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MULTIFAN-CL: a length-based, age-structured
model for fisheries stock assessment, with
application to South Pacific albacore,

Thunnus alalunga

David A. Fournier, John Hampton, and John R. Sibert

Abstract: We introduce a length-based, age-structured model, MULTIFAN-CL, that provides an integrated method of
estimating catch age composition, growth parameters, mortality rates, recruitment, and other parameters from time
series of fishery catch, effort, and length frequency data. The method incorporates Bayesian parameter estimation,
estimation of confidence intervals for model parameters, and procedures for hypothesis testing to assist model
development. We apply the method to South Pacific albacore, Thunnus alalunga, fishery data and demonstrate the
incorporation of model structure such as spatial heterogeneity, age-dependent natural mortality and movement rates,
time series trends and seasonal variation in catchability, and density-dependent growth. Consistency of the results of
the albacore analysis with various exogenous sets of biological and environmental data gives credence to the model

results.

Résumé : Nous présentons un modele fondé sur la longueur et structuré par I’dge, le MULTIFAN-CL, comme méthode
intégrée pour I’estimation de la composition de 1’age des prises, des paramétres de croissance, du taux de mortalité, du
recrutement, et d’autres paramétres, a partir de séries chronologiques de données sur les prises, I'effort et les
fréquences de longueurs des captures. On y fait appel a 1’estimation bayesienne de paramétres, a 1’estimation des
intervalles de confiance des paramétres du modele ainsi qu’a des procédures de test d’hypotheéses pour faciliter
1’élaboration du modele. Nous appliquons la méthode aux données sur la péche du germon du Pacifique sud (Thunnus
alalunga) et démontrons I'incorporation de structures comme 1’hétérogénéité spatiale, la mortalité naturelle dépendante
de T'age et les taux de déplacement, les tendances des séries chronologiques et la variation saisonni¢re de la
vulnérabilité & la péche, et la croissance dépendante de la densité. La cohérence des résultats de cette analyse avec
d’autres séries de données biologiques et environnementales rend crédibles les résultats obtenus avec le modele.

[Traduit par la Rédaction]

Introduction

Age-structured models are now the method of choice for
many fisheries stock assessments. Models range from simple
deterministic methods, such as virtual population (or cohort)
analysis (Megrey 1989), to statistical models in which vari-
ability in the data and various population processes is
acknowledged (Doubleday 1976; Paloheimo 1980; Fournier
and Archibald 1982; Pope and Shepherd 1982; Dupont
1983; Deriso et al. 1985; Schnute and Richards 1995; Mc-
Allister and Ianelli 1997).
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Statistical age-structured models are superior to determin-
istic models in that they permit the estimation of confidence
intervals for the parameter estimates. This allows uncertainty
in stock assessments to be incorporated into management
advice through decision or risk analysis. Bayesian ap-
proaches to age-structured models (McAllister and Ianelli
1997; Punt and Hilborn 1997) now provide a powerful
framework for undertaking integrated analysis of fish stocks
and for expressing the full range of uncertainty in the result-
ing advice given to fisheries management authorities.

A second advantage of statistical age-structured models is
that they provide an objective means of comparing model
hypotheses regarding alternative “states of nature”. In a
maximum-likelihood framework, the usual frequentist ap-
proach of testing nested models using likelihood-ratio tests
can be applied. In the Bayesian framework, the posterior
odds of competing models can be computed. In either case,
statistical guidance can be obtained regarding an appropriate
model structure for the case at hand.

Both deterministic and statistical age-structured models
rely on catch-at-age data. These are sometimes derived from
the analysis of annuli on various body parts of individual
fish. Perhaps more commonly, age composition is derived
from length frequency samples using an age-length relation-

© 1998 NRC Canada



2106

ship prior to the age-structured analysis taking place. In this
type of sequential approach, the variability in length-at-age
is often ignored. It would be preferable to estimate age com-
position from the length frequency data and the parameters
of the age-structured model simultaneously. In this way, pa-
rameter estimates would be conditioned on the length data
rather than the catch-at-age estimates.

In this paper, we describe an age-structured model that ex-
tends the MULTIFAN method of estimating catch age com-
position from length composition (Fournier et al. 1990). The
new model is called MULTIFAN-CL (Catch-at-Length). The
major extension concerns the parameterization of the pro-
portions-at-age in the length frequency samples. In the origi-
nal MULTIFAN, the proportions-at-age are free parameters.
Fournier et al. (1991) extended the model using a “survey
sample” parameterization in which the length samples are
assumed to be random samples of the population (with op-
tional selectivity parameters for the initial age-classes). In
MULTIFAN-CL, we assume that the length samples are
taken from the catch of an age-structured fish population;
the proportions-at-age in the length samples are therefore
constrained by the catch equations that express the age-
structured population dynamics. The model is fully inte-
grated: growth and catch age structure are estimated simulta-
neously with recruitment, selectivity, catchability, natural
mortality, and other parameters. Except for the parameteriza-
tion of the proportions-at-age, the same likelihood function
is employed for the length frequency data in all versions of
the MULTIFAN model.

