the 1,2,3 axes such that its new dimensions are \(a_1, b_1, c_1 \). Its new volume \(V_1 \) is

\[
V_1 = \begin{bmatrix}
a_1 & 0 & 0 \\
0 & b_1 & 0 \\
0 & 0 & c_1 \\
\end{bmatrix} = a_1 b_1 c_1
\]

\[
\Delta = \frac{V_1 - V_0}{V_0} = \frac{a_1 b_1 c_1 - a_o b_o c_o}{a_o b_o c_o} = S_1 S_2 S_3 - 1 \approx \varepsilon_1 + \varepsilon_2 + \varepsilon_3
\]

(The expression at the right side applies for small strains [\(< \sim 1\%\)]

Example 2: Volumetric strain with no shape change

\[
V_1 = (\Delta + 1)V_0
\]

All sides of the box are strained equally \(\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \varepsilon \).

\[
[X'] = (\varepsilon + 1)[X] = S[X]
\]
1-D Inhomogeneous Deformation (From Means, 1976)

\[x' = 2x \quad \text{Lagrangian coordinate transformation equation} \]
\[x = x'/2 \quad \text{Eulerian coordinate transformation equation} \]
\[u = x \quad \text{Lagrangian displacement equation} \]
\[u = u(x) = x' - x = 2x - x = x \]
\[u = x'/2 \quad \text{Eulerian displacement equation} \]
\[u = u(x') = x' - x = x - x/2 = x/2 \]
Rigid Body Motion

Rigid Body Translation

Rigid Body Rotation

Basic Measures of Strain

Elongation

\[\varepsilon = \frac{(L_1 - L_0)}{L_0} \]

\[S = \frac{L_1}{L_0} \]

Shear Strain

\[\gamma = \tan \Psi \]

Dilation

\[\Delta = \frac{(V_1 - V_0)}{V_0} \]

Stephen Martel

13-5

University of Hawaii