Cost-Earnings Study of Hawaii’s Small Boat Fishery, 1995-1996

Marcia S. Hamilton and Stephen W. Huffman

SOEST 97-06
JIMAR Contribution 97-314
Pelagic Economic Projects

- **Hawaii Fishing Industry & Vessel Economics**
 - 1994 – present
 - Longline, Small-boat trolling and handline, Charter boats and Charter patrons
 - Pelagic seafood market dynamics

- **Hawaii pelagic fleets programming modeling**
 - 2000 – present

- **International management alternative approaches**
 - 2000 - present
<table>
<thead>
<tr>
<th>Sector</th>
<th>Sample Size</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longline</td>
<td>95</td>
<td>1996</td>
</tr>
<tr>
<td>Troll-handline</td>
<td>569</td>
<td>1997</td>
</tr>
<tr>
<td>Charter boat</td>
<td>62</td>
<td>1998</td>
</tr>
<tr>
<td>Tournaments</td>
<td>7</td>
<td>---</td>
</tr>
<tr>
<td>Charter patrons</td>
<td>> 300</td>
<td>Interim 2000</td>
</tr>
</tbody>
</table>
HIFIVE Activities

- Basic data for economic modeling
 - Collaboration with most other JIMAR economics projects
- Development of simple Excel cost-earnings simulators
- Preliminary longline production modeling
 - including effort allocation model
 - Fishing fleet capacity estimates
- Sociology dissertation project on small-boats
Applications

- Regulatory Flexibility Analysis
 - Impacts on small businesses
- Litigation
 - Costs and benefits of alternatives
- Environmental Impacts
 - Costs and benefits of alternatives
- Economic research
 - Production methodologies
Longline effort allocation model

- Model developed by former JIMAR associate researcher Rita Curtis (now at NMFS HQ)
 - Deals with fishermen’s spatial and target choices
 - Termed “Random utility models” (RUM), Multinomial Logit or Discrete Choice models
 - Accounts for net revenues, risk, and variability
Need for a dynamic model of economic behavior

- Fishermen incur large costs to access distant fishing sites that often outweigh the expected returns from single day of production.
- Fishermen decisions may be based upon stream of returns generated over course of a trip.
- Fishermen take multiple day trips and are highly mobile
 - May choose sites based upon whether neighboring sites are also high performing.
Context:
Longline Fishery Closure Alternatives
Court-ordered Closure

Court-ordered Closures 8/03/2000
RUM Data Management Process

1. Define “sites” and “fishery/target” choices.
2. Define fisherman’s choice set on each choice occasion.
3. Forecast returns to sites in next period; stream of returns.
4. Forecast returns to fishing regions/target choices.
5. Calculate travel costs to sites, fisheries.
6. Calculate “targeting” costs.
7. Determine catch deterioration costs for accessing different choices.
8. Miscellaneous tasks: estimating boat values; determining vessel entry/exit to California fishery.
Choice structure for analyzing fisherman’s choice of location and targeting strategy for multiple-day fishing trip.
Choice Structure

<table>
<thead>
<tr>
<th>45°N</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
</tr>
</thead>
<tbody>
<tr>
<td>42°N</td>
<td>S13</td>
<td>S14</td>
<td>S15</td>
<td>S16</td>
<td>S17</td>
<td>S18</td>
<td>S19</td>
<td>S20</td>
<td>S21</td>
<td>S22</td>
<td>S23</td>
<td>S24</td>
<td></td>
</tr>
<tr>
<td>36°N</td>
<td>S36</td>
<td>S37</td>
<td>S38</td>
<td>S39</td>
<td>S40</td>
<td>S41</td>
<td>S42</td>
<td>S43</td>
<td>S44</td>
<td>S45</td>
<td>S46</td>
<td>S47</td>
<td>S48</td>
</tr>
<tr>
<td>33°N</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
<td>M6</td>
<td>M7</td>
<td>M8</td>
<td>M9</td>
<td>M10</td>
<td>M11</td>
<td>M12</td>
<td>M13</td>
</tr>
<tr>
<td>27°N</td>
<td>M29</td>
<td>M30</td>
<td>M31</td>
<td>M32</td>
<td>M33</td>
<td>M34</td>
<td>M35</td>
<td>M36</td>
<td>M37</td>
<td>M38</td>
<td>M39</td>
<td>M40</td>
<td>M41</td>
</tr>
<tr>
<td>24°N</td>
<td></td>
</tr>
<tr>
<td>21°N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
<td>T4</td>
<td>T5</td>
</tr>
<tr>
<td>18°N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T9</td>
<td>T10</td>
<td>T11</td>
<td>T12</td>
<td>T13</td>
<td>T14</td>
</tr>
<tr>
<td>15°N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T17</td>
<td>T18</td>
<td>T19</td>
<td>T20</td>
<td>T21</td>
</tr>
<tr>
<td>12°N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T22</td>
<td>T23</td>
<td>T24</td>
<td></td>
</tr>
<tr>
<td>177W</td>
<td>180W</td>
<td>177W</td>
<td>174W</td>
<td>171W</td>
<td>168W</td>
<td>165W</td>
<td>162W</td>
<td>159W</td>
<td>156W</td>
<td>153W</td>
<td>150W</td>
<td>147W</td>
<td>144W</td>
</tr>
</tbody>
</table>
Conclusions

