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The hydroelastic response of mat-type Very Large Floating Structures (VLFSs) to
severe sea conditions, such as tsunamis and hurricanes, must be assessed for safety
and survivability. An efficient and robust nonlinear hydroelastic model is required
to predict accurately the motion of and the dynamic loads on a VLFS due to such
large waves. We develop a nonlinear theory to predict the hydroelastic response of
a VLFS in the presence of cnoidal waves and compare the predictions with the lin-
ear theory that is also developed here. This hydroelastic problem is formulated by
directly coupling the structure with the fluid, by use of the Level I Green-Naghdi
theory for the fluid motion and the Kirchhoff thin plate theory for the runway. The
coupled fluid structure system, together with the appropriate jump conditions are
solved in two-dimensions by the finite-difference method. The numerical model is
used to study the nonlinear response of a VLFS to storm waves which are mod-
eled by use of the cnoidal-wave theory. Parametric studies show that the nonlin-
earity of the waves is very important in accurately predicting the dynamic bending
moment and wave run-up on a VLFS in high seas. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4862916]

I. INTRODUCTION

The research and development of mat-type Very Large Floating Structures (VLFSs) has made
significant progress since the First International Workshop on Very Large Floating Structures
(VLFS’91) was held in Hawaii in April 1991 when the acronym “VLFS” was first coined by
Ertekin and Riggs.1 Watanabe et al.2 provide a list of conference proceedings and journal issues
dedicated to the VLFSs, and a review of recent research progress on the hydroelasticity of mat-type
VLFS, and it complements a previous survey on the prediction of hydroelastic responses of VLFS
by Kashiwagi.3 The overview by Ohmatsu4 is more related to the Mega-float project.

The size of a VLFS presents a significant challenge to engineers and researchers since it is
difficult to scale simultaneously the structural and hydrodynamic properties of a VLFS model in
a wave tank, and the existing hydroelasticity theories such as by Wu5 are not necessarily efficient
enough especially for preliminary design purposes. Therefore, most of the recent research during the
last two decades has focused on developing efficient numerical tools by simplifying the structural
model.

Among the numerous numerical methods on the hydroelasticity of a VLFS, most of them are
within the scope of linear wave theory and in frequency domain or time domain. There are only a
few numerical models that consider the global hydroelastic response of a VLFS to nonlinear waves,
which is a naturally complicated phenomenon.

In linear hydroelasticity analysis of a mat-type VLFS, the flow is usually assumed to be governed
by linear potential theory. The wave amplitude is therefore assumed to be infinitesimal so that the
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nonlinearities can be ignored. A VLFS is generally modeled as an elastic thin plate and only the
vertical motion is considered. It is also assumed that there is no gap between the VLFS and the free
surface, i.e., no slamming is allowed.

More often, the hydroelastic analysis is carried out in the frequency domain since this is more
straightforward than it would have been in the time domain. The fluid problem is generally solved by
the boundary-integral method, i.e., by use of the Green function. The plate response is often solved
by the Finite Element Method (FEM), or alternatively, as part of the boundary-element of the fluid
domain.

There have been two major approaches to the frequency-domain analysis: the modal expansion
method and the direct method. Modified modal functions have been introduced by many authors,
primarily to increase the numerical efficiency of the computations. The products of free-free beam
modes (Wu et al.6 and Nagata et al.7), the B-spline function (Kashiwagi8), and two-dimensional
polynomial functions (Wang et al.9) are some examples. The direct method solves the equation of
motion of the plate and the hydrodynamic problem simultaneously using the pressure distribution
method, as pioneered by Mamidipudi and Webster.10 Ma11 introduced a high-order method using
a double fifth-order interpolation function to improve the computational efficiency in an effort to
optimize the stiffness of the floating runway. Kashiwagi12 proposed the B-spline function for both
pressure and plate deformation to reduce the computational time. Another direct method developed
by Ohkusu and Namba13 considers the mat-type VLFS as part of the water surface with different
physical properties represented by a Green function.

