1. **Course Number and Title**
ORE 612 Dynamics of Ocean Structures

2. **Credit and Hours**
Credits, two 3-hour sessions per week

3. **Instructor**
Deniz Gedikli

4. **Textbooks**
Textbooks: None
References:

5. **Course Information**
a. Course content: Response of floating platforms and vessels to wave action, spectral analysis in sea keeping. Frequency and time domain analyses of rigid body motions in six degrees of freedom.
b. Prerequisite:
 i. ORE 411 or consent.
 ii. Co-requisite ORE 609 or consent.
c. Designation: Offshore Option

6. **Course Goal**
Upon satisfactory completion of the course, the student should:
a. Understand the wave forces which act on offshore structures
b. Be able to calculate these forces for various situations
c. Have a sound background in the mathematical tools involved
d. Have a basic understanding of offshore structure kinematics

7. **Topics covered**
a. Linear Oscillator – One Degree of Freedom
b. Free Vibration with Linear Damping
 i. Motion of a Floating Body in Quiescent Water
c. Forced Vibration – Steady State Oscillation (Part I)
 i. Motion of a Floating Body in Regular Waves
d. Forced Vibration – Transient and Nonperiodic Vibrations
 i. Review of Laplace Transform
 ii. Unit Step Function – Indicial Response
 iii. Unit Impulse Function – Impulsive Response
iv. Pulsed Sinusoidal Excitation
v. Arbitrary Excitation
e. Forced Vibration – Steady State Oscillation (Part II)
 i. Review of Fourier Transforms
 ii. Impulsive Response and Complex Frequency Operator
f. Time Domain Solutions
g. Time Domain Solution of Equations of Motion Containing Frequency Dependent Coefficients
 i. Connection between Frequency Domain and Time Domain
 ii. Time Domain Description – Linear Equations of Motion
 iii. Hydrodynamic Force on Body Making Arbitrary Oscillations in Originally Calm Water
h. Motion of Floating Bodies
 i. Kinematics of Rigid Bodies
 ii. Linear Momentum of a Rigid Body
 iii. Angular Momentum
 iv. Dynamics of a Rigid Body
 Linear Motions
 Rotational Motions
 The General Six Scalar Equations of Motion
 The Linearized Equations of Motion for a Body with a Plane of Symmetry
i. Hydrodynamic Coefficients and Wave Excitation – 3D Source Distribution
 i. Review of Ideal Fluid Theory
 ii. Green’s Theorem and Distribution of Singularities
 iii. Hydrodynamic Pressure Forces
 iv. Force on a Moving Body in an Unbounded Fluid
 v. General Properties of Added Mass Coefficients
 vi. The Body-Mass Force
 vii. Linear Diffraction Theory Equations of Motions
 viii. Non-Linear Equations of Motion – Frequency Domain
 ix. Non-Linear Restoration Function – Ritz-Galerkin Method
 x. Forced Oscillation with Non-Linear Damping and Non-Linear Restoration
 xi. General Types of Non-Linear Damping and Linear Restoration
j. Two Moving Body Interaction Problem
 i. Van Oortmerssen (1979)
 ii. Cummins (1962)
 iii. Greeson (1997)
k. Ship Motions in Irregular Seas