P.I. Names: Yonat Swimmer, Richard Brill, Mike Musyl, George Antonelis, George Balazs, and Jeffrey Polovina.

Project Proposal Title: Survivorship, migrations, and diving patterns of sea turtles released from commercial longline fishing gear, determined with pop-up satellite archival transmitters.

Funding Agency: PFRP/NMFS

Purpose of the Project and Indicative Results: The main objective of this project is to provide reliable estimates of delayed mortality and morbidity in sea turtles following interactions with longline fishing gear. To do this, we have deployed pop-up satellite archival tags (PSATs) on incidentally-caught turtles. The tags have a fail-safe/mortality sensor, whereby the tag can be set to jettison if the turtle is stationary for extended periods or if it exceeds a specified depth. Rates of post-hooking mortality and morbidity are correlated with a standardized set of scored observations, such as hook location, severity of injury, and a general assessment of the turtles’ health.

Progress During FY 2002: As PSATs have never before been deployed on sea turtles, our first goal was to create an attachment system that meet the following satisfactions: 1) be easily accomplished by an inexperienced fishery observers at sea aboard commercial fishing vessels, 2) be safe for both the observer and the turtle, and 3) be an effective technique. We found that by using a syntactic foam manufactured by Syntech Materials, Inc. we could easily fabricate a suitable “base plate”. Using captive green turtles maintained at the NMFS Honolulu Laboratory's Kewalo Research Facility (KRF) we also found that a readily available marine epoxy (Marine Fix Fast) would adhere the foam baseplate to the carapace for up to 10 months.

After demonstrating the efficacy and safety of our PSAT attachment method, we applied for and obtained approval from both the NMFS Regional Office and NMFS Office of Protected Resources to proceed with the next phase of the project: having at-sea observers attach PSATs to hard shelled turtles incidentally caught in commercial fishing gear. We have also developed and gotten approval for an instruction manual that is given to the observers as part of the tagging kit. We have subsequently participated in 4 NMFS Regional Office-sponsored workshops to train observers in PSAT attachment procedures, and have trained approximately 80 observers in these techniques. Since March 2001, PSATs have been taken to sea on approximately 264 longline fishing trips, resulting in approximately 3,100 observed longline sets. Unfortunately, due to current fishing regulations designed specifically to minimize turtle-longline interactions, only two turtles have been caught during observed trips. Of these, two animals had PSATs attached. One PSAT remained on for 4.5 months and provided excellent data on horizontal and vertical movements. These data have also been reported on in PFRP Newsletter (Volume 7, No. 2, “Quantifying sea turtle mortality with PSATs”, by Swimmer, Brill and Musyl, April-June 2002). The second PSAT came to the surface and began downloading data only four days after attachment. This may well have be due to a mortality event (i.e., the turtle died and sank almost immediately after release). In this case, the hook was removed even though it was embedded.
relatively deeply in the animals’ throat. We await dive depth results before we can make a definitive cause for the early transmission.

In order to circumvent the problem of getting too few tags out with the Hawaiian Longline Fishery, last November Yonat Swimmer and Richard Brill traveled to Costa Rica where there is a longline fishery (targeting primarily mahi mahi) that also has a high rate of interactions with olive ridely turtles. Working with Randall Arauz (Central American Coordinator for Sea Turtle Restoration Project), seven sea turtles were equipped with PSATs. Four of the animals were caught by longline, and three were captured while free swimming. These later individuals served as a control to which the behaviors of longline captured turtles could be compared. Attachments to five of the turtles ranged from approximately six to eight weeks, which were considerably shorter than expected based on the results from base plate adhesions tests conducted on green turtles at the KRF. Two tags are apparently still attached and are expected to report late May and early December 2002. From the vertical movement data obtained so far, there were no apparent mortalities.

Because of the seeming failure of the Marine Fix Fast adhesive to maintain attachment of the PSATs for as long as expected to the Costa Rican turtles, a new base plate epoxy adhesive (West Marine System) is currently being tested, again using green turtles maintained at the Kewalo Research Facility. To date, the adhesive appears to be fully functional after 5 months.