Based on the shallow-water, linear Green-Naghdi theory, Ertekin and Kim14 developed another
direct method by dividing the fluid domain into areas with and without the plate and matching them
on the juncture boundary by use of the continuity of mass flux and mean pressure. Benchmark
tests conducted by Riggs et al.15 show good agreement between the linear GN results and the
solutions obtained from other three-dimensional hydroelastic models based on potential theories
(e.g., HYDRAN16 and Iijima et al.17) over a wide range of wave periods. This method was used in
the analysis of the effects of a shoreline and a breakwater on a floating runway with high efficiency,
as shown by Xia et al.18 and Ertekin et al.19

Only a few studies of transient problems have been reported to date, and most of them are still
too computationally intensive for practical use in VLFS design. The commonly used approaches
for time-domain analysis of VLFS can be categorized as the direct integration method and the
Fourier transform method. It is well-known that the time-domain and frequency domain analysis are
reversible through Fourier transformation. Ohmatsu20 and Miao et al.21 transferred the frequency-
domain response for the fluid domain into the time-domain with the Fourier transform, and solved
the plate transient response due to irregular waves, impact or moving loads (i.e., idealized airplane
landing or take-off), and nonlinear mooring-load cases. However, the truncation of the higher modes
may cut off contributions from higher frequencies as pointed out by Kashiwagi.3

The nonlinear hydroelastic analysis under large waves, such as during a hurricane, typically
must be done in the time-domain, using a direct integration method. Other nonlinear hydroelastic
phenomena such as slamming (Faltinsen22) and the steady drift force (e.g., Kim and Ertekin23 and
Kashiwagi24) may also be important in VLFS design, but are not discussed here.

Liu and Sakai25 developed a two-dimensional nonlinear model to simulate the hydroelastic
response of an elastic beam to random waves, and nonperiodic nonlinear waves such as a tsunami.
In their study, the boundary-element method (BEM) is used for the fluid domain that is based the
Rankine source method, and the structural deformation of the beam is calculated by the finite-element
method. The fluid motion and structure are coupled by satisfying the continuity of the pressure and
displacement on the fluid-structure interface. The computational efficiency for the Rankine-source-
based BEM somehow limits the application of this numerical model to VLFS analysis with the
present CPU technology although it is accurate and versatile in its application.

Takagi26, 27 studied the response of a mat-type VLFS to a tsunami in two-dimensions and three-
dimensions, respectively. A nonlinear shallow-water wave equation, i.e., the generalized Boussinesq
equation (Wu28) was used for the fluid motion. The shallow-water wave theory is very efficient
since the unknowns are only functions of the spatial coordinates on the horizontal plane and time.
Thin plate theory was used for the plate motion with the acceleration term ignored. The matched
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asymptotic expansion method was used to connect the outer solution governed by the Boussinesq
equations and the inner solution governed by the Laplace equation. It was shown that higher-order
terms play an important role in the prediction of VLFS response to nonlinear tsunami waves.
It is noted that small oscillations occur in the surface elevation snapshots taken at the free sur-
face close to the edge of the plate (see Figure 3 of Takagi26). This may be introduced by the
matching scheme which may not ensure that the conservation laws are satisfied at the matching
interface.

Recently, Xia et al.29 proposed a new 2D nonlinear model to calculate the hydroelastic response
of mat-type VLFSs to solitary waves, based on the Level I Green-Naghdi (GN) equations (Green and
Naghdi30). The VLFS is represented by an elastic plate. A new set of jump conditions are derived to
match the fluid solutions at both sides of the plate edge through the use of the postulated conservation
laws of mass, momentum, and mechanical energy. We anticipate that this numerical model has a
similar computational efficiency to that of Takagi26 with an improved matching condition. The noise
at the vicinity of the plate edge in Takagi26 does not appear in results of Xia et al.29

In this work, a two-dimensional nonlinear hydroelasticity model is developed. The nonlinear
wave problem is governed by the Level I Green-Naghdi theory (see, e.g., Green and Naghdi30),
and the mat-type VLFS is simplified as an elastic plate which is modeled using the Kirchhoff thin
plate theory (see, e.g., Timoshenko and Woinowsky-Krieger31). It is assumed that no gap exists
between the VLFS bottom and water surface so that the structural and fluid motion can be coupled
by use of the continuity of both pressure and displacement at the interface. At the plate edges, a set
of jump conditions suitable for the current three-dimensional nonlinear hydroelasticity analysis is
developed based on the integral balance laws. These conditions ensure that the solution satisfies the
conservation of mass, momentum, and energy through the jump interface. The nonlinear Level I GN
theory is numerically modeled to determine the hydroelastic response of a mat-type VLFS to waves
with unsteady jump conditions very efficiently (see, e.g., Ertekin and Kim14 and Xia et al.29). The
proper boundary and initial conditions are derived to make the formulation complete. With the help
of the mass continuity equation, the system of equations is simplified further by removing the terms
that are time derivatives of the surface elevation from the momentum equations, following Ertekin
et al.32

The three-dimensional model is then simplified to two dimensions so that the basics of the
nonlinear hydroelasticity can be more clearly examined with a simpler system. The nonlinear model
is also linearized to study the dispersion relation of the hydroelastic wave and to observe the nonlinear
effects.

