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Fold style inversion: Placing probabilistic constraints on the
predicted shape of blind thrust faults
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Abstract. We develop a new methodology which compares quantitatively styles of folding
from seismic reflection data. The goal of the “fold style inversion” (FSI) method is to provide
an objective choice of the most appropriate model used when solving for the shape of an
unimaged blind fault from folded layer geometry. FSI is a discretization of the dip isogon fold
classification scheme reformulated as simple vector transformations. A data set's goodness of

fit to parallel (class 1c) or similar (class 2) fold geometry is assessed by calculating misfit
between the predicted and observed bed geometries through a grid search of the parameter
space specific to each transformation; the two fold types correspond to the constant bed
length and arbitrarily inclined simple shear (AISS) fault solution routines, respectively. For
seismic reflection data, confidence estimates may be placed on the preference of fold style
and its corresponding fault solution by Monte Carlo simulations of depth correlative, spatially
limited depth conversion errors. For synthetic geometric examples FSI determines fold style
preference and parameters exactly. At low fold limb dips (<~15°) the actual geometric
difference between parallel and similar folds is very small, and the difference between fold
styles cannot be resolved, highlighting a general difficulty in the analyses of young blind
thrust structures. For a synthetic seismic line of an AISS fault-related fold the method chooses
the correct folding style and leads to the correct fault geometry at depth. In examples of real
data from the Barrancas/Lunlunta-Carrizal anticlinal complex in Mendoza, Argentina, FSI
analysis determines 71% and 54% probability of similar preference for two seismic lines on
separate structures. The corresponding fault solutions for the first example are well
constrained, whereas for the second example the solutions are widely variant. This analysis
helps to quantify the relationship between the predicted sub surface fault trajectories and
hypocenter and aftershock data of the 1985 M,, 5.9 Mendoza earthquake, showing that the
earthquake and the fault causing the Barrancas/Lunlunta-Carrizal anticlinorium are most

likely unrelated.

1. Introduction

Determining the subsurface geometry of "blind" thrust
faults is fundamental to any active tectonic or seismic hazard
analyses of these potentially seismogenic structures. Where
anticlinal folds overlying blind thrust faults have been
explored for hydrocarbon reserves, industry seismic reflection
lines commonly provide the most complete and highest-
quality spatial data. Frequently, however, the seismic
reflection data only image the folded layers, while the
potentially seismogenic fault remains hidden. As a result, the
depth profile of a buried fault is often estimated from the
geometry of the overlying folded rock layers through some
kinematic model which relates incremental fault slip to
permanent fold deformation [Erslev, 1991; Suppe, 1983;
Suppe and Medwedeff, 1990; White et al., 1986]. It is this
modeled fault geometry which is then used in determining
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slip rates, potential earthquake magnitudes, and recurrence
intervals or, recently, in correlating the relocated hypocenter
of an earthquake with fault plane reflections below a surficial
fold [Shaw and Shearer, 1999].

Because of the variety of models relating fold shape to
fault shape and slip, modeled subsurface fault trajectories
may be highly nonunique. For instance, for the same folded
layer geometry, the arbitrarily inclined simple shear (AISS)
and constant bed length (CBL) fault solution routines may
yield significantly different fault trajectories (Figure 1) [Dula,
1991]. While corollary geologic data such as growth strata
packages may be used to deduce time-averaged fold
kinematics and to choose the most appropriate fault-related
fold model, these data often do not exist, especially in
subaerial locations where sedimentation rates are lower. As a
result, workers often choose a fault-related fold model to
apply on the basis of subjective criteria such as ease of
graphical implementation, computer code availability, or
personal preference. Given that these fault solutions are often
used in seismic hazard analyses with direct societal impact, an
objective criterion to choose the fault-related fold model most
appropriate to a data set would be extremely useful.

In this paper, we develop a method to allow an objective
choice of the most appropriate fault-related fold model to use
when solving for the shape of an unimaged fault from seismic
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Figure 1. Cross-sectional view of an AISS fault bend fold forward model (solid line) and the constant bed
length (CBL) fault solution (dashed line) obtained from the folded layer. If the AISS fault solution routine
had been used, the exact trajectory of the true fault would have been obtained. The gray area indicates the
maximum depth of typical industry seismic reflection lines.

reflections of folded layers. The "fold style inversion" (FSI)
method compares quantitatively the style of folding which
best corresponds to folded layer geometry imaged in seismic
reflection data. In our development, we explicitly consider
depth conversion errors that may influence the final geometry
of reflections in standard common midpoint (CMP) seismic
reflection profiles. Iterative Monte Carlo simulations of these
errors allow confidence estimates to be placed on the choice
of a specific model and its corresponding fault solution. In
addition to tests on kinematic forward models, we test the FSI
method on a synthetic CMP profile and apply it to an active
fault-related fold, the Barrancas/Lunlunta-Carrizal anticlinal
complex, situated near a densely populated area in
Argentina’s eastern Andean foothills and the site of the 1985
My =5.9 Mendoza earthquake.

2. Fold Style Inversion

Generally, the method is a grid search of a parameter space
specific to a fold style for a bulk fold geometry which
minimizes the error produced when folded reference layers
are spatially transformed into model layers. The overall goal
is to choose the most appropriate model describing fault-
related fold deformation. This preferred model is then used to
invert hanging wall fold geometry for fault geometry at depth.

We present the method below in four components: (1) a
transformation of points from a reference to a model layer
using a discrete formulation of the dip isogon fold
classification scheme [Hudleston, 1973; Ramsay, 1967], (2) a
grid search of a parameter space specific to each
transformation and error minimization between modeled and
actual layers, (3) Monte Carlo simulation of a depth-
correlative error function which replicates ray-path-dependent

depth conversion errors, and (4) inversion for fault geometry
given deformed hanging wall layer geometry.

In the subsequent development, we consider only two-
dimensional, plane strain deformation and choose only two
fault solution routines, the AISS [Kerr et al., 1993] and CBL
[Geiser et al., 1988] methods, which correspond to arbitrarily
inclined simple shear and layer parallel shear (LPS)
deformation mechanisms, respectively (see the appendix for a
more detailed description of these deformation mechanisms
and fault solution routines). We fully recognize that
deformation is three dimensional [Kerr et al., 1993; Unruh
and Twiss, 1998] and may not be described as simply as the
models we choose. However, in order to. present clearly the
method and to understand its first-order results, we have made
the above limiting assumptions which are standard in
geologic cross-section construction [Woodward et al., 1989].

Furthermore, we choose the AISS and CBL methods because

they are two widely employed inverse methods relating fold
geometry to fault geometry [Geiser et al., 1988; Suppe, 1983;
Suppe and Medwedeff, 1990; White et al., 1986] and because
the fold kinematics specific to each method are correlated
with unique fold styles defined by the dip isogon
classification.

2.1. Discretized Dip Isogon Classification

Each particular style of fault-related folding has a unique
geometrical relationship between folded layers. These
geometrical relationships may be visualized graphically as
fold classes defined by dip isogons, lines connecting layer
segments of equivalent dip [Elliot, 1965; Hudleston, 1973;
Ramsay, 1967] (Figure 2) LPS deformation will form
“parallel,” or class 1B, folds. AISS deformation will form
“similar,” class 2, folds [Ramsay, 1967]. The dip isogon
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Figure 2. The five possible fold classes in the dip isogon classification [Ramsay, 1967]. Dip isogons are
lines which connect regions of equivalent dip between folded layers. At this stage we only consider the
parallel (class 1B) and similar (class 2) categories which correspond to the CBL and AISS fault solution

routines, respectively.

classification is an entirely general scheme; all simple fold
types fall into one of five categories (Figure 2).

