
 

 i 

EXPERIMENTAL DETERMINATION OF KINETIC FRACTIONATION OF CARBON  

 

AND OXYGEN ISOTOPES DURING CO2 HYDRATION 

 
 
 
 

 
 
 
 

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF 
HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF 
 

 
 
 

MASTER OF SCIENCE  

 
IN 

 
OCEANOGRAPHY  

 

AUGUST 2019  

 
 

 
By  

 
Lauren Michele Yumol  

 
 
 
 

 
 
 
 

Thesis Committee:  
 

Richard Zeebe, Chairperson 
Michael Guidry 

Brian Popp 

 

 



 

 ii 

ACKNOWLEDGEMENT 

 

I would like to give my utmost thanks to my thesis advisor Richard Zeebe and my co-advisor 

Joji Uchikawa for not only providing me with the opportunity to work on this project, but also 

for their encouragement, patience, and knowledge over the last few years which has helped shape 

my scientific experience. I also appreciate the thoughtful advice both Richard and Joji provided 

me which gave me the motivation needed to persevere through any difficulties I encountered. I 

would like to thank my committee members, Michael Guidry and Brian Popp, for their insight 

and wisdom. Thank you to Dustin Harper and Colin Carney at the Stable Isotope Lab at UCSC 

for analyzing my carbonate samples and for always providing a fast turnaround on results.  

A special thanks to the Marine Geology and Geochemistry Division faculty for all of the 

help provided both in the lab and in the classroom. I would like to thank Van Tran for her hard 

work and dedication to her job, which aided my success as a graduate student. Thank you to the 

entire oceanography faculty and staff for providing a supportive work environment. I am grateful 

that Richard Zeebe and Joji Uchikawa were awarded the funding for this project by NSF and 

thankful that NSF approved their proposal, I would not be here if it weren’t for my advisor and 

co-advisor who work hard to secure the funding for this project. 

Finally, I would like to thank Jasper, my mom, dad, brother and my family and friends, 

who supported me throughout my entire college education and especially supportive during my 

graduate school career. I am so lucky to have had support I received from these special people 

over the years.  

 

 

 

 

 

 



 

 iii 

ABSTRACT 

 
The CO2 hydration reaction is a fundamental chemical transformation involved in various 

physicochemical, geochemical, and biological processes, and essential in aqueous solutions that 

contain dissolved inorganic carbon (DIC). In marine environments, the CO2 hydration reaction 

and its affiliated products (i.e. H2CO3, HCO3
-
, CO3

2- , and H+) play a critical role in regulating 

ocean pH, biogenic and inorganic mineral precipitation, biological carbon fixation, carbon 

sequestration, and more. There is a characteristic kinetic isotope effect (KIE) that is associated 

with the CO2 hydration reaction, which causes the reaction product to be depleted in the heavy 

isotopes of carbon and oxygen. It is important to understand how KIEs influence carbon and 

oxygen isotope compositions because the isotopic compositions of substances or compounds that 

form from HCO3
-
 (i.e. the product of CO2 hydration (CO2 + H2O)), for example carbonate minerals  

used as indicators of past environments, will also be affected. Despite evidence of KIEs occurring 

in the environment, there are only a few experimental studies that have attempted to characterize 

kinetic isotope fractionation (KIF) during the hydration of CO2, but the KIFs reported in those 

studies suggest more experimental work is needed to better define KIEs during CO2 hydration. In 

Chapter 1, we define important terminology that will be used throughout this thesis, describe the 

KIEs that are associated with the CO2 hydration reaction, and explain how KIF is related to 

equilibrium isotope fractionation. We will also discuss the previous experimental and theoretical 

studies and the KIFs reported in those studies. The overall purpose and main objective of this study 

is to produce the most reliable experimental data available today by experimentally determining 

KIEs during CO2 hydration in carbon and oxygen isotopes.   
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CHAPTER 1. INTRODUCTION 

 

1.1 The CO2 Hydration Reaction 

  
The hydration of carbon dioxide (CO2) in marine and aqueous environments is a key 

reaction involved in several physicochemical, geochemical, and biochemical systems. 