Finite Difference Method (FDM), with the 4th-order Runge-Kutta method for time stepping,
and a central difference for the spatial variables, is used to solve the partial differential equation
system. The numerical method is then used to study the response of a VLFS to large design waves
where the storm waves are modeled by cnoidal waves.

In the present work, we first introduce the nonlinear theory and then linearize the governing
equations of the problem to obtain the linear solution of the same problem. Following this, the
finite-difference method is introduced and the solution approach is detailed. Finally, we present the
results for both the linear and cnoidal wave solutions of the problem and emphasize the importance
of nonlinearity in the structural response of a floating runway.

II. THEORY

The coordinate system and geometry of the fluid-structure system of the two-dimensional
problem are shown in Fig. 1. The beam is taken from a strip of unit width from a plate of large aspect
ratio (beam length over beam width ratio is large). The beam is envisioned as the strip of a floating
runway that freely floats on the top of Region II, with a draft d, length b, and thickness hp. In Fig. 1,
m is the mass per unit length of the beam (that is of unit width). Its thickness is much smaller than
its length so that the Kirchhoff thin-plate theory can be applied. The wave propagates parallel to the
beam-length direction so that the hydroelastic phenomenon also is two dimensional.

The whole domain is divided into three parts. Regions I and III contain the ordinary shallow-
water wave problems. Nonlinear cnoidal waves propagate from left to right and excite the motion of
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FIG. 1. Definition sketch of the problem.

the beam. The inviscid fluid motion is assumed to be governed by the Level I GN theory (see, e.g.,
Ertekin and Wehausen33). The sea floor is flat. The still-water depth in the open water area is h0, and
in Region II, it is h0 − d. We further assume that the runway is horizontally restrained somehow,
perhaps with mooring dolphins, and thus, no horizontal motion in the x direction is allowed.

A. Nonlinear theory

The governing equations for the motion of the fluid are provided by the Level I Green-Naghdi
(GN) theory (see, e.g., Green and Naghdi30). They can be written in a compact form (see, e.g.,
Ertekin and Becker34):

ηt + ∂ [(h + η)u]

∂x
= 0, (1)

u̇ + gηx + p̂x

ρ
= −1

6
[4ηx η̈ + 2(h + η)(η̈)x ] , (2)

where, ρ is the mass density of water, p̂ is the pressure on the upper surface of the water column,
and η is the surface displacement, and u(x, t) is the horizontal velocity of fluid particles in the x
direction. The subscripts, x and t, denote the partial derivatives, g is the gravitational acceleration, h
the still-water depth, and equals to h0 in Regions I and III, and to h1 in Region II. The superposed
dot denotes the material derivative, i.e., η̇ = ηt + u ∂η/∂x . When there is no plate floating on the
top of the fluid surface, the atmospheric pressure, p̂, is set to zero. In Region II, however, p̂ equals
to the pressure on the bottom of the plate, while the atmospheric pressure on the top of the plate is
set to zero.

It is noted that the integrated pressure through the water column, in the Level I GN theory, is
given by (see, e.g., Ertekin35)

P = 1

6
ρ(h + η)2(2η̈ + 3g) + p̂(h + η). (3)

Since we are considering long waves, the linear beam theory (one-dimensional version of the
linear thin plate theory) is applied to the structure, i.e.,

mηt t + Dηxxxx + mg = f̂ , (4)

where f̂ is the force acting by water on the bottom of plate, i.e., p̂ times the width of the beam, D is
the flexural rigidity of the plate, and is defined by D = Eh3

p/[12(1 − ν2)], and E and ν are Young’s
modulus and Poisson’s ratio of the plate, respectively. It is noted that the dimension of each term in
Eq. (4) is force/length since we are considering a beam of unit width.

The motion of the fluid and the plate is coupled through the dynamic free-surface condition.
We also assume that the displacement of the plate and the fluid-surface elevation under the bottom
of the plate are the same, i.e., no air gap is allowed. After we substitute f̂ from Eq. (4) into
Eq. (2), and use the fact that the continuity equation is the same as in Eq. (1), except for the fluid
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sheet thickness, we can obtain the governing equations for the fluid-plate Region II :

ηt + ∂ [(h1 + η)u]

∂x
= 0, (5)

u̇ + gηx + (mηt t + Dηxxxx + mg)x

ρ
= −1

6
[4ηx η̈ + 2(h1 + η)(η̈)x ] . (6)

The Eqs. (5) and (6) are the modified Level I GN equations (2D) that are nonlinear.
It is very desirable to remove the time dependent terms in the combined momentum equation,

Eq. (6), in numerically solving the set of modified GN equations. This was done by Xia,36 and as a
result Eq. (6) becomes

(1 − mηxx )ut − [ηx (h1 + η) + 2mηx ]uxt − [
1

3
(h1 + η)2 + m(h1 + η)]uxxt = −Y f − Yp, (7)

where

Y f = ηx (h1 + η)(ux
2 − uuxx ) + 1

3
(h1 + η)2(ux uxx − uuxxx ) + uux + ηx , (8)

Yp = m[(h1 + η)(3ux uxx + uuxxx ) + Dηxxxxx

+ ηxxx u2 + 5ηxx uux + 4ηx (u2
x + uuxx )] − p̂ld .