We describe the dip isogon geometrical relationships as a
transformation of points on a reference layer to points on a
model layer. In a two-dimensional coordinate system with i
and j as horizontal and vertical unit vectors along the x and y
axes, respectively, the material points of layers in a similar
fold, the result of AISS deformation, may be related to one
another as follows (Figure 3a):

b(x) = a(x) +1,.v, 1)

where a(x) is the vector from the origin to a point on the
reference layer (the ith layer in any set of layers), b(x) is the
vector from the origin to the same point on the model layer,
t, is the axial planar thickness of the similar fold, v is a unit
vector, and v- j=cos(a), where « is the angle of inclined
simple shear [White et al, 1986]. When v is rotated
counterclockwise from the vertical, & > 0; when v is rotated
clockwise from the vertical, @ < 0. Likewise, the material
points of layers in a parallel fold, the result of LPS
deformation, may be related to each other as

b(x) = a(x) +¢ x), 2

perpY perp
where a(x) and b(x) are defined in the same way as equation
(1), tyerp is the layer perpendicular thickness, and v,,,,(x) is a
unit vector perpendicular to the layer at each point on the
reference layer (Figure 3b); v,,,,,(x) is a function of x, and its
orientation varies accordingly, while v in equation (1) has a
constant orientation.

2.2. Grid Search and Misfit Calculation

Although simple, equations (1) and (2) cannot be
represented in explicit linear form [Menke, 1984].
Accordingly, we cannot perform a simple linear inversion to
find the bestfitting parameters, ¢, ¢, and fper, from equations
(1) and (2). Instead of making potentially complicated
linearizing assumptions and because reasonable bounds on
the parameters are limited and easy to define, we choose to
find the best fitting parameters by means of a grid search of

the solution space [e.g., Sambridge and Kennett, 1986]. The
grid search approach allows evaluation of the convergence
strength and uniqueness of solutions by direct observation
and guarantees determination of the global minimum.

A. Similar Transformation

model layer

.a reference layer

.
N
N

B. Parallel Transformation

Figure 3. (a) Transformation of points from reference
layer (points a) to model layer (points b) according to similar
fold geometry. All points are translated along a vector v for a
distance t,, and deviate from the vertical by & in a coordinate
system defined by unit vectors i and j. If rotated
counterclockwise, a > 0; if rotated clockwise, & < 0. (b)
Transformation of points according to parallel fold geometry.
Points are translated along v for a distance ¢,,, in an
orientation which is always perpendicular to the local
bedding.
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Simple similar folding (AISS deformation) has a two-
dimensional parameter space consisting of parameters o and
t,x (equation (1)) while simple parallel folds (LPS
deformation) are described by only one parameter, .,
(equation (2)). In practice, we substitute for ¢, and t,,, a
reference thickness f,, expressed as a percentage of the
average layer perpendicular thickness between two layers.
The parameter varied in the grid search is then t,. To
illustrate the method in a simple way, we do not consider
other possible parameters such as porosity decay length
[White, 1987] or degree of homogenous shear imposed over
the hanging wall [Mosar and Suppe, 1992], though they may
be added eventually.

For a given set of digitized layers, the grid search
comprises computing the misfit £ between modeled and actual
data for each possible combination of model parameters
specific to a deformational style. We choose an L, norm
[Menke, 1984], and for any pair of layers with points a(x) and
b(x) from (1) or (2) we define

Ny, 21%

l.El(ybi - ybi) |_|

Egp = ~ ! ©)
b

where y,; is the vertical coordinate of the ith point on the
second digitized layer, y,; is the vertical coordinate of the
modeled data which shares the same horizontal coordinate
with yg;, and N, is the total number of points on the second
layer (Figure 4). Equation (3) is calculated for each pair of
layers and then summed to find the total of the average misfit
per point specific to a set of layers. If L is the total number of
layers in a set, then there are L (L-1) combinations to which
we apply (3) and we define the total misfit &, as

L L
E,, = 2L XEq iy - 4
tot st ot Jk(j#k) ( )

For data where measurement uncertainties may be
estimated directly, such as rock outcrop or sandbox models,
the preferred model parameters simply would correspond to
the smallest value of &, within the range of uncertainty. For
seismic reflection images, however, uncertainty estimation is
much more complicated. Errors may enter the data set
anywhere along the path from field acquisition to processing
and depth conversion. To insure quantitative validity of the

bed2 \3’21‘ Vigx
or
Vperp
bed 1

Figure 4. Misfit calculation for a representative pair of
beds. For each pair of beds, misfit is calculated following
equation (3) for each point transformed according to equations
(1) and (2).
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method, we address below the uncertainties specific to
seismic reflection data and how they may influence our
analysis.

The primary goal of the grid search and misfit calculation
is to identify which fold model is most suitable to the data;
additionally, the estimated parameter « will be used in
subsequent analysis. Primarily, ¢, the angle of inclined simple
shear, is the controlling variable in the AISS fault solution
routine [White et al., 1986] (see the appendix). We are not as
concerned with the actual values of the thickness parameters
ts and t, in each vector transformation because these
parameters do not enter into subsequent fault inversion
routines.

2.3. Synthetic Examples: Kinematic Models

Using synthetic examples of AISS and LPS forward
models, we illustrate the grid search and misfit calculation
when experimental uncertainties are not present in the data.
Figure 5a is an example of beds folded according to AISS
deformation in response to slip on an underlying thrust fault
with a flat-ramp-flat (“fault bend fold”) geometry and o = -
20° inclined synthetic to the fault ramp. The one parameter
parallel grid search (equation (2)) clearly converges to a
global minimum of &, ~ =4 m at ¢, = ~100% (Figure 5b).
The contoured error surface of the two-parameter similar grid
search, however, also shows convergence to a global
minimum at &= -20° and t,., = ~102% (Figure 5c). A vertical
slice of the error surface at t,, = ~102% shows that &,
converges to ~0 at @ = -20°, the exact input value (Figure
5d). Although the data are devoid of errors, the use of an
average perpendicular thickness value ¢, precludes &, from
obtaining a value of exactly zero. Clearly, the minimum
similar solution is favored over the minimum parallel
solution. In this synthetic example, then, the method easily
differentiates between the correct (similar) and incorrect
(parallel) solution while solving exactly for the input
parameters.

Figure 6a is an example of a parallel fault bend fold
resulting from LPS deformation with gently curving fold
limbs digitized from an example by Medwedeff and Suppe
[1997, Figure 12b]. We choose this example because its
gently curving fold limbs more closely model many natural
structures than angular forward models with planar limbs
[e.g., Suppe, 1983]. In contrast to the AISS similar fold
example, the grid search and misfit calculation for this
example clearly favors a parallel solution. The parallel
solution is strongly convergent and well constrained in Figure
6b and the misfit approaches zero. (Small digitizing errors in
addition to the use of an average perpendicular thickness
cause the nonzero misfit value in this case.) In comparison,
the similar solution is not as strongly convergent and has
misfit values greater than the parallel solutions (Figures 6¢
and 6d), though the solution does converge to a global
minimum.

The previous examples show that the FSI method
effectively favors and determines the correct parameters of
synthetically generated fold layers when their geometry is
known exactly, that is, when there is no experimental noise
included in the data set. This is clearly a necessary condition
for a method’s validity; however, for it to be of real practical
use in analyzing seismic reflection data, we must consider the
effect that errors introduced by the seismic reflection method
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Figure 5. (a) Input suite of layers created by using AISS forward model and o= -20°. (b) Results of parallel
grid search. Horizontal axis is the parameter ¢, and the vertical axis is the total error &,. (c) Results of
similar grid search. Horizontal axis is the parameter ¢, and the vertical axis is the parameter ¢, Contours are
on the total error &, . Dashed white line indicates vertical slice at ¢,,, = 1.02. (d) Cross section of Figure 5c at
t,,= 1.02. Horizontal axis is the parameter ¢, and the vertical axis is the total error &,,.

have on the outcome of FSI analysis. Specifically, how do we
know that a difference in &, (Figures 5b, 5d and 6b, 6d) is
significant?