The Bayesian framework of the model is amenable to the
formulation and testing of various hypotheses regarding the
dynamics of the stock. Some of the model hypotheses that
we formulate and test in this paper include spatial structur-
ing of the population and fisheries, density-dependent
growth, seasonal cycles in catchability, age-dependent rates
of natural mortality, and age-dependent fish movement. The
model is applied to catch, effort, and length frequency data
for South Pacific albacore, Thunnus alalunga.

Data structures

The fundamental data structure of the model is a “fish-
ery,” which is defined as a collection of fishing units having
similar catchability and selectivity characteristics with re-
spect to the target species. Fisheries may be specific to geo-
graphical regions if spatial heterogeneity in the population
and fisheries is to be modeled.

Each occurrence of a fishery at a particular time is termed
a “fishing incident.” In reality, fishing is more or less contin-
uous, so the data for each fishery need to be aggregated over
appropriate time intervals. Each fishing incident is associ-
ated with a data record, which is made up of an estimate of
the total catch (in number of fish), the total effort, and a
length frequency sample. Effort and the length frequency
sample may be missing for some fishing incidents.

Catch equations

The catch equations govern the dynamics of the exploited
age-structured population. To demonstrate the addition of
spatial structure, we assume a one-dimensional, three-region
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spatial configuration. More complicated spatial structure
could be accommodated within the model framework, as
warranted by the particular application. For simplicity of no-
tation, it is assumed that there is only one fishery operating
in each region and that there is only one fishing incident per
fishery per year. The model is easily generalized to accom-
modate a variable number of fisheries per region and fishing
incidents per fishery per year.
The catch equations are as follows:

F; -
(1) Cy =E£[1—exp (-Zj)Wy; for 1<i<n,

o 1<j<a 1<k<r

(2) 71i+1,j+1,k = exXp (_lek)Nljk for ISlSn,
' 1<j<a, 1<k<r

3) Tivi g =€xXP (Z; g1 N g1k + €XP (=Zigi)Nia
for 1<i<n, 1<k<r

4 Ty =1 R for 1<i<n, 1<k<r
where ZYkzl and v, 20
k

(5) Ny =>Buly for 1<i<n, 1<j<a,
! 1<k<r 1<I<r

(6) Zipw = Fy + My,
(M Cuu=2.Cau
j

where { indexes year, j indexes age-class, k indexes region, n
is the number of years of fishing, a is the number of age-
classes in the population, r is the number of regions, Cy is
the catch (in number of fish) of age-class j fish in region k in
year i, C;, is the total catch observed in region k in year i,
F is the instantaneous fishing mortality rate of age-class j
fish in region k in year i, My is the instantaneous natural
mortality rate of age-class j fish in region k in year i, Zy is
the instantaneous total mortality rate for age-class j fish in
region k in year i, Ty is the number of age-class j fish in the
population in region k at the beginning of year i before
movement has taken place, Ny is the number of age-class j
fish in the population in region k at the beginning of year i
after movement has taken place, R; is the recruitment at the
beginning of year i, v, is the proportion of recruitment occur-
ring in region k, and By, is a k by k diffusion matrix B; for
age-class j fish.

The cumulative age-class (a) is designed to group fish
above an age where they can be assumed to have insignifi-
cant growth (Fournier et al. 1991).

for 1<i<n, 1<j<a, 1<k<r

for 1<i<n, 1<j<a, 1<k<r

Movement hypothesis

The inclusion of spatial structure in the model requires the
specification of a movement hypothesis. In the South Pacific
albacore example, we use a one-dimensional diffusion
model operating in three regions (r = 3). In this case, the el-
ements of B; are given by

1+vj —dzvj 0
(8) B, =| v, 1+2dy; —dy;
0 —d2Vj 1+d3Vj

© 1998 NRC Canada



Fournier et al.

where 1, d, > 0, and d; > 0 specify the relative distribution
of cohort abundance among regions at equilibrium and v; is
the age-dependent diffusion rate. We employ a flexible
parameterization of v; that can result in increasing, decreas-
ing, or constant diffusion rate with increasing age:

9)  v; =0 exp {oy[H—x)*1} 6 20,0, 20,

and K; <0

v; =0 exp {0637} 0 20,0, 20

=D

where x ;=

and K; >0

N —1, which expresses age scaled between
a-—
-1 and 1.

Assumptions regarding constraints on
natural and fishing mortality rates

A fundamental characteristic of statistical age-structured
models is that they constrain the variation of mortality rates
by age and time in a regular fashion. Constraints are placed
separately on the variability of natural and fishing mortality
rates.

Natural mortality

In the South Pacific albacore application, we assumed that
the instantaneous natural mortality rate is independent of
year and region, but may vary with age. Later, we show that
this age dependency is supported by the data. For a given
application, a range of more and less restrictive constraints
on natural mortality can be tested.

