Tuna movements and large scale variation in prey abundance

Patrick LEHODEY
OCEANIC FISHERIES PROGRAMME
Secretariat of the Pacific Community
Noumea, New Caledonia
Observations
catch and SST

Distribution of skipjack
tuna catch (t) and
mean sea surface
temperature in the
Pacific Ocean. a, in the
first half of 1989 (La
Niña period); b, in the
first half of 1992 (El
Niño period).
Hypothesis

- **Eq**: Equator
- **PNG**: Papua New Guinea

Legend:
- High primary productivity
- High tuna forage productivity
- Tuna habitat highly favourable
- Limit of the warm pool
- Movements of skipjack tuna population
- Positive effect on the recruitment a few months later

Diagram showing the relationship between La Niña and El Niño events, Southern Oscillation Index, primary productivity, and tuna forage.
Modelling: forage \((F)\)

We consider the prey species as a single population and we use a fish population dynamics approach: constant mortality \((\lambda)\) and continuous recruitment \((S)\) at age \(T_r\).

\[
dF/dt = S - (\lambda F)
\]

\[
S = P \exp(-m_r T_r)
\]

Transfer with time of primary production towards forage according to the model \((S\) is assumed constant). The thin curve describes the evolution in time of a single source of primary production. The thick curve gives the total forage population.
Modelling: including spatial scale

• The model covers the Pacific basin with a grid of 1 degree square
• The forage is passively transported by currents
• This transport in the two horizontal dimensions, is based on an advection-diffusion equation
Parameterization:

Very simple!

Energy transfer from new primary production to forage:

\[\text{4\% according to Iverson (1990)} \]

Using the biological characteristics of typical tropical tuna prey species (oceanic anchovy, squids, red crab, euphausides, juveniles of tuna,...) a reasonable parameterization is defined for:

- Tr : 60 d.
- \(1/\lambda \) (mean age) : 120 d.

leading to a lifespan (defined as the age at which 99\% of the cohort has disappeared) of 336 d.
Physical-Biogeochemical Model

- **Micro-Zooplankton** [Z1] → **Nitrate** [NO$_3$] → **Ammonium** [NH$_4$] → **Diatoms** [P2] → **Silicate** [Si(OH)$_4$] → Physical Model
- **Small Phytoplankton** [P1] → **Micro-Zooplankton** [Z1] → **Detritus-N** [DN] → **Detritus-Si** [DSi] → Sinking
- **Micro-Zooplankton** [Z1] → **Predation** → **Meso-Zooplankton** [Z2] → **Fecal Pellet** → Sinking
- **Meso-Zooplankton** [Z2] → **Grazing** → **Small Phytoplankton** [P1] → **Excretion** → **Ammonium** [NH$_4$] → **Meso-Zooplankton** [Z2] → **Grazing** → **Diatoms** [P2] → Sinking
- **Small Phytoplankton** [P1] → **Grazing** → **Detritus-N** [DN] → **Fecal Pellet** → Sinking
- **Ammonium** [NH$_4$] → **Detritus-Si** [DSi] → **Sinking**
- **Diatoms** [P2] → **Silicate** [Si(OH)$_4$] → **Sinking**
- **Total CO$_2$** [TCO$_2$] → **Air-Sea Exchange**
Surface Phytoplankton Concentration (mmol/m3) - 1990 Mean

Nino3 (5°S-5°N, 150°W-90°W)
Phytoplankton Concentration (mmol/m3) in Nino3 Box (5$^\circ$S-5$^\circ$N, 90$^\circ$W - 150$^\circ$W), 1965-92
NO$_3$ (mmol/m3) in Nino3 Box (5°S-5°N, 90°W-150°W) from 1965 to 1992, Decadal Cycle
Main south Pacific albacore spawning area

Main skipjack spawning area
South Pacific Albacore: Comparison with Multifan CL ...

... and prediction?
Conclusions

• There is a convincing relationship between the distribution of simulated tuna forage and tuna distributions inferred from fishery data.

• This relationship can be used as the basis of a forage-tuna coupled model in which tuna dynamics are a function of the forage distribution.

• Such a model may be useful for investigating many different questions on tuna biology or fisheries (recruitment, variability in growth or natural mortality, migration patterns, interaction between fleets, ecosystem approach, etc…).