3. Consideration of Errors and Application to
Seismic Reflection Data

Because the FSI method operates on fundamentally
geometric data, we apply it only to seismic reflection data that
have been migrated and depth converted. Errors intrinsic to
the acquisition, processing, and depth conversion of seismic
reflection data are difficult to quantify because of the
heterogeneous nature of the Earth itself, the subjective nature
of processing, and the varying amounts of subsidiary
information (such as well logs or synthetic seismograms)
applied to any given depth conversion. Though it may not be
possible to quantify precisely error at each step of the
acquisition to depth conversion process, it is safe to assume
that, for a seismic reflection line acquired and processed by
using modern techniques, the most significant source of errors
will be inadequate knowledge of a real-Earth velocity model
used in depth conversion [Al-Chalabi, 1994].

Depth conversion errors are most likely due to unknown
lateral velocity variations. These types of velocity anomalies
may be present at any depth in a geologic section, and as

such, they are independent of one another. However, the
errors introduced when that same geologic section is imaged
by using the seismic reflection method will be correlated
between reflections at different depths. Clearly, seismic
energy arriving at one reflective layer has passed through an
Earth velocity field shared by all of the other reflective layers
above it. Any travel time differences caused by a velocity
anomaly at a certain depth will also be present in the travel
times from all deeper reflections along the ray path (Figure
7a). Of course, lateral velocity variations present in deeper
layers may also act to cancel out travel time errors produced
by lateral velocity variations in shallower layers. If our grid
search and misfit calculation is to be applied reliably to
seismic reflection images of fault-related folds, we must take
into account the velocity errors described above.

3.1. Monte Carlo Simulation of Depth Conversion Errors

To account for these potential errors and to derive
confidence estimates on the preferred fold style solution, we
integrate the FSI method with Monte Carlo simulations of a
specific seismic reflection data set. Iterative Monte Carlo
simulations and parameter estimations are a very effective
means of determining confidence limits on parameters when
error distributions are difficult to quantify for a specific data
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Figure 6. (a) Input suite of layers created using LPS forward model digitized from Medwedeff and Suppe
[1997].(b, ¢, d) Results of parallel grid search, similar grid search, and vertical slice at t,,; = 1 as in Figure 5.

set though something about the error generation process is
known [Huber, 1981; Press et al, 1992]. In a manner
analogous to the process developed by Sandvol and Hearn
[1994] to estimate errors associated with seismic waveform
inversion for shear wave splitting parameters, we perform
iterative FSI inversions on data perturbed by a noise sequence
which varies with each iteration. The noise sequence which
we apply must have widths comparable to buried lithologic
bodies and be correlative with depth.

We derive the noise sequence from reasonable amplitude
and spatial distribution estimates of depth conversion errors
caused by laterally varying velocity variations. Accordingly,
in the same coordinate system as equation (1), we define a
scalar-valued noise function specific to each layer, e(x) as

e(x) = Aw(xy) 5)

where A is a random amplitude (positive or negative) less than
or equal to some maximum percent error and w(x) is a white
noise function sampled on x over some random wavelength
greater than or equal to a reference wavelength A but less
than the length of the line (Figure 7b). The actual values of A
and A may be adjusted to the lithologic conditions specific to
each seismic line. For example, if there is cause to believe
that lithology is continuous over the length of the seismic
line, then 4 will be relatively large. Alternatively, A will be
large and A will be small if strong, short-wavelength,
discontinuous lithologic variations exist in the geologic
section. Because A is a percentage, when it is multiplied by

bed depth (see below), the absolute magnitude of simulated

errors will amplify with depth in a manner similar to actual
seismic reflection depth conversion conditions. If we choose
A conservatively, e(x) represents a maximum error in depth
conversion because it is independent of subsidiary

information, such as well logs or synthetic seismograms,
which serve only to improve depth conversion accuracy.

To apply this noise generation scheme to a given seismic
line, we start by simply scaling each point in the shallowest
digitized layer a,(x) (in the notation of equations (1) and (2),
with the subscript added to denote layer number) by equation

5):
), (n)=a; (x)+e; (Xay,J (6)

where ap,y is the maximum depth of a specific layer, j is a
vertical unit vector, and a’, (x) is the new reference layer to
be used in FSI analysis (Figures 7¢ and 7d).

For deeper reflections we model correlative errors by the
summation of errors specific to each reflection. Thus for all
reflections,

a; (x)=a (x)+( Zlej (X))@ @)
13 J=

(Figures 7c and 7d). In FSI analysis the point wise
transformations and misfit calculations (equations (1) and (2))
are all modified, then, by the substitution of a;- (x)' for
a; (x).

Independently of previous iterations, we repeat the
application of equations (5) and (7) for a set of digitized
layers. For each iteration the set of perturbed beds are then
input to the grid search routine and a minimum misfit solution
found for both the parallel and similar cases. In practice, we
have found that 200 iterations is sufficient for convergence to
a stable solution.

To illustrate the process, we show in Figure 8 the FSI
results of 200 iterations for a purely.geometric example of a
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Figure 7. (a) Schematic diagram of seismic energy ray paths traveling through a folded, layered Earth with
laterally varying velocity anomalies. (b) White noise function w (light dashed line) for the uppermost layer
with a maximum amplitude A sampled over a minimum length A to yield the error function, e (heavy dashed
line) for the uppermost layer. Parameter w is independent for every bed and every iteration and is defined as a
percent error in depth. (c) Summation of independent errors for the uppermost layer e, and the next lowest
layer e,, (dashed lines) to produce the correlated error e’, (solid line) for the lower layer. The summation of
the independent error functions simulates ray-path-dependent velocity errors. (d) Error functions applied to
the entire suite of layers (dashed lines) to produce the suite of layers for FSI analysis for one Monte Carlo
simulation. The amplitudes of the errors (set by A in Figure 7b) is exaggerated greatly to demonstrate the

simulations.

parallel fold. In this case we choose A = 0.025 and A= 3500
m. Because we are trying to establish model preference, the
minimum misfit g, for each Monte Carlo realization
(regardless of specific parameter values) of both the similar
and parallel grid searches are plotted. In this example, the
parallel solution is favored 100% of the time over the similar
solution. From inspection we can see that the best solutions
for each model never come within 2 standard deviations of
each other’s mean misfit value. Although the input model
geometry is that of an exact parallel fold, the parallel grid
search solutions never go to zero as in Figure 6b because of
the introduction of the noise sequence in the Monte Carlo
error simulations. Despite this error introduction, however,
the method establishes a clear model preference. Clearly, we
can degrade the data and the results of the grid search by
adjusting A and A4, although the values we choose for the data
in Figure 8 are typical of real seismic reflection data.

3.2. FSI Bias

Before we consider FSI application to realistic fold
geometries, we investigate potential biasing of the results by
introduction of the correlative noise sequence by applying FSI

to entirely horizontal layers (Figure 9a). Straight layers
oriented parallel to one another (of which horizontal layers
are a subset) are examples of both similar and parallel folds as
they satisfy simultaneously both equations (1) and (2).
Because the layer geometry satisfies both the similar and
parallel models, the misfit differences are much smaller than
for the purely parallel geometry in Figure 8. If the error
simulation process does not produce any bias, then we expect
the differences in minimum misfit value Aecto fluctuate
randomly about a mean value of 0. The similar grid search
misfit values are consistently below, albeit a small amount,
those for the parallel grid search (Figure 9a). We quantify this
bias by plotting a discrete probability density function
(DPDF) of the Ae values corresponding to each iteration
where we define (Figure 9b)

Ae = Esimilar~ eparallcl . (8)

The field of the plot to the left of the origin indicates
preference for the similar model, while the field to the right of
the origin is the zone of parallel preference (Figure 9b).
Clearly, the DPDF of the horizontal beds is slightly biased
toward the similar zone; thus the application of the noise
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Figure 8. Plot of &, versus iteration number for FSI analysis of concentric circles with a maximum limb dip
of 45°. For each iteration the minimum misfit value for both the similar (solid line) and parallel (dashed line)
grid searches are plotted. Concentric circles follow exactly parallel fold geometry, and the parallel solutions
always have lower misfit values than the similar solutions. The paralle]l minimum misfit values do not reach
zero because of the application of error in the Monte Carlo simulations. Here A¢is the difference of minimum

misfit values defined in equation (8) as Epmiur -

sequence introduces a bias toward similar folds in FSI
analysis. The magnitude of this bias will vary with the
magnitudes of the parameters A and 4 in equation (5).