Fishing mortality

We restrict the variation in the instantaneous fishing mor-
tality rates Fy; according to the “separability” assumption
(Doubleday 1976; Paloheimo 1980; Fournier and Archibald
1982), which partitions Fy into an age-dependent effect (se-
lectivity) and a time-dependent effect (catchability). Con-
sider for simplicity an individual fishery (i.e., drop the k
subscript). We assume that

(10)  log (F) =log (s;) +log (¢;) +log (E) +&;

(11)  log (gq;y) =log (g +m;

where s; is the selectivity for age-class j (assumed constant
over time), g, is the catchability in year i, E; is the observed
fishing effort in year i, €; are normally distributed random
variables representing large transient deviations in the effort
— fishing mortality relationship (or simply, effort deviations),
and 1; are normally distributed random variables represent-
ing small permanent changes in catchability.

Selectivity can be modeled as a function of age-class, f
example using a gamma function (Deriso et al. 1985). We
have preferred to allow the s; to be separate parameters but
have applied a transformation that makes selectivity a
length-based rather than an age-based concept (Appendix).
The transformation ensures relatively small differences in s;

J
between adjacent age-classes having large overlap of their
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length distributions, as would be expected where selectivity
is fundamentally length based.

Catchability is allowed to vary slowly over time. Follow-
ing a concept introduced by Gudmundsson (1994), we as-
sume that the ¢; have the time series structure of a random
walk (eq. 11), which is the simplest statistical model of a
slowly varying random quantity. We make the prior assump-
tion that the variance of 1; is small compared with €;.

Random walk steps can be taken at each successive fish-
ing incident, or less frequently, as might be appropriate
when multiple fishing incidents by one fishery occur within
a year or fishing season. In the albacore analysis, random
walk steps are taken annually for all fisheries.

Where the frequency of fishing incidents is greater than
one per year, we may allow catchability within a year to
vary with a regular seasonal pattern. Equation 10 then be-
comes

(12)  log (Fy) =log (s;) + log (g,) + log (E)
+ ¢;sin [24nt(m — ;)] + €;

where m is the month in which the fishing incident occurred
and ¢, and ¢, are the seasonality parameters.

Assumptions regarding length-at-age

MULTIFAN-CL uses length data to estimate catch age
composition and therefore makes assumptions concerning
the length distribution of the fish. These assumptions are
identical to those used in Fournier et al. (1990), to which the
reader is referred for details. The assumptions are (i) the
lengths of the fish in each age-class are normally distributed,
(ii)y the mean lengths-at-age lie on (or near) a von
Bertalanfty growth curve, and (iii) the standard deviations of
the lengths for each age-class are a linear function of the
mean length-at-age.

We have introduced an additional, optional hypothesis
concerning density-dependent growth, which can be incor-
porated into an analysis if warranted by the data. For many
species, it is suspected that individuals of weak cohorts may
grow faster than those of more abundant cohorts (i.e.,
density-dependent growth). If true, this phenomenon could
have a large effect on the conclusions drawn from a length-
based stock assessment.

Let Ry be the normalized relative cohort strength for co-
hort B, such that Rz = (Ng; — R )/Cg, where R and o are the
mean and standard deviation of recruitment. The changes in
mean length are effected by adjusting the apparent age (i.e.,
the age implied from the length using the inverse of the
growth function) of the fish before the length-at-age is cal-
culated. For fish of cohort J, j years after recruitment, the
adjusted age j’ is

1
(13 =j+1.9|—— —0.5
) =T L + exp (—gRp) }

here g is a parameter determining the amount of density-
dependent growth; if g = 0, j* = j. Since the standard devia-
tion of R has been normalized to 1, the “generic” variation
in R will be about -2 to 2. Thus the difference in j” between
the strongest and weakest cohorts of any given age-class
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1 1
- . For
1+exp(-2g) 1+exp(2g)
g = —1.08 (which is the estimate for the albacore data), this
yields a generic variation of about —1.5 years, i.e., the ad-

justed age of the strongest cohort is about 1.5 years less than
that of the weakest cohort.

will be approximately 1.9 |:

Parameter estimation

Bayesian parameter estimation involves the computation
of the mode of the posterior density function. We use the
maximum of posterior distribution (MPD) method (Bard
1974), which involves maximizing the sum of the log-
likelihood of the data plus the log of the prior density func-
tion. We therefore maximize a function consisting of the
sum of three components: the log-likelihood of length fre-
quency data, the log-likelihood of total catch estimates, and
the log of the prior distribution for the effort — fishing mor-
tality relationship.

Contribution of the length frequency data

Due to the large variability that often occurs in length fre-
quency data, we employ a robust likelihood function. The
motivation for using this procedure and its technicalities are
described in Fournier et al. (1990). We shall not repeat this
discussion here, but for convenient reference, we briefly de-
scribe the form of the log-likelihood function employed.