Specifically, the CO2 hydration reaction is known for the essential role it plays in major oceanic 

processes such as ocean acidification, biological and inorganic mineral precipitation, carbon 

fixation, CO2 sequestration, etc. (Caldeira and Wickett, 2003; Dunsmore, 1992; Brown et al., 

2009; Hopkinson et al., 2011; Stirling, 2011; Tresguerres and Hamilton, 2017). A kinetic isotope 

effect (KIE) is associated with this reaction, where the reaction product is typically depleted in 

the heavy isotopes of carbon ( C 
13

) and oxygen ( O 
18

) relative to the reactant (Bigeleisen and 

Wolfsberg, 1958; Zeebe & Wolf-Gladrow, 2001). These KIEs are expressed in chemical 

reactions when reaction rates (k) of a compound containing the heavy and light isotope differ 

(Hayes, 2001). For example, the reaction for the CO2 hydration can be independently written in 

two forms for C 
12

 and C 
13

 isotopes: 

C 
12

O2+H2O 

 

k 
12

+

⇌

k 
12

-

H C 
12

O3
-
+ H+

                (1.1a) 

C 
13

O2+H2O  

 
𝑘 

13
+

⇌
𝑘 

13
−

   H C 
13

O3
- + H+

               (1.1b) 

Because the reaction rate constant for CO2 hydration involving C 
12

O2 ( 𝑘+ 
12 ) is greater than the 

other counterpart for C 
13 O2 ( 𝑘+ 

13 ), the reaction product HCO3
-
 will be depleted in C 

13
 with 

respect to the CO2(aq) as a result of KIE for the CO2 hydration reaction, which is given by 

𝑘+ 
12 / 𝑘+ 

13  (also note that KIE for the reverse reaction, or HCO3
-
 dehydration is given by 
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𝑘− 
12 / 𝑘− 

13 ). Furthermore, KIE and the equilibrium fractionation (α) for the same chemical 

reaction is related by: 

 

𝐾 
13 ′

𝐾 12
= 𝛼  = (

𝑘 
13 ′

+

𝑘 13 ′
−

) (
𝑘 

12
− 

 

𝑘 12
+ 

 )                 (1.2) 

 

where 𝐾 and 𝐾′ are equilibrium constants for the reactions of C 
12

 and C 
13

, respectively (Eq. 

(1.1a) and (1.1b); Zeebe and Wolf-Gladrow, 2001). Also note that the reactions (Eq. (1.1a) and 

(1.1b)) as well as the definition of KIE illustrated above can be analogously written for oxygen 

isotopes O 
16

 and O 
18

, where KIE for CO2 hydration is given by 𝑘+ 
16 / 𝑘+ 

18 . From this point 

forward, KIE in terms of carbon and oxygen isotopes is denoted as 13KIE and 18KIE, 

respectively. 

Apparent C 
13

 and O 
18

 depletions relative to the expected thermodynamic equilibrium 

have been observed for both natural and laboratory grown carbonate minerals (e.g. Coplen et al., 

(1994), Daëron et al. (2019), Kim and O’Neil (2007), and Watkins et al., (2013)), which are to 

some extent attributed to KIEs associated with CO2 hydration. Yet, to date, KIEs for 

CO2  hydration are not well constrained in terms of both carbon and oxygen isotopes, which is 

exemplified by the inconsistencies in the proposed magnitude of KIEs in previous experimental 

and theoretical studies (Marlier and O’Leary, 1984; Clark and Lauriol, 1992; Guo, 2008; Zeebe, 

2014; Sade and Halevy, 2017). 

This study aims to experimentally constrain kinetic isotope fractionation factors (KIF; i.e. 