Quantifying the similar fold style bias is important when
considering real data. Primarily, we must be able to
demonstrate that a preferred solution (either similar or
parallel) differs significantly from the slight bias imposed by
the method. Below, using synthetic examples, we examine the
factors which control solution differentiability.

3.3. FSI Resolution: Fold Limb Dip Dependence

We examine the FSI solutions for three synthetically
generated parallel folds ranging in limb dip from 10° to 45°
(Figures 10a, 10b, and 10c). The synthetic layers are simply
arc lengths of concentric circles with different radii, a
construction which satisfies the definition of parallel folding
(equation (2)). For reference, we also plot the DPDF of Ae for
the FSI results for horizontal layers at the same maximum
depth as the data. We define the probability ¢ that A¢ for an
FSI iteration lies outside of the DPDF for the bias (horizontal
beds) as

B
SN,

i=l
) )

where N;is the lesser number of values for each A¢ bin where
there is overlap between bias and data, B is the total number
of bins, and / is the total number of FSI iterations.

As maximum dip increases from 10° to 45°, @ increases
from 0.54 to 1. The likeness of parallel and similar fold
geometry at low dips is not surprising. The angular difference

p=1-

parallel

between a bedding normal vector at low bed dips and a
vertically oriented vector is very small. In this case, equations
(1) and (2) approach equivalence, and the distinction between
parallel and similar fold geometry becomes insignificant.

This lack of differentiability between parallel and similar
folds at low bed dips, strictly based on layer geometry, is
significant to quantitative analyses of young active structures.
Because the fault geometry resulting from the various fault
solution methods may vary significantly [Dula, 1991], any
uncertainty in folding style will carry over into predicted fault
geometry.

4. Combining FSI and Fault Solution Routines

A flow chart illustrates the integration of the FSI method
with the AISS and CBL fault solution methods (Figure 11).
We stress that the algorithm may be entirely automated and is,
essentially, an objective means of providing geometric
solutions (specific to the chosen models) for blind faults. The
most critical subjective choices are made during seismic
reflection processing, the digitization of seismic reflections,
and the assignment of the maximum error amplitude A and
width A in the error simulation process.

Processing (including migration and depth conversion)
performed to industry standards will most likely be adequate
to assure that processing errors are not the dominant source of
error in final reflection geometry, though, obviously,
examples must be evaluated on a case-by-case basis.
Digitizing errors are also not likely to be a dominant error
source, as they will generally have smaller magnitudes than
the errors prescribed by the Monte Carlo simulations.
Additionally, to prevent digitizing errors from becoming
important, we choose for FSI analysis only those reflections



BROOKS ET AL.: FOLD STYLE INVERSION

10

parallel

€iot(m)

120

0 40 80
iteration number

50 —

40t

similar preference parallel preference

30+

number

20}

10}

o 1 1 1 1 1 1 1
-10 0 10
Ae

Figure 9. (a) Plot of &, versus iteration number for FSI
analysis of entirely horizontal beds. Although the At values
are much smaller than those in Figure 8, the similar minimum
misfit values are generally lower than parallel minimum misfit
values. (b) Discrete probability density function (DPDF) of
Ae for the data in Figure 9a. Negative A¢ values indicate a
preference for similar fold geometry, while positive A¢ values
indicate a preference for parallel folding. The DPDF for the
horizontal layers lies almost entirely in the region of similar
preference. This preference for similar folding is a bias
imposed by the Monte Carlo simulation routine.

with clear continuity. Thus the largest potential source of
subjectivity enters into the analysis through the choice of A
and A Usually, standard velocity and .stratigraphic data
accompanying the seismic data are adequate to allow
reasonable limits on A and A to be made. Additionally, the
multiple iterations of the error function allows random
sampling of A and A within these bounds (see discussion
below).

We illustrate and test the entire method by analyzing a
synthetic seismic reflection model of a fault bend fold (Figure
12). We use a standard ray-tracing package [Yilmaz, 1987] to
model a 24-channel VIBROSEIS™ common midpoint
seismic reflection survey over the model. The input layers
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have a similar fold geometry from an AISS forward model
with & = -20°. The fault, with 5 km of slip, ramps from a
lower décollement at 12 km to an upper detachment of 8 km
over a width of ~15 km. The physical parameters of the model
strata (p wave velocity, density, attenuation parameter,
Young’s modulus, etc.) are typical of those found in foreland
fold and thrust belts [Sheriff and Geldhart, 1995]. We input
the synthetic CMP shot gathers to standard processing
software [Yilmaz, 1987] and perform semblance-enhanced
velocity analysis to determine stacking velocities which we

10
50 -
A
A
40 similar paralle!
— T
preference preference
. 30t — T
[
o
3
=
S 20r M DA
i Bias =054
10} &Y ovemrLap
0.
-10 0 10
Ae
@
Q
£
=]
c
. 30}
[
Q
€
2 201! =1 |
10 ]
0 N | .
-30 0 30

Ag

Figure 10. Three different sets of parallel layers plotted
with the Ae DPDF for horizontal beds. The probability ¢ that
a Ac value lies outside of the zone of overlap between the two
distributions is defined in equation (9). (a) Maximum limb
dips reach 10°. The diagonal lines indicate the zone of overlap
between the Ae DPDFs for the horizontal layers and the data;
¢ = 0.54. (b) Maximum limb dips reach 25°. Diagonal lines
as in Figure 10 a; ¢ = 0.97. (c) Maximum limb dips reach
45°. White diagonal lines as in Figure 10 a; ¢ = 1.
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Figure 11. Flow chart demonstrating the FSI algorithm and the choice of the most appropriate fault inversion

routine.

convert to interval velocities using the Dix equation [Sheriff
and Geldhart, 1995]. Using these interval velocities, we
migrate and depth-convert the data to produce the seismic
reflection image (Figure 12a).

This processing flow is rudimentary; we do not perform
seismic image-enhancing advanced processing techniques
such as iterative velocity analysis combined with dip moveout
application [Deregowski, 1986] nor depth migration [Yilmaz,
1987]. This simplistic processing is by design. We
purposefully leave velocity errors in the data to see how these
errors affect the final FSI analysis and fault inversion
solution.

Because they record the entire fold shape, we digitize and
perform FSI analysis on the uppermost four layers with A =
2.5% and A = 8750 m (because our input velocity model does
not contain any interlayer heterogeneities, we choose the A4
value to be of the order of the wavelength of the fold). The
FSI results show that over 200 iterations there is a 100%
preference for a similar fold style with o = -20°%
10°(20) (Figures 12b and 12c). With these ranges of « and
using the AISS fault inversion routine, we use the second-
highest digitized bed to solve for the ranges of buried fault
shape (Figure 12d). For comparison, we also show the CBL
fault solution for the same bed (Figure 12d).

