Interpolation and Gridding

GG691 Lab 4
March 22, 2007
Agenda

• Demonstrate 1-D spline
 – Cubic splines and splines in tension
• Grid a 2-D topography data set
 – Use Matlab’s `griddata` function
 • Linear and cubic Delaunay triangulation
 • Nearest neighbor
 • Sandwell’s [1987] biharmonic Green’s function
 – General Green’s function for Cartesian splines with or without tension
Cartesian Green’s functions

Minimum Curvature

\[\nabla^4 \phi = \delta \]

<table>
<thead>
<tr>
<th>Dimension</th>
<th>(\phi(r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>(r^3)</td>
</tr>
<tr>
<td>2-D</td>
<td>(r^2 \log r)</td>
</tr>
<tr>
<td>3-D</td>
<td>(r)</td>
</tr>
</tbody>
</table>
Cartesian Green’s functions
Splines in tension

$$\nabla^4 \phi - p^2 \nabla^2 \phi = \delta$$

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>$$\phi(r) = e^{-pr} + pr$$</td>
</tr>
<tr>
<td>2-D</td>
<td>$$\phi(r) = K_0(pr) + \log(pr)$$</td>
</tr>
<tr>
<td>3-D</td>
<td>$$\phi(r) = \frac{1}{pr} \left[e^{-pr} - 1 \right] + 1$$</td>
</tr>
</tbody>
</table>
Spherical Gridding

• When area is too large to ignore Earth’s curvature we must interpolate on the sphere.

• Parker [1993] found solution for minimum curvature (θ is angular distance)

$$\phi(\theta) = \text{dilog}\left(\sin^2 \frac{\theta}{2}\right)$$

• Janet B and I are including tension and find

$$\phi(\theta) = \frac{\pi P_v (-\cos \theta)}{\sin v \pi} - \log(1 - \cos \theta)$$

$$v = -\frac{1}{2} + \sqrt{\frac{1}{4} - p^2}$$
Process of Solution

• Calculate matrix \(R \) with radial distances between all pairs of the \(n \) observation points.

• Let observations \(z = z_0 + \Delta z \)
 – \(\Delta z \) are the deviations from the mean \(z_0 \).

• Evaluate the Green’s function for all these distances, yielding square \(n \) by \(n \) matrix \(G \).

• Solve for the \(n \) weights \(w = G^{-1}\Delta z \).

• For each evaluation point \(x_k \)
 – Get \(r \), the distance vector to all \(n \) data points.
 – \(z_k = z_0 + r^T w \).