Let Q,, denote the observed proportion of fish in length
frequency sample o having a length lying in length interval
i. If the O, are derived from a random sample of size Sa
they would be random variables with means Q,, and vari-
ances (1 — Q;)Q:o/So- Two modifications have been made to
this formula. If Q,, = 0, the formula implies that the vari-
ance of qu = 0. To decrease the influence of areas where no
observations are expected, we add a small number to the
variance formula. To reduce the influence of very large sam-
ple sizes, we have assumed that sample sizes >1000 are no
more accurate than sample sizes of 1000. Set &, = (1 -
Q,a)Q,a and T2 —l/mln(Sa,IOOO) Assume the variance of
Q,a is given by (&, +0.1/D7%, where I is the number of
length intervals in the length frequency samples. The likeli-
hood function contribution for X length frequency samples is
then

1|E><
IIE'\

1
14
(19 [\/2n(§a+ 0.1/,

5 0
X | exp _ Qe =0d)” + 001 ||.
z(gioﬁ' 0. I/I)Té
Taking the logarithm of expression 14, we obtain the log-
likelihood function for the length frequency data:

X

1 X
Y log [27(E q + 0./D]1- Y Tlog (1)

i=1 o=1

I ~
O =0
I ——=ee e 4 (001 .
2,log |exp {2(§,a+01/1)r }
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The addition of 0.01 in eqs. 14 and 15 improves the robust-
ness of the estimator by reducing the influence of observa-
tions that are more than about three standard deviations from
the mean (Fournier et al. 1990).

Contribution of the observed total catches

Assuming for simplicity that there is only one fishery per
year, the contribution of the observed total catches is given
by

(16)  p. Y, (log (C™) ~log (C)))’

where p, is determined by the prior assumption made about
the accuracy of the observed catch data. For the albacore
analysis, we assumed p. = 200, which is consistent with a
coefficient of variation of about 0.07.

Contribution of the prior distribution for the effort —
fishing mortality relationship

Given the random walk structure assumed to operate for
time-series changes in catchability, it follows that the prior
distribution for the n; is normal with zero mean. However,
the prior distribution for €; is assumed to be a robustified
normal distribution, i.e., the probability of events at the tails
of the distribution is increased relative to a standard normal
distribution. Then, the contribution of the Bayesian priors on
the 1y; and g; (see eqs. 10 and 11) is given by

(17)  py2.M? — > log [exp (—p.e) + 001].

The size of the constants p, and p, is adjusted to reflect prior
assumptions about the variances of 1; and €;. For the alba-
core analysis, we assumed p, = 25 and p, = 10, which is
equivalent to assuming that the coefficients of variation of 1y,
and ¢; are 0.14 and 0.22, respectively. Note that the second
term of eq. 17 corresponds to an improper density. There-
fore, the variance corresponding to the weight p, cannot be
estimated and must be specified.

Nonlinear optimization

The parameters of the model are estimated by maximizing
the sum of expressions 15, 16, and 17. The maximization
was performed by an efficient optimization using exact de-
rivatives with respect to the model parameters. The deriva-
tives were calculated using an extension of the technique
known as automatic differentiation (Griewank and Corliss
1991), an approach especially useful for models with large
numbers of parameters. It also provides quick and accurate
estimates of the Hessian matrix at the mode of the posterior
distribution, which can be used to obtain estimates of the
covariance matrix and confidence limits for the parameters
of interest.

Estimation of confidence intervals

Confidence limits for the parameter estimates are calcu-
lated by employing the usual second-order approximation to
the mode of the posterior distribution (Bard 1974). Let 6,...,
6, denote a minimal set of n model parameters from which
all model parameters can be calculated, and let p(6...., 6,) be
some parameter of interest, while €(6,,..., 8,) is the logarithm
of the postenor distribution. The estlmated standard deviation,
P, for p is given by the square root of 2 dp/a8;dp/dA,

© 1998 NRC Canada



Fournier et al.

where Ay = (9%/96,08)", with the calculations carried out
at the MPD. Then, 95% confidence limits for the p are given
by [p - 1.96p, p + 1.96p;]. These confidence limits are not
invariant under reparameterization. To compensate some-
what for this, the confidence limits for parameters that must
be positive, such as estimates of biomass, are calculated by
computing the confidence limits for the logarithms of these
parameters and then transforming the confidence limits. This
yields the confidence limits [pexp (-1.96 ps/p), p exp
(1.96 po/p)].

The above procedure provides approximate confidence in-
tervals for the model parameters (initial cohort size, selectiv-
ity and catchability coefficients, natural mortality rates,
growth parameters, etc.). For stock assessment purposes, it
may be desirable to have confidence intervals for quantities
of interest, such as adult biomass, that are functions of the
model parameters. The variances (and hence, confidence in-
tervals) for such quantities are determined using the delta
method.

Hypothesis testing

It is frequently of interest in statistical modeling to add
model structure in the form of a hypothesis concerning some
process of interest and to observe the resulting change in
model performance. Let H, (with n; parameters) and H,
(with n, parameters) denote alternative models to be tested.
In a Bayesian framework, the support for H, over H; pro-
vided by the data D is measured by the posterior odds,
which is the product of the ratio of the integrated likeli-
hoods, known as the Bayes factor (Kass and Raftery 1994),
and the prior odds for H, against Hi:

s P(Hz‘D)_{P(D’Hz)H:p(HZ):'.

p(H|ID) | p(DH) || p(H))

The Bayes factor is interpreted as the sample “weight of evi-
dence” for H, over H,.