Both fault solutions are significantly different than the
digitized reflection of the input fault. However, the AISS
solution for the mean value, o = -20°, is essentially identical
to the pre-seismic-shooting position of the model fault. The
AISS solutions for the 26 values, o= -10° and -30°, bracket
the mean value solution with maximum differences of <~300
m. Because FSI analysis establishes a similar fold preference,
this range of AISS solutions represents a 95% confidence
interval for the predicted fault trajectory specific to the
second-highest bed (assuming only two possible deformation
mechanisms). In contrast, the CBL solution shallows to a
décollement level ~2 km above the AISS solutions.

The discrepancy between the AISS solution and the fault
plane reflection is caused by the increased velocity errors with
depth leading to the downward shift of the fault plane
reflection. In fact, by comparing input bedding geometry with
depth-converted seismic reflections, we can track positional
errors increasing down-section. The excellent agreement with
the actual and AISS fault is because the bed used for the fault
inversion is in essentially its correct position. Thus because
fold geometry errors are small, the fault solution is a more
accurate representation of the fault than the reflection of the
fault itself.

This synthetic example is meant to illustrate solely that the
seismic reflection method preserves fold geometry well
enough for FSI to have discriminatory power given the
combination of a large fold signal with relatively simple
acquisition and processing. It should not be taken as general
proof that the method will have discriminatory power with all
seismic reflection data. We stress, however, that lack of FSI
discriminatory power does not indicate that the method
"fails"; rather, it is a quantitative indication that the data will
not allow unique structural interpretations.

5. Application: Barrancas and Lunlunta-
Carrizal Anticlines, Mendoza, Argentina

In this section we test the FSI method with seismic
reflection data from the Barrancas/Lunlunta-Carrizal
anticlinal complex situated at the eastern margin of the active
Andean contractional deformation front in the Cuyo Basin at
~33°S, roughly 15 km south of Mendoza city, Argentina
(Figure 13a). The region is located in the zone where the
Precordillera thin-skinned fold and thrust belt loses surficial
expression and is replaced to the south by the gentle anticlinal
domes of the Cuyo fold belt (Figure 13a) [Ramos et al.,
1996]. The deformation front comprises east vergent blind
thrust-related structures including fault propagation, fault
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lines), input fault (thick solid black line), digitized bed reflections (dashed lines), digitized fault reflection
(dashed line), CBL fault solution (dotted line), and the AISS fault solution (dashed black line with crosses).

bend, and wedge folds [Kozlowski et al., 1993; Milana and
Zambrano, 1996; Ramos et al., 1996; Sarewitz, 1988]
associated with high levels of crustal seismicity (Figure 13a).
In particular, the epicenter of the 1985 M, 5.9 Mendoza
earthquake is closely associated with the surface expression
of the Barrancas/Lunlunta-Carrizal anticlinal complex (Figure
13b). The complex comprises two en echelon east verging
anticlines extensively covered by YPF S.A. (Yacimientos
Petroliferas Fiscales Sociedad Anonima) seismic reflection
profiles (Figure 13b). Some of the seismic reflection data
image the top portion of a west dipping fault plane below the
anticlinal complex (Figures 14a, 15b, and 17a). Paleozoic
shelf strata of the Precordillera terrane [Kokogian et al., 1993]
comprise the faulted basement below ~1 km of Triassic

continental syn-rift sediments which are overlain by ~3 km of
foreland basin strata deposited in response to late Cenozoic
Andean orogeny [Irigoyen et al., 1999].

The relationship between Mendoza seismicity and the
Barrancas/Lunlunta-Carrizal anticlinal complex remains
unclear. Based on the asymmetry of the composite structure
and its close proximity to the estimated epicenter of a ~M, 7.1
earthquake in 1861, Zamarbide and Castano [1993] conclude
that the west dipping fault below the anticlinal complex is
responsible for the 1985 and 1861 earthquakes and the
Neogene growth of the anticlinal complex. Both Triep [1987]
and Chiaramonte [1996], however, on the basis of qualitative
extrapolations of seismic reflection data and consideration of
the published focal mechanisms and hypocenters (Table 1),
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support a model where a shallowly west dipping fault plane
reaching a décollement level at ~7 km is responsible for fold
growth, while a deeper west dipping plane was the seismic
source in 1985. No quantitative examination of the subsurface
fault geometry exists; thus FSI analysis can place fundamental
quantitative constraints on the relationship between the
anticlinal complex and the 1985 earthquake.

We analyze two dip lines (10227 and 9071, Figure 13b) in
which hanging wall reflectors are well imaged, allowing us to
measure fault slip for each line. Each of the lines are 120-
channel 60-fold, VIBROSEIS™ lines. We migrated and
depth-converted the lines by using an initial velocity model
from a nearby sonic log (Figure 13b). On the basis of
comparison with YPF synthetic seismic profiles and well logs
and owing to the gentle nature of the fold limb dips, we

estimate that vertical reflection accuracy is of the order of
#150 m. Only reflections which exhibit high degrees of
coherence across an entire line are digitized and analyzed
with FSI. Additionally, because we are trying to classify the
bulk geometry of the strained hanging wall, we digitize beds
over the widest range of depths possible.

In these seismic lines the Triassic syn-rift deposits are the
highly reflective layers deeper than ~2500 m (Figures 14a,
15b, and 17a). These strata were deposited synchronously
with extensional deformation; thus their geometry records
hanging wall rotation due to Triassic normal faulting
[Kokogian et al., 1993]. Although they are continuous and
well-defined reflectors, we do not include them in FSI
analysis because their relict syn-rift layer geometry may
distort any analysis, including post rift layers.

Figure 13. (a) Location map and regional physiographic map of the study area. Base map is a shaded relief
30 arcsec digital elevation model. The white contour lines are contours of the subducted Nazca plate from
Wadati-Benioff zone earthquake hypocenters from Cahill and Isacks, 1992. The solid circles are earthquake
epicenters of all crustal (< 60-km depth) events in the ISC catalog since 1964. The inset shows South
America with the solid rectangle indicating the area of Figure 1a. (b) Land Sat Thematic Mapper gray scale
image (bands 5,4,2) of the Barrancas and Lunlunta-Carrizal anticlines showing the limits of the Cruz de
Piedras, Barrancas, and Lunlunta-Carrizal segments. Solid lines with numbers represent YPF S.A.
(Yacimientos Petroliferas Fiscales Sociedad Anonima) seismic reflection lines. Focal mechanisms of the
1985 M,, 5.9 Mendoza earthquake taken from Triep [1987], Castano [1995], and the on-line Harvard CMT
catalog. The solid circles are epicentral locations of aftershocks from the 1985 Mendoza earthquake digitized
from Triep [1987]. The solid dots are the positions of YPF boreholes with dipmeter (Bxp-295) and sonic log
data (LCE-X2) used in this study.
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Table 1. Parameters for the Focal Mechanisms of the 1985 M,, Mendoza Earthquake

Solution Strike Dip Strike Dip Depth
Triep [1987] 160 56°W 030 46.9°E 145
Castano [1995] 185 37°W 355 53°E 12
Harvard CMT 158 38°W 009 56°E 28.4+1.7

5.1. Line 10227

Line 10227 images the asymmetric east vergent southern
portion of the Barrancas anticlinal segment (Figure 14a). Fold
geometry is reproduced very well, and fault plane reflections,
though of poorer quality, are visible. In the eastern portion of

Bxp-295

30 40 60 80
dip (°)

0 1250 m

2500 m

two-way travei time (s}

Figure 15. (a) Dipmeter data from borehole Bxp-295. All
data dip toward the east. (b) Migrated time section of the
eastern portion of seismic line 9606. Location of the fault
ramp, upper detachment level, and measured slip are
indicated.

the line, the high-amplitude Triassic syn-rift reflectors are
duplicated, and an upper décollement level can be determined
at ~3000 m depth. At the western limit of the upper
décollement, a west dipping package of reflectors indicates
the uppermost portion of the west dipping fault ramp. The
interpretation of a fault bend fold with an upper décollement
at ~3000 m is supported by dipmeter data from a borehole on
the forelimb ~6 km to the north of line 10227 which records a
sharp dip decrease at ~3000 m depth (Figure 15a).
Additionally, line 9606 clearly shows Triassic hanging wall
cut offs in contact with an upper décollement (Figure 15b).