13KIF and 18KIF for carbon and oxygen, respectively) during CO2 hydration. The experimental 

setup used in this study was adapted from McConnaughey (1989) but with important 

modifications, which will be discussed in more details in Chapter 2. The results from our 
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precipitation experiments will help define the magnitude of KIFs during CO2 hydration and 

provide the experimental data necessary to evaluate the accuracy of theoretical calculations. 

 

1.2 Previous Studies 

There are only a few studies that attempted to determine KIEs during CO2 

hydration/ HCO3
-  dehydration. Clark and Lauriol (1992) experimentally grew cryogenic calcite 

and determined 13KIF and 18KIF associated with HCO3
-  dehydration to be ~ 32.0‰ and ~ 6‰, 

respectively, at 0°C. Provided with the carbon and oxygen α  (Zhang et al., 1995 and Beck et al., 

2005) and the KIEs for HCO3
-
 dehydration determined by Clark and Lauriol, 13KIE and 18KIE 

during CO2 hydration can be calculated as 19.7‰ and 3.7‰, respectively, based on the 

relationship given by Eq. (1.2) (Zeebe, 2014; Sade and Halevy, 2017). However, the 

mineralogical formation of cryogenic calcite is uncertain, so the KIEs Clark and Lauriol 

originally calculated may not be characteristic of calcite but rather another type of polymorph 

such as vaterite or ikaite (Lacella et al., 2009; Sade and Halevy, 2017). In another experimental 

study, Marlier and O’Leary (1984) developed methods to determine 13KIEs during CO2 

hydration and HCO3
-
 dehydration. For CO2 hydration, phosphoenolpyruvate (PEP) carboxylase 

was used to catalyze rapid precipitation of HCO3
-
 to form malate. For HCO3

-
 dehydration, CO2 

degassed from buffered NaHCO3 solution by helium sweeping was trapped using liquid 

nitrogen. Based on subsequent isotope analyses on the resultant malate and CO2 gas, they 

reported a 13KIF during CO2 hydration of ~6.9‰ at 24°C. However, in a subsequent study 

performed by the same group (O’Leary et al., 1992), the 13KIF is oddly reported as 13‰, not 

6.9‰ with no further explanation. 
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  Theoretical calculations have also been employed to quantify KIEs associated with CO2 

hydration. Guo (2008) theoretically calculated the 18KIF during HCO3
-
 dehydration and reported 

an O 
18

 depletion in CO2 relative to HCO3
-
 of ~7‰ at 25°C. Sade and Halevy (2017;2018) 

reported a 18KIF during CO2 hydration of ~16.4‰ using the relationship between 18KIF for 

HCO3
-
 dehydration reported by Guo (2008) and 𝛼 

18   from Beck et al. (2005). However, a more 

recent theoretical study by Guo and Zhou (2019) reported an estimated 18KIF for the hydration of 

CO2 of 4.3‰ at 25°C. Zeebe (2014) reported 13KIF and 18KIF at 25°C to be between ~ 23 and 

33‰ and ~13 and 15‰, respectively. These values were based on theoretical calculations where 

it was assumed that the hydration of CO2 proceeds in a stepwise fashion through a HCO3
- −

H3O
+
 intermediate state rather than directly to the product (H2CO3), with each pathway leading 

to different KIFs (for review, see Section 2 in Chapter 2 or Zeebe, 2014). However, whether or 

not the CO2 hydration reaction follows a direct or stepwise pathway is still uncertain. The 18KIFs 

by Zeebe (2014) reported were calculated using H2CO3 as the product of CO2 hydration and 

compared the isotopic rate constants for CO2 hydration to the fractionation between 

instantaneously produced H2CO3 and CO2 in isotopic equilibrium with H2O. However, Sade and 

Halevy (2017; 2018) separated the individual components of the equilibrium fractionation factor 