We have also been involved in several other related turtle tagging projects. In association with colleagues on the mainland (Drs. Molly Lutcavage, Anders Rodin, and Russ Andrews), a method for attaching PSATs to leatherback turtle released from longline gear is also now being tested. The method involves a subdermal attachment of the PSAT’s tether using a medical-grade titanium bone anchor. The device is manufactured by Mitek Inc. (a division of Ethicon Inc.) and it’s original intended use is by orthopedic surgeons for reattaching torn rotator cuff tendons. When tested on a carapace taken from freshly dead leatherback, the device appeared suitable. Subsequently, field trials of the attachment device were conducted on nesting leatherbacks in Puerto Rico last July with mixed results. A redesigned tag head has been manufactured and a second round of tests on nesting leatherbacks is currently underway.

Planned Project Activities for FY 2003: We will continue working with experienced at-sea observers and train any new ones in methods to attach PSATs to hard-shelled turtles. For the immediate future, observers will continue to be given PSAT tagging kits suitable for use with hard-shelled turtles for each fishing voyage. If the attachment methods for leatherbacks currently being tested prove suitable, and if the requisite permits/permissions can be obtained, we will begin issuing tagging kits also containing PSATs suitable for attachment to leatherbacks.

We have no way to predict how many turtles will be captured by the Hawaii longline fleet. However, based on experience, we do not expect this number to be large. To once again circumvent the situation of very low rates of turtle interactions in the Hawaii longline fleet, we will be sending six additional PSATs to Randall Arauz in Costa Rica to be deployed in their longline fishery this month. These tagging kits will contain the newer Marine Systems epoxy.
We will, therefore, not only gain insight into the survival of released turtles, but also test the long-term adhesive properties of the new epoxy.

Anticipated project period: This work will continue throughout 2003.

Papers Published in Journals During FY 2002:

Other Papers, Reports, and Presentations During FY 2002:

Graduate Student Advisory Activities: N/A

Budget:

If possible, we would greatly benefit by acquiring funds to hire a half time assistant to maintain our current operations for another year.
Budget:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop off satellite archival tags</td>
<td>--</td>
<td>$200 K, already purchased on tags</td>
</tr>
<tr>
<td>Research Assistant (half time)</td>
<td>$13,000</td>
<td>--</td>
</tr>
<tr>
<td>Fringe Benefits (26% of salary)</td>
<td>$3,380</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>$16,380</td>
<td>--</td>
</tr>
</tbody>
</table>
P.I. Names: Yonat Swimmer, Richard Brill, Mike Musyl, George Antonelis, George Balazs, and Jeffrey Polovina.

Project Proposal Title: Survivorship, migrations, and diving patterns of sea turtles released from commercial longline fishing gear, determined with pop-up satellite archival transmitters.

Funding Agency: PFRP/NMFS

Purpose of the Project and Indicative Results: The main objective of this project is to provide reliable estimates of delayed mortality and morbidity in sea turtles following interactions with longline fishing gear. To do this, we have deployed pop-up satellite archival tags (PSATs) on incidentally-caught turtles. The tags have a fail-safe/mortality sensor, whereby the tag can be set to jettison if the turtle is stationary for extended periods or if it exceeds a specified depth. Rates of post-hooking mortality and morbidity are correlated with a standardized set of scored observations, such as hook location, severity of injury, and a general assessment of the turtles’ health.

Progress During FY 2002: As PSATs have never before been deployed on sea turtles, our first goal was to create an attachment system that meet the following satisfactions: 1) be easily accomplished by an inexperienced fishery observers at sea aboard commercial fishing vessels, 2) be safe for both the observer and the turtle, and 3) be an effective technique. We found that by using a syntactic foam manufactured by Syntech Materials, Inc. we could easily fabricate a suitable “base plate”. Using captive green turtles maintained at the NMFS Honolulu Laboratory's Kewalo Research Facility (KRF) we also found that a readily available marine epoxy (Marine Fix Fast) would adhere the foam baseplate to the carapace for up to 10 months.