We run the FSI routine for 200 iterations with maximum
error amplitude, A = 2.5%, in accord with our estimation of
+150 m depth errors. Because the foreland basin stratigraphy
is relatively continuous over the region, we assume that
significant lateral velocity variations will be on a scale
slightly smaller than the wavelength of the structure and we
assign A =3 km.

The results, plotted as a discrete probability density
function of Ag (Figure 14b), show that there is a 71% formal
probability that a similar fold geometry may be separated
from the slight FSI-imposed bias; thus there is a 71% formal
probability that similar fold geometry is preferred over
parallel fold geometry. The parameter ¢ in the similar grid
search is normally distributed with a mean value of 12° + 14°
(20) (Figure 14c). Thus an AISS model with inclined shear
planes oriented 12° antithetically is the most likely of the
models we consider. This result is consistent with two
qualitative observations of fold style for line 10227: (1) the
crestal position of each reflector moves from west to east as
the reflectors get deeper and (2) back limb layer perpendicular
thickness appears to be slightly greater than fore limb
thicknesses.

Because the FSI method establishes a preference for
similar fold style, the AISS fault inversion routine is
preferred. FSI analysis provides the parameter o (Figure 14c),
and so we only need to use one folded layer to find the fault
shape (see the appendix). To test the consistency of our
solutions, however, we solve for fault shape from the range of
digitized beds. We only use the bottom three beds for fault
inversion because the top most bed is truncated by an
erosional surface, and so its synclinal hinge position,
necessary for the AISS fault solution routine (appendix),
cannot be accurately determined.

We estimate that there is 1640 m of shp on the upper
detachment by projecting the structurally highest hanging wall
cutoff down to the upper detachment; additionally, we
estimate that this projection may be in error by as much as
+200 m. The preferred fault trajectories are found by using
the mean value of ¢, 12°. The AISS fault trajectories are in
good agreement and define a listric, concave-up fault surface
which gently curves from a maximum west dip of ~25° near
the upper portion of the ramp to a minimum dip of ~5° at ~
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Figure 16. (a) AISS fault solutions for line 10227. The
uppermost numbered solid lines are the digitized beds used in
FSI analysis. The lowermost numbered solid lines are the
preferred fault solutions found with & = 12° corresponding to
the digitized beds with the same number. The dashed lines are
the solutions for the +26 « values (assuming only similar and
parallel folding). The gray solid lines are the solutions if the
measured slip is allowed to vary by +200 m. (b) CBL fault
solutions for line 10227. The dashed lines to the left of the
digitized beds are the projection back to the regional level
necessary for the CBL method to be valid. The solid lines are
the preferred CBL solution. The gray solid lines are the
solutions if slip varies by +200 m. The dashed lines are the
95% AISS solutions.

6000 m (Figure 16a). Because the hanging wall layers do not
extend the entire distance back to a regional level, the fault
trajectories do not reach an exactly horizontal décollement
level, although most likely the décollement level is between
~5500 and 6500 m for line 10227. Additionally, in Figure 16a
we plot the range of solutions yielded when we take the 20
range of estimated « and when we vary the slip on the upper
detachment by +200 m. The effect of varying « is small in
comparison with the effect of varying the slip on the upper
detachment. The depth range of solutions widens by ~+ 300
m when the varying slip solutions are plotted.

For comparison, we show the CBL solutions with the same
beds as the AISS solutions (Figure 15b). As is discussed in
the appendix and by Geiser et al. [1988], to use the CBL
method accurately, the hanging wall beds must reach the
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regional level. In Figure 16b we use the average dip of the
backlimb layers to project the beds back to the regional level.
The preferred CBL solutions, as well as the solutions when
slip is varied by +200 m, fall within roughly the same range of
possible AISS solutions. Thus although it was not known a
priori, in this example the different techniques do not yield
very different fault solutions. Because the range of CBL fault
solutions falls entirely within the 20 range of AISS faults, we
are able to conclude that the AISS range of faults represents
the formal 95% confidence range for the solution routines
considered by FSL Had the CBL range of faults been outside
of the AISS 20 range, the formal confidence estimate on the
AISS solutions would be at 68%, the product of 95% (20)
and 71% (the FSI preference probability).

5.2. Line 9071

In Figures 17 and 18 we show the results of FSI analysis
and subsequent fault solutions for line 9071 (Figure 17a)
which cuts across the middle portion of the Lunlunta-Carrizal
anticlinal segment (Figure 13b). Because lines 9071 and
10227 are ~7 km away from each other, we assume that
stratigraphic character does not change and assign maximum
error amplitude, A = 2.5% and A = 3000 km. The results,
plotted as a DPDF of Ae (Figure 17b), show that there is a
54% formal probability that a similar fold geometry may be
separated from the FSI-imposed bias; thus there is a 54%
formal probability that similar fold geometry is preferred over
parallel fold geometry. The result that fold style is essentially
indistinguishable does not come as a surprise, given that the
fold limb dips in line 9071 seldom exceed 10°. As we saw in
Figure 10, there is essentially no difference between parallel
and similar fold geometry at limb dips of less than 10°. Thus
because FSI analysis does not produce a clear preference,
both the CBL and AISS solutions must be plotted and given
equal weight.

We make similar seismic interpretations as for line 10227
and show the resulting family of fault solutions simply to
illustrate the large variance when a structure has shallow limb
dips (Figures 18a and 18b). Clearly, any further analysis
based on one of these structural solutions will have a large
value of difficult-to-quantify error associated with it.

We consider the FSI-constrained fault solutions together
with main shock and aftershock hypocentral data [Triep,
1987] from the 1985 Mendoza earthquake (Figure 19). On
line 10227 there is no overlap between any of the predicted
fault trajectories and main shock or aftershock hypocenters
projected onto a line striking 070° owing to the shallow
nature of the fault solutions (Figure 19a). Additionally, the
<20° fault dips are more than 20° shallower than the dips of
the western dipping nodal planes for all of the focal
mechanisms in Figure 13 and Table 1. It is highly unlikely,
then, that slip on any of the fault solution planes could have
produced the observed focal mechanisms. Line 9071 also
shows very little coincidence of earthquake hypocenters and
fault solutions, though the deepest fault trajectories, a small
number of westernmost main shock hypocenters, and the
INPRES main shock hypocenter overlap (Figure 19b).

Consideration of the map view pattern of the aftershock
data in conjunction with the cross-section data supports the
interpretation that it is highly unlikely that there is any
connection between the faults beneath the Barrancas and
Lunlunta-Carrizal anticlines and the 1985 Mendoza



13,296

1000

2000

depth (m)

3000

100
B n=200

80+

60 similar parallel

401

number

@=.54

20
. 7
0 L ] S,

-5 0 5
Ae

Figure 17.

BROOKS ET AL.: FOLD STYLE INVERSION

200 .
C n=200

150+

100

number

50

0
-40 -30 20 <10 O 10 20 30 40

(a) Migrated depth-converted seismic reflection line 9071. The white dashed lines are the

digitized reflections used in FSI analysis. Location of the fault ramp, upper detachment level, and measured
slip are indicated. (b) DPDFs of Ag for the data (solid histogram) and horizontal beds (gray histogram). The
striped histogram is the area of overlap between the data and bias; ¢ is the probability that the data lie outside
this zone of overlap. (c) Histogram of the parameter & from the FSI similar grid search.

earthquake. Another possible explanation may be that, as with
many blind-thrust-related earthquakes [Stein and Yeats,
1989], the aftershocks of the 1985 Mendoza earthquake
occurred in the hanging wall of a reverse fault. Given the
existing main shock and aftershock locations, this would
imply that the earthquake occurred on an east dipping plane
below the zone of aftershocks. Without further earthquake
studies, however, this interpretation remains solely a viable
hypothesis.