While appealing on theoretical grounds, there are two im-
pediments to applying Bayes factors in practice. First, it is
necessary to provide a Bayesian prior distribution for the pa-
rameters. For large problems the usual practice is to provide
specific Bayesian priors for a small number of parameters of
interest and to apply a locally uniform prior on the remain-
ing parameters. This causes no problem when computing
point estimates of the parameters. However, when comput-
ing Bayes factors, such diffuse priors lead to the well-known
Lindley paradox (Aitkin 1991) where, for point null hypoth-
eses, the Bayes factor will tend to infinity as sample size
tends to infinity.

A second difficulty is that evaluation of the Bayes factor
involves integration of the likelihood functions over all
model parameters. For large models (such as the albacore
model), this may not be feasible because of limited comput-
ing power.

To avoid these problems, we have employed posterior
Bayes factors (Aitkin 1991), which allow (but do not re-
quire) models to include priors with diffuse specifications.
Posterior Bayes factors are generally applicable for arbitrary
models and their use does not lead to the Lindley paradox
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(Aitkin 1991). The asymptotic form for the posterior Bayes
factor for H, over H, is

_ Ly(0;3) 5(n,=n)/2
(19) A, = 2L Tm )]s,
SEACH)

This is a penalized version of the likelihood ratio, with the
penalty based on the difference in the number of parameters
of the two models. The A,; is then a measure of the weight
of sample evidence in favor of H, over H;. We use Aitkin’s
(1991) calibration that values of A less than 0.05, 0.01, and
0.001 constitute “strong,” “very strong,” and “overwhelm-
ing” sample evidence, respectively, of one model over the
other.

Application to South Pacific albacore

Background

Albacore comprise a discrete stock in the South Pacific
Ocean (Murray 1994). Adults (larger than about 80 cm fork
length) spawn in tropical and subtropical waters between
about 10 and 25°S during the austral summer (Ramon and
Bailey 1996), with juveniles recruiting to surface fisheries in
New Zealand coastal waters and in the vicinity of the sub-
tropical convergence zone (STCZ) in the central Pacific
about 2 years later. Distant-water longline fleets of Japan,
Korea, and Taiwan and domestic longline fleets of several
Pacific Island countries catch primarily adult albacore virtu-
ally throughout their range. A troll fishery for juvenile alba-
core has occurred in New Zealand coastal waters since the
1960s and in the central Pacific in the region of the STCZ
since the mid-1980s. Driftnet vessels from Japan and Taiwan
targeted albacore in the central Tasman Sea and in the cen-
tral Pacific near the STCZ during the 1980s. Surface fisher-
ies are highly seasonal, occurring mainly during December—
April, while longline fisheries operate throughout the year.
Total annual catches have varied between 20000 and
52 000 t since the 1960s. Longline gear accounts for the ma-
jority of the catch, about 30 000 t-year! on average. Troll
catches are relatively small, generally producing less than
10 000 t-year™'. The driftnet catch reached 22 000 t in 1989,
but has since declined to zero following a United Nations
moratorium on industrial-scale driftnetting. The approximate
distribution of the fisheries is shown in Fig. 1.

Fisheries data

Catch, effort, and size composition data have been rou-
tinely collected from the fisheries since the early 1960s. The
data have inconsistent temporal resolution and include peri-
ods where effort, length frequency data, or both are missing.
Length frequency sample sizes are highly variable. Such het-
erogeneous data, which are typical of many fisheries data
sets, are readily handled by MULTIFAN-CL.

We defined fisheries on the basis of fishing method and
region. Three regions are specified by the latitudinal bands
0-10°S (region A), 10-30°S (region B), and 30-50°S (re-
gion C) (Fig. 1). The distant-water longline fleets fishing in
these regions are defined as separate fisheries by region, but
are aggregated across nationality. The fleets of small-scale,
domestic longliners that have developed in several Pacific
Island countries (region B) in recent years are also defined .
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Fig. 1. Distribution of longline (light shading), troll (medium shading), and driftnet (dark shading) fisheries for South Pacific albacore.
The three rectangular zones define the model regions, which are used in the classification of fisheries and spatial stratification of the

model.
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Table 1. Posterior Bayes factors (4;,) for comparisons of model 1 with model i (i = 2, ..., 6).

Log- No. of

Model likelihood parameters Ay

1. Full model 57 543.7 901

2. Model 1 without spatial structure 57 268.4 876 1.6 x 10716
3. Model 1 with age-independent diffusion 57 491.9 899 6.38 x 10723
4. Model 1 with age-independent natural mortality 57 519.7 892 8.54 x 10710
5. Model 1 without seasonal catchability for all fisheries 57 127.0 887 1.4 x 10717°
6. Model 1 without density-dependent growth 57430.3 900 7.97 x 1070

as a fishery. Other fisheries are the troll fishery in New Zea-
land coastal waters, the troll fishery operating in the STCZ,
and the driftnet fishery (all region C).