- Fishermen respond positively to expected benefits
- Fishermen are risk averse
- Fishermen use other vessels’ activity as an indicator of site “quality”
Economic welfare estimates
(change in owner wealth over time)

- Area and seasonal closures
 - Swordfish trips
 - $43,000 per trip
 - Mixed target trips
 - $20,400 per trip
 - Tuna target trips
 - $4,000 per trip

-- indicative results only!
Longline effort allocation model application

- Publication forthcoming in Economics journal
- NMFS exploring extension of RUM model to current applications
 - Cost of movement and changes in targeting
 - Cost of entry and exit from fisheries
Bigeye price determination
(1994-96 weekly)

<table>
<thead>
<tr>
<th>Weekly BE Price =</th>
<th>$8.65*</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 0.0038 Qbe*</td>
<td>+ 0.28 Pt-1*</td>
</tr>
<tr>
<td>-0.0056 Qyf*</td>
<td>-0.0056 Qaku*</td>
</tr>
<tr>
<td>+0.56 D</td>
<td>-0.21T*</td>
</tr>
</tbody>
</table>

D = holidays
T = SST

| R2 = 0.50 | DW = 1.89 |
Bigeye Landings and Prices with & without Longline Fishery Closure
(April-May Closure)

- Lb (1,000)
- Price ($/lb)

Month

- Lb (without)
- Lb (with)
- Price (without)
- Price (with)
Pelagic Fleet Programming

Further development of PingSun Leung’s JIMAR project model:

- A Multilevel and Multiobjective Programming Model for the Hawaii Fishery

 ✓ Minling Pan, PingSun Leung, Fang Ji, Stuart T. Nakamoto, and Samuel G. Pooley

- JIMAR Contribution # 99 (1999)
Pelagic fleet model extension

- Improved spatial structure
- Updated longline and small-boat data
 - Creating more flexibility and therefore more realistic results for regulatory analysis
- Identification of shadow prices of recreational fishing: trade-off analysis

--- New project staff beginning 10/2000
Pelagic fleet model parameters

- **Inputs**
 - Policy goals: fleet profit, recreational participation
 - Policy instruments: Area and seasonal closures
 - Biological conditions: Stock abundance & CPUE
 - Market conditions: Prices and costs
 - Fleet characteristics: Number of vessels

- **Individual vessel criteria**
 - Owner, crew and trip *entry*
Pelagic fleet model parameters

 Outputs:

✅ Fleet profits and Recreational activity levels
✅ Fishing effort and Catch Levels
 - by fleet, location and season
✅ Nine fleet categories
 - 3 longline; 3 other commercial; 3 recreational
✅ Five areas
 - MHI (2); NWHI, High-Seas (2)
✅ Four seasons
✅ 14 species groups
Original spatial Structure

Area 5

Area 4

Area 3
NWHI

Areas 1-2

Area 5
Modified Spatial Schema

Hawaii
International Management Alternatives

- Exploration of corporate and community-based management alternatives to international management
 - Development of extensive bibliographical library
 - Exploration of game theory applications

-- Analytical project delayed due to conflicting schedule with co-PI