After demonstrating the efficacy and safety of our PSAT attachment method, we applied for and obtained approval from both the NMFS Regional Office and NMFS Office of Protected Resources to proceed with the next phase of the project: having at-sea observers attach PSATs to hard shelled turtles incidentally caught in commercial fishing gear. We have also developed and gotten approval for an instruction manual that is given to the observers as part of the tagging kit. We have subsequently participated in 4 NMFS Regional Office-sponsored workshops to train observers in PSAT attachment procedures, and have trained approximately 80 observers in these techniques. Since March 2001, PSATs have been taken to sea on approximately 264 longline fishing trips, resulting in approximately 3,100 observed longline sets. Unfortunately, due to current fishing regulations designed specifically to minimize turtle-longline interactions, only two turtles have been caught during observed trips. Of these, two animals had PSATs attached. One PSAT remained on for 4.5 months and provided excellent data on horizontal and vertical movements. These data have also been reported on in PFRP Newsletter (Volume 7, No. 2, “Quantifying sea turtle mortality with PSATs”, by Swimmer, Brill and Musyl, April-June 2002). The second PSAT came to the surface and began downloading data only four days after attachment. This may well have due to a mortality event (i.e., the turtle died and sank almost immediately after release). In this case, the hook was removed even though it was embedded
relatively deeply in the animals’ throat. We await dive depth results before we can make a definitive cause for the early transmission.

In order to circumvent the problem of getting too few tags out with the Hawaiian Longline Fishery, last November Yonat Swimmer and Richard Brill traveled to Costa Rica where there is a longline fishery (targeting primarily mahi mahi) that also has a high rate of interactions with olive ridely turtles. Working with Randall Arauz (Central American Coordinator for Sea Turtle Restoration Project), seven sea turtles were equipped with PSATs. Four of the animals were caught by longline, and three were captured while free swimming. These later individuals served as a control to which the behaviors of longline captured turtles could be compared. Attachments to five of the turtles ranged from approximately six to eight weeks, which were considerably shorter than expected based on the results from base plate adhesions tests conducted on green turtles at the KRF. Two tags are apparently still attached and are expected to report late May and early December 2002. From the vertical movement data obtained so far, there were no apparent mortalities.

Because of the seeming failure of the Marine Fix Fast adhesive to maintain attachment of the PSATs for as long as expected to the Costa Rican turtles, a new base plate epoxy adhesive (West Marine System) is currently being tested, again using green turtles maintained at the Kewalo Research Facility. To date, the adhesive appears to be fully functional after 5 months.

We have also been involved in several other related turtle tagging projects. In association with colleagues on the mainland (Drs. Molly Lutcavage, Anders Rodin, and Russ Andrews), a method for attaching PSATs to leatherback turtle released from longline gear is also now being tested. The method involves a subdermal attachment of the PSAT’s tether using a medical-grade titanium bone anchor. The device is manufactured by Mitek Inc. (a division of Ethicon Inc.) and it’s original intended use is by orthopedic surgeons for reattaching torn rotator cuff tendons. When tested on a carapace taken from freshly dead leatherback, the device appeared suitable. Subsequently, field trials of the attachment device were conducted on nesting leatherbacks in Puerto Rico last July with mixed results. A redesigned tag head has been manufactured and a second round of tests on nesting leatherbacks in currently underway.

Planned Project Activities for FY 2003: We will continue working with experienced at-sea observers and to train any new ones in methods to attach PSATs to hard-shelled turtles. For the immediate future, observers will continue to be given PSAT tagging kits suitable for use with hard-shelled turtles for each fishing voyage. If the attachment methods for leatherbacks currently being tested prove suitable, and if the requisite permits/permissions can be obtained, we will begin issuing tagging kits also containing PSATs suitable for attachment to leatherbacks.