For the longline fisheries, fishing incidents are aggregated
by quarterly time periods (January—March, April-June,
July—-September, October—December). For the surface fisher-
ies, which tend to operate during the summer months only,
fishing incidents are aggregated by month. With this data
stratification, the albacore database for years 1962-1993
consists of 591 fishing incidents. Of these, 566 fishing inci-
dents have a fishing effort estimate. and 381 have a length
frequency sample.

Constraints and model hypotheses:

It is necessary to specify the number of age-classes to be
considered in the model. For the presentation of results be-
low, we chose a model with 11 age-classes, which is consis-
tent with previous aging studies (Labelle et al. 1993). Trials
with larger numbers of age-classes did not significantly alter
the results of the analysis.

We applied a one-dimensional diffusive movement hy-
pothesis to the three-region spatial structure of the model.
This hypothesis was considered to be a reasonable, albeit
simple, representation of South Pacific albacore movement
on the basis of qualitative examination of tagging data
(Labelle 1993) and the variation in albacore size with lati-
tude (smallest in the south, increasing towards the equator).
Other movement hypotheses and (or) spatial configurations
could easily be incorporated into the model and tested. One
such alternative hypothesis (spatial homogeneity) has been
tested and is discussed below.

Several additional constraints on the model were neces-
sary to produce stable behavior during parameter estimation.
These include constraints that recruitment occurs only in re-
gion C (the southernmost region), recruitment varies
lognormally among years, and selectivity coefficients are
constant over time within fisheries.

The hypothesis testing procedure outlined earlier was
used to test numerous alternative model structures, consist-
ing of various combinations of the following model hypoth-
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Fig. 2. Estimated South Pacific albacore selectivity coefficients.
Panels a-g correspond to fisheries 1-7 as shown in Fig. 1.

1.0
a

L4
T

1.0—1

0.5 4

-
o
o

0.54
0.0 +—t

ul

Selectivity coefficient
b it il =
o o Q
I e ]

1.0 ]
0.8 e
0.6
0.4
0.2
0.0 —— S — 1
1.0 —

] f
uil AI_H
0.0 + t ¥ ¥ T T T
1.0 —

] g
0.5 4 '
0.0 !._‘ T T T T T T T 1

1 2 3 4 5 8 7 8 9 101

Age-class

eses (with the simpler alternative hypothesis in parentheses):
spatial structuring of the population into three regions, as de-
fined earlier (spatial homogeneity), age-dependent (age-
independent) diffusion of fish among regions, age-dependent
(age-independent) natural mortality rate, seasonal variability
(constancy) in catchability for all fisheries, and density-
dependent (density-independent) growth. The posterior
Bayes factors indicated overwhelming support of the data
for each of these hypotheses (Table 1). While these tests are
by no means exhaustive, they indicate how hypotheses that
are supported by the data can be readily identified and incor-
porated into the analysis.

Some of the results of the South Pacific albacore analysis
that illustrate the model features are given below.

Selectivity and catchability coefficients

Estimated selectivity coefficients (Fig. 2) broadly reflect
differences in catch size composition among the fisheries.
Most fisheries display a regular pattern of selectivity, either
increasing with age-class or unimodal over a restricted range
of age-classes. In contrast, the New Zealand troll fishery
shows a bimodal selectivity pattern, probably reflecting
some contamination of this data set with data from different
fishing methods.

2111

Fig. 3. Estimated Squth Pacific albacore catchability coefficients
(normalized to the average for each fishery) (solid lines) and
deviations from the effort — fishing mortality relationship (open
circles). Panels a—g correspond to fisheries 1-7 as shown in
Fig. 1.
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Estimated catchability time series are plotted with effort
deviations (g;), by fishery, in Fig. 3. Strong trends in
catchability are estimated for some of the fisheries. For the
longline fisheries, this is likely to be due to changes in spe-
cies targeting by the fleets concerned. Strong seasonal varia-
tion, which was a highly significant addition to the model
(Table 1), is also evident for all fisheries. This seasonality is
possibly related to changes in the vertical distribution of the
albacore in response to seasonal temperature variation. After
the removal of time series trends and seasonal variation in
catchability, the effort deviations are mostly evenly distrib-
uted about zero (Fig. 4), indicating that there is no further
information in the data regarding catchability variation.

Growth parameters and catch age composition

The estimation of catch age composition from length
composition assumes, amongst other things, that albacore
exhibit von Bertalanffy growth. We use a parameterization
such that growth is specified by three parameters: the mean
length of the first age-class (45.3 cm), the mean length of
the last age-class (100.9 cm), and growth coefficient K
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Fig. 4. Deviations from the effort — fishing mortality relationship
after removal of time series trends and seasonal variation in
catchability. The deviations are normalized to the average
catchability for each fishery. Panels a—g correspond to fisheries
1-7 as shown in Fig. 1.
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(0.190-year™). These parameters can be transformed to pro-
vide the usual von Bertalanffy growth parameter L,
(107.2 cm). Estimated growth rates over the range of ex-
ploited sizes are almost identical to estimates based on ver-
tebral ring counts (Labelle et al. 1993).

There is good correspondence between estimated mean
lengths-at-age and obvious modes in the length frequency
samples for most of the fisheries. Examples of the fits to the
length frequency data are shown in Fig. 5.