(9)

1. Initial and boundary conditions

We assume that there are waves initially (t = 0) and they are at a distance away from the plate.
The velocities and surface elevation are initially set according to the analytical solution of a cnoidal
wave that the Level I GN theory provides (see, e.g., Sun37 and Ertekin and Becker34):

η0(t) = η2 + HCn2, u0(t) = cη0

1 + η0
, c =

√
(1 + η1)(1 + η2)(1 + η3), (10)

where Cn is the Jacobian elliptic cosine function, H is the wave height, c is the phase speed, and

η1 = −H

k2

E

K
, η2 = H

k2
(1 − k2 − E

K
), η3 = η2 + H, k2 = H

η3 − η1
, (11)

and K and E are the complete elliptic integrals of the first and second kind, respectively. The
dispersion relation is given by

λ = ckK

√
16

3H
, (12)

where λ is the wavelength. Clearly, the wave period is given by

Tcn = kK

√
16

3H
. (13)

To prevent the cnoidal waves to apply a sudden pressure force on the domain that may lead
to instabilities, the wave is modulated in the front by a ramp function also used by e.g., Ertekin
and Becker.34 The piston wave-maker generates waves by having its velocity specified such that the
generated waves are consistent with the initial wave inside the domain. The downwave boundary
is an open boundary. The open boundary condition used there is the Orlanski condition, and it was
used before successfully (see, e.g., Ertekin et al.32).

At the ends of the plate, free-free end boundary conditions of the beam require the vanishing of
the bending moment and shear force. Thus, we have

Dηxx = Dηxxx = 0 at x = x+
1 and x−

2 . (14)

Since we assume that there is no gap between the bottom surface of the beam and the top surface
of the fluid layer, the fluid under the tip of the beam should also satisfy the conditions given by
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Eq. (14). Because ηxx |xi = 0 and ηxxx |xi = 0 (i = 1, 2) at any time t, ηxxt |xi = 0 and ηxxxt |xi = 0
should be satisfied for all t. By taking the second and third derivatives about x on both sides of the
mass continuity equation, Eq. (5), we obtain the boundary conditions for the fluid motion under the
ends of the beam as (at x = xi, i = 1, 2)

3ηx uxx + (h + η)uxxx = 0, (15)

4ηx uxxx + (h + η)uxxxx + ηxxxx u = 0. (16)

2. Jump conditions

In the following formulation, only the left side of the elastic plate is treated here because the
solution for the other side is obtained by employing the same technique. The appropriate jump
conditions are demanded by the theory because the fluid surface is discontinuous at the juncture of
Regions I and II, x = x±

1 when the fluid is quiescent as the water depths are different to the left and
right of the discontinuity. Here, “+” denotes the limit approaching from right toward x1, while “−”
from left toward x1. The jump conditions are necessary for having the mass and momentum (and
thus mechanical energy in the absence of any heat flux) at x = x±

1 conserved.
Naghdi and Rubin38 provided a set of jump conditions for a flat bottom and steady motion by

use of the conservation laws and when there is a rigid body floating on the fluid surface. Naghdi
and Rubin,38 and also Green and Naghdi,39 applied them to a steady-flow problem. However, they
additionally required the continuity of the surface elevation and surface pressure, p̂, or the slope of
the surface. In the present study, however, we cannot avoid discontinuities in the surface elevation
and pressure since the motion of the elastic beam is relative at x = x−

1 and x+
1 .

Based on the conservation of mass, momentum, director momentum (moment of vertical mo-
mentum), and mechanical energy (Naghdi and Rubin38), the jump conditions for the case of a
floating, elastic body can be derived and specialized to the unsteady problem under consideration
here. We assume the singularity to be stationary in the horizontal plane and identify the fixed location
of the discontinuity by the vertical line at x = x1. The sea bed is also assumed to be stationary in
the present derivation, although this is not necessary in general. By use of Leibnitz’s rule, and by
following Naghdi and Rubin,38 the corresponding jump conditions for mass, horizontal and vertical
momentum, director momentum, and energy conservation can be derived. An alternative derivation
was given by Xia36 and Xia et al.29