We have no way to predict how many turtles will be captured by the Hawaii longline fleet. However, based on experience, we do not expect this number to be large. To once again circumvent the situation of very low rates of turtle interactions in the Hawaii longline fleet, we will be sending six additional PSATs to Randall Arauz in Costa Rica to be deployed in their longline fishery this month. These tagging kits will contain the newer Marine Systems epoxy.
We will, therefore, not only gain insight into the survival of released turtles, but also test the long-term adhesive properties of the new epoxy.

Anticipated project period: This work will continue throughout 2003.

Papers Published in Journals During FY 2002:

Other Papers, Reports, and Presentations During FY 2002:

Graduate Student Advisory Activities: N/A

Budget:

If possible, we would greatly benefit by acquiring funds to hire a half time assistant to maintain our current operations for another year.
Budget:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop off satellite archival tags</td>
<td>--</td>
<td>$200 K, already purchased on tags</td>
</tr>
<tr>
<td>Research Assistant (half time)</td>
<td>$13,000</td>
<td>--</td>
</tr>
<tr>
<td>Fringe Benefits (26% of salary)</td>
<td>$3,380</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>$16,380</td>
<td>--</td>
</tr>
</tbody>
</table>
P.I. Names: Yonat Swimmer, Richard Brill, Mike Musyl, George Antonelis, George Balazs, and Jeffrey Polovina.

Project Proposal Title: Survivorship, migrations, and diving patterns of sea turtles released from commercial longline fishing gear, determined with pop-up satellite archival transmitters.

Funding Agency: PFRP/NMFS

Purpose of the Project and Indicative Results: The main objective of this project is to provide reliable estimates of delayed mortality and morbidity in sea turtles following interactions with longline fishing gear. To do this, we have deployed pop-up satellite archival tags (PSATs) on incidentally-caught turtles. The tags have a fail-safe/mortality sensor, whereby the tag can be set to jettison if the turtle is stationary for extended periods or if it exceeds a specified depth. Rates of post-hooking mortality and morbidity are correlated with a standardized set of scored observations, such as hook location, severity of injury, and a general assessment of the turtles’ health.

Progress During FY 2002: As PSATs have never before been deployed on sea turtles, our first goal was to create an attachment system that meet the following satisfactions: 1) be easily accomplished by an inexperienced fishery observers at sea aboard commercial fishing vessels, 2) be safe for both the observer and the turtle, and 3) be an effective technique. We found that by using a syntactic foam manufactured by Syntech Materials, Inc. we could easily fabricate a suitable “base plate”. Using captive green turtles maintained at the NMFS Honolulu Laboratory's Kewalo Research Facility (KRF) we also found that a readily available marine epoxoy (Marine Fix Fast) would adhere the foam baseplate to the carapace for up to 10 months.

After demonstrating the efficacy and safety of our PSAT attachment method, we applied for and obtained approval from both the NMFS Regional Office and NMFS Office of Protected Resources to proceed with the next phase of the project: having at-sea observers attach PSATs to hard shelled turtles incidentally caught in commercial fishing gear. We have also developed and gotten approval for an instruction manual that is given to the observers as part of the tagging kit. We have subsequently participated in 4 NMFS Regional Office-sponsored workshops to train observers in PSAT attachment procedures, and have trained approximately 80 observers in these techniques. Since March 2001, PSATs have been taken to sea on approximately 264 longline fishing trips, resulting in approximately 3,100 observed longline sets. Unfortunately, due to current fishing regulations designed specifically to minimize turtle-longline interactions, only two turtles have been caught during observed trips. Of these, two animals had PSATs attached. One PSAT remained on for 4.5 months and provided excellent data on horizontal and vertical movements. These data have also been reported on in PFRP Newsletter (Volume 7, No. 2, “Quantifying sea turtle mortality with PSATs”, by Swimmer, Brill and Musyl, April-June 2002). The second PSAT came to the surface and began downloading data only four days after attachment. This may well have be due to a mortality event (i.e., the turtle died and sank almost immediately after release). In this case, the hook was removed even though it was embedded
relatively deeply in the animals’ throat. We await dive depth results before we can make a definitive cause for the early transmission.