(i.e. CO2 and H2O) to calculate the 18KIF between HCO3
-
 relative to CO2 and H2O as two 

separate 18KIFs. The revised 18KIFs reported by Sade and Halevy for HCO3
-
 relative to CO2 and 

HCO3
-
 relative to H2O is between 4.3 and 6.2‰ and 0 to 9.6‰, respectively. McConnaughey 

(1989) conducted calcite precipitation experiments in an attempt to replicate kinetic isotope 

disequilibrium observed in biogenic carbonates. Although his experimental data at 21°C 

show O 
18

 and C 
13

 depletions of ~5‰ and ~8.3‰, respectively, relative to δ
13

C and  
18

O values 

estimated for CO2 in isotopic equilibrium with Galapagos seawater, we have concerns for the 
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values derived from McConnaughey’s precipitation experiments. First, there was no control on 

solution pH, such that it varied between pH 7.4 and 8.5 during CaCO3 precipitation. Controlling 

the solution pH is critical because it dictates whether CO2 hydration (predominant at low pH) or 

CO2 hydroxylation (predominant at high pH) is the primary reaction during precipitation (see 

Section 2 in Chapter 2 for details). Thus, there is a chance that McConnaughey’s (1989) 

experimental carbonates do not fully record the KIE associated with CO2 hydration. Second, the 

13C and 18O depletions of McConnaughey’s experimental CaCO3 were scaled relative to the δ
13

C 

and  
18

O value of the CO2 source gas. However, the actual δ
13

C and  
18

O values of the CO2 

source gas were never provided, which makes it difficult to determine the C 
13

 and O 
18

 

partitioning specific to the CO2(g)-DIC- H2O system in his study. More details about 

McConnaughey (1989) will be discussed further in a later section.  

In summary, the currently available experimental data is limited to a few studies and 

carbon and oxygen KIFs reported in the current literature are inconsistent between experimental 

and theoretical studies (Table 1.1). The scarcity of available data and notably large inconsistency 

therein (e.g. by a factor of ~5; see Table 1.1) suggest more experimental work is required in 

order to determine the KIE and fully understand the CO2 hydration/dehydration mechanism.  
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Table 1.1. The average 13KIFs and 18KIFs of CO2 hydration reported from previous experimental and theoretical 

studies.  

 

 

  

 

 

1.3 Delta Notation & Isotope Fractionation Factors 
 

In stable isotope geochemistry, isotopic abundances are measured in a material or sample 

and can be used as a tool to reveal underlying mechanisms involved in the formation of the 

material. Isotopic abundances are reported as the relative difference between the isotope ratio of 

a sample (𝑅𝑠) and an isotopically known reference standard (𝑅𝑠𝑡𝑑) (Urey, 1948; McKinney et al., 

1950; Hayes, 2002). The isotope ratios of carbon ( 𝑅  
13 ) and oxygen ( 𝑅  

18 ) are defined as the ratio 

of the less abundant isotope (i.e. the isotopically heavier isotope for carbon ( C 
13

) and oxygen 

( O 
18

)), to the more abundant isotope, C 
12

 and O 
16

:  

𝑅 
13 =

C 
13

C 
12⁄   

and 

𝑅 
18 =

O 
18

O 
16⁄  

Isotopic abundances yield isotopic compositions of a sample(s) and are reported using the 𝛿 

notation. In terms of the isotopic composition of carbon in a sample, the notation is as follows: 

Reference T 

(°C) 

(E)xperimental/(T)heoretical KIFCO2−HCO3
− 

13  

(‰) 

KIFCO2−HCO3
− 

18  

(‰) 

Clark & Lauriol (1992) 0 E 19.7 3.7* 

Marlier & O’Leary 

(1984) 