The two-dimensional jump conditions in the format of reduced order of the time derivatives at
the left end of the beam, x = xl, are presented as

[(h0 + η)u] |x−
l
= [(h1 + η)u] |x+

l
, (17)

[−S0uxt + Y0] |x−
l
= [R1ut − S1uxt + Y1] |x+

l
, (18)

where

S0 =[
1

3
(h0 + η)2] |x−

l
,

Y0 =[
1

3
(h0 + η)2(ux

2 − uuxx ) + 1

2
(u2 + 1

3
w2 + 2gψ)] |x−

l
,

R1 = − mηx |x+
l
,

S1 =[m(h1 + η) + 1

3
(h1 + η)2] |x+

l
,

Y1 ={1

3
(h1 + η)2(ux

2 − uuxx ) + 1

2
(u2 + 1

3
w2 + 2gψ) + Dηxxxx

+ m[(h1 + η)(uuxx + u2
x ) + ηxx u2 + 3ηx uux ]} |x+

l
−φt |x+

l

ρ

3
[[w]].

(19)
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The above two jump conditions correspond to mass and mechanical energy conservation,
respectively. The jump conditions can readily be obtained with a similar procedure at the other end
of the beam.

B. Linear theory

The linear equations may be obtained readily from the nonlinear theory by expanding each term
and ignoring higher-order terms such as O(u2), O(uη), O(η2), etc. In Secs. II B 1 and II B 2, we
present the linearized governing equations, initial and boundary conditions and jump conditions. For
a formal derivation of the linear GN equations, see, e.g., Ertekin.40

1. Governing equations and initial and boundary conditions

After linearizing the nonlinear governing equations, Eqs. (5) and (7), the linear governing equa-
tions is obtained as

ηt + h1ux = 0, (20)

ut −
(

1

3
h2

1 + mh1

)
uxxt = −ηx − Dηxxxxx . (21)

The linearized (integrated) pressure through depth in two-dimensional form is written as

P = 1

3
h2

1ηt t + 1

2
h1(h1 + 2η) + p̂(h1 + η)

= −1

3
(h3

1 + mh2
1)uxt + 1

2
h2

1 + h0η + h1 Dηxxxx .

(22)

For the 2D linear problem, we only study the sinusoidal wave case. The fluid layer is quiescent
at t = 0 and the initial values for all variables are set to zero. The piston wave maker generates
the sinusoidal waves at the upwave boundary according to the analytical solutions of the linear GN
equations. The sinusoidal motion of the wave-maker is specified as

η0(t) = A cos
(π

2
+ ωt

)
, u0(t) = Aω

k
η0(t), (23)

where A is the wave amplitude, ω is the angular wave frequency related to the wave period T as ω =
2π /T, and k is the wave number of the free surface water wave. The wave number is related to wave
frequency for the GN theory through the dispersion relation as discussed later.

The Orlanski open boundary condition is the same as for the three-dimensional nonlinear theory.
At the beam ends, the free-free end boundary conditions at the ends of the beam are the same as

in the nonlinear theory, Eq. (14), since the linear beam theory is adopted in this work. The beam end
conditions coupled with the fluid may be obtained through the linearization of Eqs. (15) and (16), i.e.,

Dh1uxxxt = 0, Dh1uxxxxt = 0. (24)

2. Jump conditions

Jump conditions for the linear theory are simplified from the nonlinear derivation by ignoring
the higher-order terms in Eqs. (17)–(19). The jump conditions for the mass and energy conservations
at the left end of the beam are

hu |x−
l
= hu |x+

l
, (25)

[
−1

3
ρh2

0uxt + ρgη

]
|x−

l
=

[
−1

3
ρh2

1uxt + ρgη − mh1uxt + Dηxxxx

]
|x+

l
. (26)

The jump conditions at the other end of the beam can similarly be obtained.
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3. Linear dispersion relations for water wave and hydroelastic wave

The dispersion relation for the linear GN theory is given by Green et al.41 Its dimensional form
is

k2 = 3ω2

3gh − h2ω2
or ω2 = 3ghk2

3 + h2k2
, (27)

where k is the wave number and ω is the angular wave frequency. Compared with the dispersion
relation of the linear potential theory, i.e., ω2 = gktanh (kh), the error in estimation of ω by the GN
theory is O(k6h6).

The celerity, c and group velocity, cg for the GN theory can be derived from Eq. (27):

c = ω

k
=

√
3gh

3 + h2k2
, cg = dω

dk
= 3c

3 + h2k2
. (28)

Compared with the celerity of the exact potential theory, i.e, c = √
g tanh(kh)/k, Kim and

Ertekin42 showed that the relative error of the GN celerity is within 1% when kh < 1 and 6% when
kh < 2.

