The influence of the environment on horizontal and vertical bigeye tuna movements investigated by analysis of archival tag records and ecosystem model outputs

Gwenhael Allain, Patrick Lehodey and David S. Kirby
Objectives

1. Develop an individually-based model for BET movements where fish will be able to ‘swim through’ environmental data
2. in order to simulate spatial dynamics from individual to population scale

Archival tag records:
13 classic, 4 pop-up
(WPO, CSIRO-SPC, 1999-2004)

Ocean models outputs:
Physical-biogeochemical model
(ESSIC)
Ecosystem model
(SEAPODYM)

Data
- temperature (water, body)
- depth
- light
- position

Scales
- minutes
- to days
- H : 0.5 °
- V : m

investigate relationships + scale issues
build validate IBMs
Horizontal movements
On a seasonal scale: migration timing and routes in the Coral Sea

Kalman-filtered tracks of 2 tagged individuals
(cf. Sibert et al. 2003)

‘Migration route’
= area for data extraction from ocean model

Evolution of ecosystem parameters in the area (space average)
On a monthly scale: validation of ‘bigeye habitat’ in SEAPODYM (Lehodey 2004)
On a monthly scale: comparison between tag records and ocean model estimations

1. Comparison between surface temperatures:
 - recorded by a tag (boxplot)
 - extracted from the model (point = space average)

2. Correction of latitude values in order to reduce the discrepancies between tag and model values
Vertical movements

Behaviour types:

'classic' (74%)
'mixed' (24%)
'surface' (1%)
'deep dive' (1%)

cf. Schaefer & Fuller 2002
Musyl 2003

Duration:
hours to weeks

Factors:
temperature
light (sun/moon)
food
physiology
age...

Track
(Kalman-filtered)

Space-averaged
monthly parameters
extracted from
the ecosystem
model
Vertical movements

Common time scale between tag records and ocean model outputs = \textit{month}

Variables calculated from tag depth records:
- mean depth
- depth variance
- \% of time spent >500m
- \% of time spent <200m

\textit{mean depth during the day} during the day
\textit{mean depth during the night} during the night

representative of the proportion of 'classic' vs 'mixed' vertical behaviour
BET mean depth during the day would:
increase with temperature at 400m
decrease with migrant mesopelagic forage biomass
increase with deep mesopelagic forage biomass

Generalized Additive Model:
stepwise selection of covariates among ecosystem parameters

Model selected:
\[\text{mean.depth.day} \sim s(t400m) + s(Fb.migr) + s(Fb.deep) \]

> summary(gam5)

Family: gaussian
Link function: identity

Formula:
\[\text{mean.depth.day} \sim s(t400m) + s(Fbiom2) + s(Fbiom1) \]

Parametric coefficients:

| Estimate | std. err. | t ratio | Pr(>|t|) |
|-----------|-----------|---------|----------|
| constant | 349.02 | 4.408 | 79.18 | < 2.22e-16 |

Approximate significance of smooth terms:

<table>
<thead>
<tr>
<th>edf</th>
<th>chi.sq</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(t400m)</td>
<td>2.478</td>
<td>0.00039621</td>
</tr>
<tr>
<td>s(Fbiom2)</td>
<td>1</td>
<td>0.0083612</td>
</tr>
<tr>
<td>s(Fbiom1)</td>
<td>1</td>
<td>0.016734</td>
</tr>
</tbody>
</table>

R-sq.(adj) = 0.174 Deviance explained = 20.9%
GCV score = 2133.2 Scale est. = 2020.8 n = 104
Conclusion

Critical points:
- tagging data quality + quantity
- position estimates (i.e. link between tag records and ocean models):
 improve by latitudinal temperature or other method
- gap between tag and model scales:
 reduced in a higher resolution to come
 (10 days : scale of vertical behaviour changes)
- validation of forage distribution

Perspectives:
- use this approach to build rule-based IBMs (Allain et al. 2004) /
 validate more theoretical IBMs (Kirby et al. 2003)
- examine the link between horizontal (speed) and vertical movements (behaviour)
 + identify feeding events (visceral warming)
- simulation of BET spatial dynamics from individual to population scale