6. Discussion

The FSI method developed in this paper provides an
objective basis for choosing between similar and parallel fold
styles and for placing confidence limits on the predicted
subsurface fault trajectories of blind thrust faults. To the best
of our knowledge, placing subsurface fault trajectories in such
a probabilistic framework has not been practiced previously in
the analysis of fault-related folds, although high enough
quality seismic reflection data often exist to do so. We
suggest that if an FSI-like treatment is not undertaken, blind
thrust analyses may be significantly underrepresenting the
nonuniqueness associated with subsurface fault prediction

and, accordingly, the
interpretation.

For instance, in their important paper, Shaw and Shearer
[1999] use a fault-related fold model to link fault plane
seismic reflections below the Santa Fe Springs anticline with
the relocated hypocenter and focal mechanism of the 1987 M
6.0 Whittier Narrows earthquake beneath metropolitan Los
Angeles. Establishing such connections between surficial fold
features, fault plane reflections, and earthquake sources is
crucial if paleoseismologic-like analyses of blind thrusts are
to be developed. However, no discussion is given by Shaw
and Shearer [1999] of alternative fault-related fold models,
nor of errors associated with extrapolating a fault-related fold
model over ~12 km distance. As we see in both the synthetic
and field examples in this paper, errors due solely to
uncertainty in fold style can be significant. In our best
example, the preferred fault solutions for line 10227
(assuming that our measured slip value is correct) have ~ 1km
downdip depth differences, while the 95% confidence limit
range of solutions has slightly larger differences. Such errors
applied to integrated structural and seismologic analyses will
make earthquake/fault/fold connections such as those of Shaw
and Shearer [1999] less certain. Alternatively, if it can be

uncertainty in the presented
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shown that fault-related fold model errors are smaller, the
final interpretation is strengthened.

It is important to realize that FSI's confidence limits are
only formal confidence limits which describe the probability
of preference between two ideal fold styles assuming that
depth conversion errors, and our simulation of them, are the

sole error source in a final seismic reflection image. These -

fold style errors, however, are only one contribution along
with myriad other error sources which complicate quantifying
the actual error of a particular seismic reflection image and
model-based analysis of a fault-related fold. For instance,
other significant error sources may be poor seismic
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mechanisms, and inaccurate slip determination. As we saw in
the examples from the Barrancas/Lunlunta-Carrizal anticlinal
complex (Figures 16 and 18), uncertainty in measured slip can
dominate the uncertainty in predicted fault trajectories. This
is, however, a source of uncertainty which will always be
present in analyses of seismic reflection data and is only
remedied by higher-quality data. In contrast, FSI addresses
uncertainty in the modeling process (the assignment of fold
style and choice of a fault solution routine) which is
fundamental in blind thrust analyses yet sensitive to
subjective biases.

In this paper we have shown explicitly (Figure 10) that fold
style resolution decreases with decreasing fold limb dip. This
effect is most important for analyses of the youngest (and
presumably most active) structures which have not been
active long enough for limbs to achieve dips greater than 10°.
Furthermore, the ability of the FSI method to choose the
correct fold style in the synthetic seismic example (Figure 12)
shows that the seismic reflection method can reproduce fold
geometry well enough so that FSI analysis is valid. Thus
before a fault solution method is chosen, a method such as
FSI should be undertaken to determine if fold style is
distinguishable. If fold style is distinguishable, then the
preferred fault solution method may be used with a formal
probability estimate taken from equation (9) (assuming that .
there are only two possible fold styles); if fold style is not
distinguishable, then all fault solutions must be reported in
order to represent fairly the range of possible solutions. The
range of possible solutions should then be carried over into
any analysis such as calculations of fault ramp area,
shortening rate, and/or earthquake recurrence interval. The
analysis of line 9071 from the Lunlunta-Carrizal anticlinal
segment (Figure 18) is an example of how fault solutions
associated with young gently dipping structures may have
large degrees of structural uncertainty associated with them.

At this point in the development of FSI we only consider
parallel (class 1B) and similar (class 2) fold styles because
they are associated with the deformation mechanisms
assumed by the CBL and AISS methods, respectively, the two
most widely used fault solution routines. To the best of our
knowledge, however, fault solution routines associated with
the other dip isogon classes (1a,1c, and 3) do not currently
exist, though other well-documented folding mechanisms
such as buckling or trishear will produce nonparallel and
nonsimilar folds. Thus although the dip isogon classification
is general and FSI may be modified fairly simply to include
the other fold classes, carrying the probability estimates
through to subsurface fault trajectories is dependent on the

Figure 18. (a) AISS fault solutions for line 9071. The
uppermost numbered solid lines are the digitized beds used in
FSI analysis. The lowermost numbered solid lines are the
preferred fault solutions found with = 7° corresponding to
the digitized beds with the same number. The dashed lines are
the solutions for the +26 o values. The gray solid lines are
the solutions if the measured slip is allowed to vary by +200
m. (b) CBL fault solutions for line 9071. The dashed lines to
the left of the digitized beds are the projection back to the
regional level necessary for the CBL method to be valid. The
solid lines are the preferred CBL solution. The gray solid lines
are the solutions if slip varies by +200 m. The dashed lines are
the preferred AISS solutions.
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Figure 19. (a) Digitized beds and the entire range of fault solutions for line 10227 plotted with hypocentral
locations of earthquakes related to the 1985 M, 5.9 Mendoza earthquake. The solid symbols indicate
hypocentral locations of the main shock from Triep [1987], Castano [1995], and the on-line Harvard CMT
catalog. Open circles indicate aftershock hypocentral locations projected onto a plane striking 070° from
Triep, 1987. (b) Digitized beds and the entire range of fault solutions for line 9071 plotted with the same

earthquake data as Figure 19a.

development of corresponding fault solution routines.
Regardless, more robust results are always obtained by testing
most models, and future development of FSI will include the
other dip isogon fold classes.

Additionally, in its current formulation FSI does not
explicitly address nonhomogeneous deformation mechanisms
nor fold geometry produced when growth stratal layers are
included. It does, however, provide a quantitative basis for
assessing the simple fold styles. If poor differentiability
between models cannot be attributed only to low fold limb
dips, then it is likely that the deformation mechanism is more
complicated than the simple ones tested with FSI or that
growth stratal layers have been included in the analysis. If the
interlayer geometrical relationship between points for some

nonhomogeneous deformational style or growth stratal
configuration may be described by one of the other dip isogon
fold classes or may be specified mathematically, then FSI’s
misfit calculation and Monte Carlo error simulation routines
may be applied.

It is important to consider how the choice of the
parameters, A and A, affect the overall Monte Carlo
simulation of depth errors. Conservative bounds on A, the
error amplitude, are fairly straightforward to estimate for a
given data set. Typically, the accuracy of a final seismic
reflection image may be estimated from borehole or synthetic
sections associated with industry seismic lines allowing a
direct estimate of A; A estimates are slightly more difficult,
though reasonable bounds may be placed on them. Our tests



BROOKS ET AL.: FOLD STYLE INVERSION

show that if Ais small in relation to the fold limb width, then
the net error produced is essentially a random noise about the
reflection. This random error will not contribute to a
fundamental change of shape; thus small-wavelength error is
negligible. If Ais much larger than the fold limb length, then
the effect is a constant vertical shift of the layer, without a
change of shape. These types of velocity anomalies on the
scale of the entire structure are also more likely to be detected
and corrected for by standard methods. Thus it is the
A variation over an intermediate-scale range which can have
the most important effect on FSI analysis. In the iterative error
simulations we explicitly account for this variation by
randomly varying A between the two bounds. Thus because
the upper bound on A is fixed automatically (the length of the
line), the choice of a lower bound on A is the most subjective
aspect of FSIL. If standard regional stratigraphic data exist for a
region, however, then it is most likely that a good lower
estimate of A may be made.