Kim and Ertekin42 derived the celerity, cp, and group velocity, cpg of the hydroelastic waves for
the linear GN theory:

cp = ω

kp
=

√
Dk4

p + ρg

ρ/h1 + (m + ρh1/3)k2
p

,

cpg = dω

dkp
= 3ρ2g + Dk4

p(6mk2
ph1 + 9ρ + 2ρk2

ph2
1)

3h1(Dk4
p + ρg)[ρ/h1 + (m + ρh1/3)k2

p]
.

(29)

The exact dispersion relation based on the linear exact potential and thin plate theories are given
in Davys et al.:43

cp = ω

kp
=

√
Dk4

p + ρg

{m + ρ/[kp tanh(kph1)]}k2
p

. (30)

The agreement between the dispersion relations for the hydroelastic wave by the GN theory and the
exact linear potential theory is better than that for the free surface water waves, since there is no
approximation of the bending term, Dk4

p, in the GN theory.

III. NUMERICAL SCHEME

The numerical method used to solve the problem is the same as used by Xia et al.29 The Runge-
Kutta method of order four was used to march in time. The second-order accurate central-difference
formulas are used for the spatial derivatives. The mass continuity equation can be solved in a straight
forward manner. In the momentum equation, the time derivatives involve the spatial derivatives, e.g.,
uxt and uxxt, which cannot be solved explicitly. These can be solved through a simultaneous set of
linear equations in two steps. To use the central difference method for the derivatives of u at x±

1 ,
fictitious points are introduced on each side, as depicted in Fig. 2.

To monitor the numerical accuracy of the predictions, both the mass and energy conservation
were monitored in time. For the mass conservation (see, e.g., Chian and Ertekin44), the total mass
change in a region bounded by upwave boundary x = xU, and downwave boundary x = xD at a
specific time t is

�Mw(t) = Mw(t) − �MwU (t) + �MwD(t) − Mw(0), (31)

where the total mass at time t in the target region is Mw(t) = ∫ xD

xU
(1 + η)dx , the total mass flow

through the upwave boundary and downwave boundary from the beginning of calculation (t = 0) to
time t are, respectively, �MwU (t) = ∫ t

0 (1 + η)u|xU dt and �MwD(t) = ∫ t
0 (1 + η)u|xD dt , and Mw(0)
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FIG. 2. Fictitious points introduced to use the central difference formulas.

is the initial total mass in the region monitored. The percent change in mass due to numerical errors
can be calculated through

�MwE (t) = �Mw(t)

Mw(0)
× 100%. (32)

The energy conservation is monitored similarly as that for the mass conservation. The relative
errors for both energy and mass conservation are found to be less than 5% for all the cases considered
here.

To make the numerical scheme stable, the unwanted saw-tooth-oscillations of high wave fre-
quency were removed by use of a five-point filtering formula that Ertekin40 and Demirbilek and
Webster45 used successfully.

IV. RESULTS AND DISCUSSION

We first verify the linear model that we developed based on the linearized GN equations as
well as Kirchoff theory. This is followed by the analysis of the nonlinear response of the runway to
cnoidal waves. The nonlinear results are also compared with the linear results to better understand the
importance of nonlinearity. We also study the effect of beam stiffness on the hydroelastic response.
To do this, the same runway considered by Kashiwagi12 and Ertekin and Kim14 is further studied for
both wave conditions, and for the flexural rigidity of D/ρgh4

0 = 3.2, length of the beam B/h0 = 20,
and draft d/h0 = 0.1. The main dimensions used in the problem are listed in Table I. Note that, in this
two-dimensional problem, B is the length for us as the waves impinge on the runway as beam waves.

A. Verification of the linear model

The verification of the linear theory is carried out by comparing the current GN results obtained
through time domain analysis with those from frequency domain analysis of the linear GN equations
obtained by Kim and Ertekin42 and the experimental data of Wu et al.6 The physical properties and
dimensions of the plate used are given as D = 471 Nm, L = 10 m, d = 0.00836 m, and h0 = 1.1 m.
The wave number of the incoming wave is kh = 2.03, which corresponds to a wave period of 1.43 s.

TABLE I. Parameters of A mat-type floating runway.

Parameter Dimensional value Nondimensional

Length, L 5000 m 100
Width, B 1000 m 20
Draft, d 5 m 0.1
Displacement 25 000 000 mT 200
Flexural rigidity, D = EI/B 1.96 × 1011 Nm 3.2
Poisson’s ratio, ν . . . 0.3
Water depth, h0 50 m 1
ρw 1000 kg/m3 1
g 9.8 m/s2 1
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FIG. 3. Comparison of the (a) displacement amplitude and (b) bending moment amplitude based on the linear GN theory
with other results: kh = 2.03.