In order to circumvent the problem of getting too few tags out with the Hawaiian Longline Fishery, last November Yonat Swimmer and Richard Brill traveled to Costa Rica where there is a longline fishery (targeting primarily mahi mahi) that also has a high rate of interactions with olive ridely turtles. Working with Randall Arauz (Central American Coordinator for Sea Turtle Restoration Project), seven sea turtles were equipped with PSATs. Four of the animals were caught by longline, and three were captured while free swimming. These later individuals served as a control to which the behaviors of longline captured turtles could be compared. Attachments to five of the turtles ranged from approximately six to eight weeks, which were considerably shorter than expected based on the results from base plate adhesions tests conducted on green turtles at the KRF. Two tags are apparently still attached and are expected to report late May and early December 2002. From the vertical movement data obtained so far, there were no apparent mortalities.

Because of the seeming failure of the Marine Fix Fast adhesive to maintain attachment of the PSATs for as long as expected to the Costa Rican turtles, a new base plate epoxy adhesive (West Marine System) is currently being tested, again using green turtles maintained at the Kewalo Research Facility. To date, the adhesive appears to be fully functional after 5 months.

We have also been involved in several other related turtle tagging projects. In association with colleagues on the mainland (Drs. Molly Lutcavage, Anders Rodin, and Russ Andrews), a method for attaching PSATs to leatherback turtle released from longline gear is also now being tested. The method involves a subdermal attachment of the PSAT’s tether using a medical-grade titanium bone anchor. The device is manufactured by Mitek Inc. (a division of Ethicon Inc.) and it’s original intended use is by orthopedic surgeons for reattaching torn rotator cuff tendons. When tested on a carapace taken from freshly dead leatherback, the device appeared suitable. Subsequently, field trials of the attachment device were conducted on nesting leatherbacks in Puerto Rico last July with mixed results. A redesigned tag head has been manufactured and a second round of tests on nesting leatherbacks is currently underway.

Planned Project Activities for FY 2003: We will continue working with experienced at-sea observers and to train any new ones in methods to attach PSATs to hard-shelled turtles. For the immediate future, observers will continue to be given PSAT tagging kits suitable for use with hard-shelled turtles for each fishing voyage. If the attachment methods for leatherbacks currently being tested prove suitable, and if the requisite permits/permissions can be obtained, we will begin issuing tagging kits also containing PSATs suitable for attachment to leatherbacks.

We have no way to predict how many turtles will be captured by the Hawaii longline fleet. However, based on experience, we do not expect this number to be large. To once again circumvent the situation of very low rates of turtle interactions in the Hawaii longline fleet, we will be sending six additional PSATs to Randall Arauz in Costa Rica to be deployed in their longline fishery this month. These tagging kits will contain the newer Marine Systems epoxy.
We will, therefore, not only gain insight into the survival of released turtles, but also test the long-term adhesive properties of the new epoxy.

Anticipated project period: This work will continue throughout 2003.

Papers Published in Journals During FY 2002:

Other Papers, Reports, and Presentations During FY 2002:

Graduate Student Advisory Activities: N/A

Budget:

If possible, we would greatly benefit by acquiring funds to hire a half time assistant to maintain our current operations for another year.
Budget:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop off satellite archival tags</td>
<td>--</td>
<td>$200 K, already purchased on tags</td>
</tr>
<tr>
<td>Research Assistant (half time)</td>
<td>$13,000</td>
<td>--</td>
</tr>
<tr>
<td>Fringe Benefits (26% of salary)</td>
<td>$3,380</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>$16,380</td>
<td>--</td>
</tr>
</tbody>
</table>