The addition of density-dependent growth to the model
makes the growth of individual cohorts dependent on their
initial relative abundance. This effect appears to be quite
strong in South Pacific albacore, with more abundant co-
horts growing slower than less abundant cohorts — the dif-
ference in apparent age between the largest and smallest
cohorts is about 1.5 years. The effect of density-dependent
growth on the estimated mean lengths-at-age is shown in
Fig. 5 by the differences between the solid and broken verti-
cal lines for each age-class.
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Exploitation rates

Exploitation rates (the proportion of the population har-
vested per year) and their 95% confidence intervals for two
age groups, corresponding approximately to age-classes 2-5
(primarily exploited by the surface fisheries) and 6-11 (pri-
marily exploited by the longline fisheries), have been com-
puted (Fig. 6). This is an example of quantities of interest
that are functions of other model parameters, with their con-
fidence intervals estimated using the delta method.

Natural mortality rates

The inclusion of age-dependent M resulted in a highly sig-
nificant improvement in model fit (Table 1). The M esti-
mates are about 0.2-year‘1 for age-classes 1-5, after which
they increase to about 0.35-year! by age-class 9 (Fig. 7).
The point at which M is estimated to increase (at about age-
class 6, or about 85 cm fork length) corresponds well to the
size at onset of female reproductive maturity (Ramon and
Bailey 1996). At this point, the sex ratio of adult albacore
also changes rapidly with increasing size to favor males
(Fig. 7). This raises the possibility that M may be greater for
older fish because of high female mortality associated with
the physiological stress of spawning.

Movement parameters

The diffusion rate was estimated to be a decreasing func-
tion of age, declining from 0.35-year™! for age-class 1 to less
than 0.10-year™' for age-classes 5 and older. The confidence
intervals on the estimates are equivalent to coefficients of
variation of about 0.7, suggesting that there is limited infor-
mation on the catch, effort, and length frequency data on
movement. Nevertheless, age-dependent diffusion was a sig-
nificant model hypothesis (Table 1). Net movement of alba-
core occurs from south to north. The estimates of population
biomass indicate that most of the stock is located in regions
B and C, with very little located in the northernmost region
(Fig. 8). Ignoring spatial structure entirely resulted in a
highly significant degradation in model fit (Table 1).

Population biomass and recruitment

The time series of population biomass and recruitment are
key outputs of the model from a stock assessment viewpoint.
The biomass estimates (Fig. 8) show a strongly increasing
trend up to the mid-1970s and a decreasing trend thereafter
until about 1990. The trends are similar in the three regions.

The recruitment estimates (Fig. 9) are higher for the first
half of the time series and lower and more variable during
the second half. This pattern drives the biomass trends ob-
served in Fig. 8. Relatively low estimates of recruitment are
obtained for 1980, 1985, and 1990. Assuming that the age of
recruitment is about 2 years (consistent with the Labelle et
al. (1993) vertebral ring count estimates), the spawning sea-
sons corresponding to the low recruitments match well with
the occurrence of El Nifio episodes (negative values of the
Southern Oscillation Index) in the Pacific Ocean (Fig. 9).
The high recruitments in the second half of the time series
also correspond to La Nifia events (positive values of the
Southern Oscillation Index) 2 years prior to recruitment. The
relationship is not as good over the first half of the time se-
ries, probably because the absence of fisheries directed at
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Fig. 5. Examples of fits (model 1, Table 1) to the South Pacific albacore length frequency data. The solid vertical lines indicate
estimated mean lengths-at-age. The broken vertical lines indicate mean lengths-at-age in the absence of density-dependent growth. Both
the estimated aggregate (upper line) and age-class specific length distributions are shown. (@) Sample from the distant-water longline
fishery in region C (second quarter, 1973); (b) sample from the subtropical convergence zone troll fishery in region C (March 1990).
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small albacore during this period results in less informative
data for estimating recruitment variability.

Discussion

We have developed an integrated, age-structured model
using length data that may, for many fisheries, be a viable
alternative to sequential methods. Unlike most age-
structured models that use length data to estimate catch age
composition, our approach fully integrates catch age compo-
sition and growth parameter estimation with estimation of
recruitment, mortality, and related parameters of the age-
structured model.

The model should be potentially applicable to fish stocks
that exhibit an age-class signal in length frequency data. Ex-
tensive simulation trials during early model development in-
dicated that, as expected, the precision of parameter
estimates erodes as the variability of length-at-age increases.
Where there is little information on catch-at-age in the
length frequency data, the incorporation of independent age—

length observations into the estimation as auxiliary data may
help resolve catch-at-age estimation.

Simulation trials have also confirmed the obvious result
that catchability trends will tend to be underestimated if the
mean of the prior distribution for the m; is zero. Neverthe-
less, model performance is much better than if constant
catchability was assumed. In the case of the albacore analy-
sis, the strong catchability trends estimated for the distant-
water longline fisheries are suspected to be due at least in
part to changes in targeting practices among the various na-
tional fleets. Further stratification of the longline data, or
standardization to reduce the effects of targeting variability,
may therefore be warranted.