In Fig. 3, the amplitudes of vertical displacement and bending moment are compared with the
experimental data of Wu et al.6 and the analytical results of Kim and Ertekin.42 The results show
that the GN results from the current time-domain analysis and the analytical frequency domain are
almost identical. The comparison between the GN results and experimental data shows that the trend
in both the maximum displacement and bending moment agrees well in general. However, there are
some discrepancies in the peak values.
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FIG. 4. Comparison of linear and nonlinear incoming waves for λ/h0 = 25.13. (a) Surface elevation profiles vs. length and
(b) surface profile time history: cnoidal wave A/h0 = 0.075 —–; cnoidal wave A/h0 = 0.002 ···; and linear sinusoidal wave
A/h0 = 0.075 – · –.

B. Cnoidal waves

The nonlinear hydroelastic response to cnoidal waves is first compared with the linear response
to a sinusoidal wave. Note that for any given wave period, it is not possible to match the wave lengths
for the two wave types. This is because the period of a cnoidal wave depends on both the wave length
and amplitude, while the wave period of a linear sinusoidal wave is only dependent on the wave
length. However, for a given wave length, the period of a cnoidal wave converges to the value for
the linear sinusoidal wave when the amplitude of the cnoidal wave tends to become infinitesimally
small. In the comparison, the same wave length is used for both the linear and nonlinear waves.

The wave length studied is λ/h0 = 25.13. For the linear sinusoidal wave, the corresponding wave
period and wave number are T/

√
h0/g = 25.4 and kh0 = 0.25, respectively. Two wave amplitudes

are considered for the cnoidal wave, i.e., A/h0 = 0.075 and 0.002. Based on the nonlinear dispersion
relation, Eq. (13), the nondimensional wave periods for both cnoidal waves are TCN/(h0/g)0.5 = 24.7
and 25.4, respectively. The profile and time history of the surface elevations for these wave conditions
are shown in Fig. 4. In these plots, the x and t axes are normalized by wave length λ and linear
wave period T, respectively. The surface profiles for the linear sinusoidal wave and cnoidal wave
with very small amplitude are almost identical, and they are symmetric about the still-water surface.
However, for the larger amplitude cnoidal wave, the wave crest and trough are not symmetric about
the still-water surface and the crest is much higher than that for the linear wave.

The time histories of the hydroelastic deformation and wave run-up at the ends of the beam for
the wave conditions discussed above, are shown in Figs. 5 and 6, respectively. The run-up is given
by the difference between the wave elevation and structural deformation at the interface of Regions
I and II. The maximum displacement and bending moment along the structure are shown in Fig. 7.

It is shown that the time histories of dynamic response are fully developed during the last two
wave cycles. The nonlinear response converges to the linear one when the wave amplitude is very
small. The nonlinear hydroelastic response to a cnoidal wave with large-amplitude is larger than the
linear response, especially for the wave run-up and maximum bending moment. This is due to the
high nonlinearity of the large amplitude cnoidal wave which is apparent from the uneven distribution
of crest and trough, and the higher harmonics as can be seen in the response time histories.

The effect of the cnoidal wave amplitude on hydroelastic response is further studied. The
maximum response of displacement and bending moment along the structure are shown in Fig. 8.
The wave length for these cases is λ/h0 = 25.13, and the wave amplitudes are A/h0 = 0.001, 0.005,
0.05, and 0.1, respectively. The results show that normalized bending moment increases with the
increase of wave amplitude and the displacements at the beam ends are also significantly affected
by the wave amplitudes.

The hydroelastic response to different stiffnesses is also studied, similar to the solitary wave
case studied by Xia et al.29 The maximum responses for a cnoidal wave amplitude of A/h0 = 0.05
and wave length λ/h0 = 25.13 are shown in Fig. 9. The linear response for a sinusoidal wave with
the same wave length is shown in Fig. 10 for comparison purposes.
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FIG. 5. Comparison of linear and nonlinear responses for λ/h0 = 25.13 — displacement time history: cnoidal wave A/h0 =
0.075 —–; cnoidal wave A/h0 = 0.002 ···; and linear sinusoidal wave A/h0 = 0.075 – · –. (a) Upwave beam end, (b) middle
point of beam, and (c) downwave beam end.
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FIG. 6. Comparison of linear and nonlinear responses for λ/h0 = 25.13 - wave runup time history: Cnoidal wave A/h0 =
0.075 —–; Cnoidal wave A/h0 = 0.002 ···; Linear sinusoidal wave A/h0 = 0.075 – · –. (a) Upwave beam end and (b) downwave
beam end.
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FIG. 7. Comparison of linear and nonlinear responses for λ/h0 = 25.13/h0 — (a) maximum displacement and (b) maximum
bending moment on the structure: cnoidal wave A/h0 = 0.075 —–; cnoidal wave A/h0 = 0.002 ···; and linear sinusoidal wave
A/h0 = 0.075 – · –.
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FIG. 8. Maximum responses along the VLFS for various cnoidal wave amplitudes (λ/h0 = 25.13, D/ρgh0 = 3.2):
(a) maximum displacement and (b) maximum bending moment.
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FIG. 9. Maximum responses along the VLFS for various stiffnesses based on nonlinear theory (λ/h0 = 25.13, A/h0 = 0.05):
(a) maximum displacement and (b) maximum bending moment.
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FIG. 10. Maximum responses along the VLFS for various stiffnesses based on linear theory (λ/h0 = 25.13): (a) maximum
displacement and (b) maximum bending moment.