Regionally, FSI analysis gives quantitative basis to the
interpretation that the fault coring the Barrancas/Lunlunta-
Carrizal anticlinal complex is not related to the 1985
Mendoza earthquake and aftershock sequence. This is
particularly important given that the structure lies ~15 km to
the south of one of Argentina's more densely populated and
important cities, and determining both the source of the 1985
earthquake and the seismic  potential of the
Barrancas/Lunlunta-Carrizal anticlinal complex has been an
unresolved issue. Instead of one preferred fault solution, we
present a family of possible solutions with corresponding
formal confidence limits. We stress, however, that our
confidence limits are based on only two of myriad
deformational mechanisms; thus while FSI-based analysis is
more rigorous than previous studies, clearly more can be done
to further quantify the structural solution at the
Barrancas/Lunlunta-Carrizal anticlinal complex.

7. Conclusions

1. We have introduced the fold style inversion method as
an objective tool to assess the goodneéss of fit of specific fold
styles by using the dip isogon classification scheme.
Objective fold classification allows an objective choice of
methods used in solving for the depth profile of a fault from
overlying fold geometry. In FSI, we employ Monte Carlo
simulations of folded layer geometrical errors to mimic depth
conversion errors in seismic reflection data. This approach
allows formal confidence limits to be placed on fold style
and, subsequently, on the predicted trajectory of a blind fault.
Although the method is general, in our development we only
consider parallel and similar fold styles because of their
correspondence with the widely used CBL and AISS fault
solution methodologies.

2. We have shown explicitly that for parallel and similar
folds with gentle limb dips (<~15°) fold style becomes
indiscriminate. This has important ramifications for seismic
hazard analyses of young structures whose fold limbs are still
shallowly dipping.

3. The FSI method works exactly on synthetic geometric
data sets and on a synthetic seismic section meant to replicate
modern exploration surveys. The synthetic seismic example
suggests that, for fold geometries where seismic imaging is
good, the seismic reflection method can adequately reproduce
fold geometry so that it can be distinguished quantitatively by
FSIL
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4. To illustrate the method, we have placed quantitative
constraint on the relationship between  the
Barrancas/Lunlunta-Carrizal anticlinal complex and the M,
5.9 1985 Mendoza, Argentina, earthquake. Considering only
parallel and similar folding, we have mapped the fault below
the anticlinal complex in a zone of 95% confidence and
shown that it is highly improbable that the earthquake and its
aftershocks are associated with the fault.

Appendix
AISS Deformation and Fault Inversion

AISS forward and inverse fault-related fold modeling has
been used almost exclusively in extensional terranes [e.g.,
Kerr and White, 1996]; here we describe the method for use
with contractional structures using the same terminology from
White et al. [1986]. Generally, during AISS deformation, area
is conserved, the fault does not change shape, and no gaps or
overlaps between the hanging wall and the fault surface are
allowed to form. During fault slip, hanging wall material
points are translated horizontally and then sheared upward
along planes which deviate from the vertical by the angle of
inclined simple shear, o [White et al., 1986]. Fault heave 4 is
conserved in some reference frame rotated by o [Whiite et al.,
1986] (Figure Ala). If ar = 0, then the coordinate system in
which & is conserved has horizontal and vertical axes. The
coordinate system in which 4 is conserved is rotated
clockwise by «if < 0 and counterclockwise if o> 0.

In the forward problem, in the coordinate system rotated by
o (signified by primed variables), the vertical distance
between each material point, R’(x"), on a regional level and
the fault, F’(x’), is equal to the vertical distance between a

A
(v”' x
, x'
B ___—R
R *

F'(x'+h")

Fx)

Figure Al. (a) General AISS thrust fault deformation in
the coordinate system, rotated by ¢, used to derive equation
(A1) after White et al. [1986]. F'(x") and F'(x'+h') are points
on the fault, R'(x") is a point on the regional level, B'(x'+h") is
a point on the deformed bed, and A’ is the fault heave. (b)
AISS fault bend fold adaptation.
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m
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fault cut-off

Figure A2. CBL fault inversion routine after Geiser et al. [1988]. The first bed is found by projecting the
position of the synclinal hinge down to the upper detachment along the hinge line. The length of the reference
bed is restored to a horizontal position to find a regional pin line. Lower beds are found by using a parallel
projection (equation (2)). The bed lengths are restored to the regional pin line, and the restored cutoff

positions define the position of the fault plane.

point displaced a distance %’ from R’(x"), B'(x’+h’), and

the fault, F'(x"+ h") (Figure Ala). This is described simply

by equation (2) from White et al. [1986]:
R(X)-F(xX)=B (X +h)-F (X +H). (A1)

In the inverse problem, if the fault surface is known over a
minimum distance of A’, then R’(x"), B'(x’+h’), and
F'(x’+ h")yare known and F'(x") is found by rearranging
equation (Al). The remaining points on the unknown fault
surface are solved sequentially from structurally higher to
lower positions. Once the bed reference points (B’ (x" +h’) )
are more than a distance 4’ from the initial starting point,
then the fault reference points (F'(x’+ k")) will be points
solved for in prior steps.

In their formulation of the problem, White et al. [1986] and
Kerr and White [1996] invert simultaneously for the shape of
the fault as well as for o; thus because there are more than
one unknown variables, it is required that more than one
digitized bed be used in the fault solution. However, if « is
known, then the shape of the fault may be calculated directly
from the shape of the bed using equation (Al). In our
implementation, because FSI directly estimates o, we may
calculate fault shape from the shape of only one digitized bed.

Layer Parallel Slip and CBL Fault Inversion

Parallel fault-related folds form when beds maintain layer
thickness and length as hanging wall material, deforming by
layer parallel slip LPS, slips past bends on underlying faults
[Suppe, 1983]. As with the AISS model, area is conserved,
the fault does not change shape, and no gaps or overlaps
between the hanging wall and the fault surface are allowed to
form during deformation. Ignoring secondary effects such as

. homogenous shear imposed over the hanging wall [Mosar
and Suppe, 1992], LPS fault bend fold geometry is uniquely
determined by fault shape through simple trigonometric
relations described by Suppe [1983].

The CBL method has been used to solve for thrust fault
geometry given deformed hanging wall beds, and we refer the
reader to Geiser et al. [1988] for a thorough explanation of
the method. In order to adapt the CBL method to fault bend
folds, the shape of the layer which shares a regional level with
the level of the upper décollement must be known. If this
reference layer is not directly imaged, then it may be found by
projecting the shape of a structurally higher layer to the upper
décollement level by using a parallel fold projection (equation
(2)). The reference layer is restored to an undeformed
orientation and a regional pinline is chosen (Figure A2). In the

deformed state, bed shapes must be known at least to the
point where they intersect the regional level, or pinline
position will be incorrect. Again using the parallel fold
projection, the layer below the reference layer is calculated.
The projection length must be small enough that the hanging
wall cutoff of the calculated bed occurs where there is
information about fault shape. The calculated bed is then
restored to the previously defined regional pinline and the
restored position of the hanging wall cutoff is the fault
position at a vertical depth equal to the regional level of the
restored bed. In this way, the entire shape of the fault is
solved for iteratively from structurally higher to lower
positions (Figure A2). As the solution algorithm progresses,
the restored-state hanging wall cutoffs will be found with
respect to fault points which are unimaged but have been
solved for in prior steps.
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