The statistical approach to the age-structured model and
Bayesian framework for parameter estimation and hypothe-
sis testing offers the advantage of being able to objectively
assess the information content of the data. This enables the
construction of approximate confidence intervals on the pa-
rameters of interest. Because the model is fully integrated,
such confidence intervals incorporate uncertainty arising
from the estimation of catch-at-age from length data, as well
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Fig. 6. Estimated average annual exploitation rates (thick lines)
and their 95% confidence intervals (thin lines) for (@) combined
age-classes 2-5 and (b) combined age-classes 6-11.
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by 2-cm length-classes (open circles).
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as other sources of variability. The statistical approach also
allows testing of alternative model hypotheses, using poste-
rior Bayes factors, enabling sensible decisions to be made
regarding model development.

We have adopted two variations on classical Bayesian
methods regarding estimation of confidence intervals and
hypothesis testing. First, we assume that the posterior distri-
bution is approximately normal in the vicinity of its mode
and that the covariance matrix is equal to the inverse of the
Hessian. These assumptions are standard in maximum-
likelihood estimation and are reasonable in the Bayesian
context for problems with largely noninformative priors
(Bard 1974). Second, we use posterior Bayes factors rather
than the posterior odds for hypothesis testing. In both cases,
our objective was to avoid the necessity of numerically in-
tensive, high-dimensional integration of the posterior density
function. While Monte Carlo methods such as the sampling-
importance resampling (SIR) and the Monte Carlo Markov
Chain (MCMC) algorithms provide efficient means for ap-
proximating such integrals (McAllister and Ianelli 1997),
they are still not feasible for models the size of the albacore
model presented in this paper.

Although further questions concerning the albacore analy-
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Fig. 8. Estimated relative (scaled to the average) biomass of
South Pacific albacore (thick lines) with 95% confidence
intervals (thin lines) in (@) region A (0-10°S), () region B (10-
30°S), and (¢) region C (30-50°S).
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sis need exploration, the consistency of the model results
with various exogenous data sets is encouraging. These in-
clude the consistency of MULTIFAN-CL length-at-age esti-
mates with those previously derived from vertebral ring
counts, the consistency of age-dependent natural mortality
rate estimates with changes in albacore sex ratio with size:
and with the size at onset of female reproductive maturity,
and the apparent relationship between variation in estimated
recruitment and variation in the Southern Oscillation Index.
While these relationships require further study, their persis-
tence in ongoing analyses of updated albacore fisheries data
would provide convincing validation of the model results. In
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this case, formal incorporation of such exogenous data into
the model as auxiliary data could improve the precision and
predictive power of the model.

The model could be a useful tool for management of the
South Pacific albacore and other fisheries. Two key uses
come readily to mind and would require only minimal adap-
tation of the existing computer software. First, the results of
the model could be cast in a form suitable for comparison
with limit or target reference points, as envisaged by the re-
cent United Nations agreement on straddling and highly mi-
gratory fish stocks (Levy and Schram 1996). This could be
done by calculating the probability that a chosen reference
point is violated by the present estimated population state or
by projected future population states estimated under a par-
ticular fishing regime. In the latter case, such forward pro-
jections would require a model for future recruitment
(perhaps linked to large-scale environmental conditions such
as indicated by the Southern Oscillation Index). This and
other fishery performance measures provide a convenient
framework for incorporating uncertainty in the assessment
into management advice (Punt and Hilborn 1997). Second,
forward projections could be a useful short-term forecasting
tool for both the surface and longline fisheries, particularly
if the predictability of recruitment from environmental vari-
ables is confirmed. Confidence intervals could be deter-
mined for the projections to capture the uncertainty in future
recruitment and the current population state. Such forecast-
ing could assist both industry and management decision-
making.
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Appendix. Length-based selectivity
coefficients

This appendix describes the transformation of age-based
selectivity coefficients to coefficients that account for the
degree of length overlap of age-classes. The transformation
is designed to make the selectivity coefficients reflect a
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length-based rather than an age-based process. The follow-
ing symbols are used in the derivation of the length-based
selectivity coefficients: ¢; is the “age-based” selectivity coef-
ficient for age-class j fish; s; is the “length-based” or length-
averaged selectivity for age-class j fish; @, are weights, de-
termined from the normal distribution of length-at-age, &
standard deviations from the mean; W is the mean length of
age-class j fish; ©; is the standard deviation of length of age-
class j fish; and L, L,, and p are the von Bertalanffy growth
parameters.

Let ¢(L,, L,, p) denote the von Bertalanffy growth func-
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tion, so that ¢”'()) = j. Let ¢7'(1; + Oys,) =iy + Xy, where
iy is an integer, 0 < x; < 1, and §; is the kth component of
the vector (-1, -0.5, -0.25, 0, 0.25, 0.5, 1). Then:

3

(Aly ;= Z Opie;, 0 —x3) + ¢, 1%}
k=—3

where @, = wi/(wg + 2w + 2w, + 2w3), wy = 1, w; =
exp(-0.25%/2), w, = exp(-0.5%/2), and w; = exp(-1.0/2).
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