The nonlinear response is higher than the linear response for both the displacement and bending
moment. The bending moment increases with the increase of bending stiffness. However, the linear
bending moment response is almost proportional to bending stiffness while the nonlinear response
is not. The differences between the bending moments for higher stiffnesses are much smaller than
that for lower stiffnesses.

V. CONCLUSIONS

A modified set of Level I GN equations that represent a long wave beneath an elastic plate
in two dimensions have been used. Jump conditions are enforced in the solution of the governing
equations. The solutions of the ordinary GN equations in the open water region and that of the
modified GN equations under the structure are obtained by the finite-difference method. Numerical
results showing the behavior of cnoidal waves beneath an elastic plate are presented and compared
with the linear GN predictions.
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The linear model is verified by comparing the present linear numerical results in the time-domain
with the experimental data and the linear GN results in the frequency domain for a sinusoidal
incoming wave. The present time-domain GN results are almost identical to the GN frequency-
domain results. The nonlinear response for a cnoidal wave converge to the linear solution for a
sinusoidal wave with the same wave length as the cnoidal wave, when the cnoidal wave height is
very small. However, as the wave height increases, the nonlinear responses on displacement and
bending moment are much higher than the linear solutions. This is due to the uneven distribution of
the crest and trough of the cnoidal wave and higher harmonics present in the cnoidal wave. It is also
shown that the nonlinearity is important in predicting wave run-up. Similar results were obtained
before when tsunami impacts a floating runway, see Xia et al.29

It is known that the Green-Naghdi theory with more directors, i.e., higher Level of approxima-
tion, can predict the dispersion relation more accurately for short waves than the Level I GN theory
can. It is recommended therefore that a higher-level GN theory be used to study the hydroelasticity
of VLFS in all water depths in the future, see, e.g., Demirbilek and Webster,45 Shields and Webster,46

and Zhao et al.47 The structural model can also be improved by adopting a more accurate linear
theory, e.g., Mindlin plate theory as suggested by Wang et al.,9 or a nonlinear theory such as the
Green-Naghdi plate theory (see, e.g., Naghdi48).

ACKNOWLEDGMENTS

This research is based partially upon work supported by ONR Grant No. N000149-81-0800,
NSF Grant No. BES-9532037, and ONR Grant No. N000140-21-0903.

1 Proceedings of the First International Workshop on Very Large Floating Structures, VLFS ’91, (TC1665 .I596), edited by
R.C.Ertekin and H. R. Riggs (University of Hawaii, Honolulu, Hawaii, 1991).

2 E. Watanabe, T. Utsunomiya, and C. M. Wang, “Hydroelastic analysis of pontoon-type VLFS: A literature survey,” Eng.
Struct. 26, 245–256 (2004).

3 M. Kashiwagi, “Research on hydroelastic responses of VLFS: Recent progress and future work,” Int. J. Offshore Polar
Eng. 10(2), 81–90 (2000).

4 S. Ohmatsu, “Overview: Research on wave loading and responses of VLFS,” Mar. Struct. 18, 149–168 (2005).
5 Y. S. Wu, “Hydroelasticity of floating bodies,” Ph.D. thesis (Brunel University, UK, 1984), v+263pp.
6 C. Wu, E. Watanabe, and T. Utsunomiya, “An eigenfunction expansion-matching method for analyzing the wave-induced

responses of an elastic floating plate,” Appl. Ocean Res. 17, 301–310 (1995).
7 S. Nagata, Y. Yoshida, T. Fujita, and H. Isshiki, “The analysis of wave-induced response of an elastic floating plate in

a sea with a breakwater,” in Proceedings of the 8th International Offshore and Polar Engineering, Montréal, Canada
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