24 E 6.9 -- 

O’Leary et al. (1992) 24 E 13 -- 

McConnaughey (1989) 21 E 8.3 5 

Zeebe (2014) 25 T 23-33 (n ≥ 4) 13-15 (n ≥ 4)a 

Zeebe (2014)   10-14(n ≤ 3) 10.5-15 (n ≤3 ) 
 25 T -- 5.2* 

Guo (2008) 0 T -- 16.4 

Guo & Zhou (2019) 25 T  4.3 

*The values reevaluated by Sade and Halevy (2017 and 2018). 
aKIF between CO2(g) and H2CO3 
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δ 
13

Cs=(
Rs- 

13 Rstd 
13

Rstd 
13 ) × 1000                 (1.3) 

 

where δ 
13

Cs is the carbon isotope composition expressed in parts per thousand (‰) of a sample 

relative to the same element in a reference standard (Hayes, 2001). Carbon and oxygen isotope 

ratios in carbonate minerals are reported relative to the reference standard ‘Vienna Pee Dee 

Belemnite’ (VPDB). Oxygen stable isotopes measured in carbonate minerals relative to the 

VPDB scale can be converted to a δ-value on the ‘Vienna Standard Mean Ocean Water’ 

(VSMOW) scale when necessary for calculating oxygen isotope fractionation.  

Offsets or variations in isotopic compositions between compounds in the same reaction 

sequence can arise through physical, chemical, or biological processes, resulting in isotopic 

fractionation. Isotope fractionation can be quantified by the equation used calculate an isotopic 

fractionation factor: 

 

αa-b 
A =

𝑅𝑎 
𝐴

𝑅𝑏 
𝐴

=
1000+𝛿𝐴Xa

1000+𝛿𝐴Xb
                   (1.4) 

 

where A is the mass number of element X, and a and b are the two different phases of the 

reaction. An isotope fractionation factor can also be expressed in ‰: 

 

𝜀a-b = 
𝐴 ( αa-b − 1) × 103

 
A  ≈  103 × ln( αa-b 

A )             (1.5) 

 

Isotopic fractionation is observed when a chemical phase preferentially incorporates the 

heavy or light isotope relative to another phase in the same reaction (Hayes, 2002; Sharp, 2007). 

An isotope effect refers to the physical phenomenon that occurs in certain chemical reactions and 
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is observed as an isotope fractionation (Zeebe and Wolf-Gladrow, 2001; Hayes, 2002). These 

isotope effects can occur in chemical reactions that are in thermodynamic equilibrium or in 

kinetically driven unidirectional reactions, the difference between the two are further discussed 

below.  

Equilibrium isotope effects are associated with chemical reactions that are in 

thermodynamic equilibrium. Isotope fractionation that occurs in equilibrium reactions is caused 

by differences in the vibrational frequencies of different compounds containing a common 

element. The compound containing the heavier isotope (and thus a higher mass) will have a 

lower vibrational frequency and a lower zero-point energy, than the same compound containing 

the lighter isotope. The difference in zero-point energies with compounds containing either a 

heavy or light isotope is what leads to isotope fractionation. Thus, different compounds in a 

chemical reaction containing a common element may have different isotope ratios specific to the 

compound (Zeebe and Wolf-Gladrow, 2001). As a rule of thumb for equilibrium isotope effects, 

Bigeleisen (1965) stated “the heavy isotope goes preferentially to the chemical compound in 

which the element is bound most strongly”. For example, the exchange of C 
12

 and C 
13

 in the 

equilibrium reaction between CO2 and HCO3
-
: 

C 
12

O2 + H C 
13

O3
-
 ⇌ C 

13
O2 + H C 

12
O3

-
              (1.6) 

In this reaction, C 
13

 is bound more strongly to HCO3
-
 and thus, will have a δ

13
C value that is 

enriched in C 
13

 relative to CO2. Furthermore, the preferential partitioning of C 
13

 in HCO3
-
 

suggests that the difference in zero-point energies between H C 
12

O3
-
 and H C 

13
O3

-
 is greater than 

the difference between C 
12

O2 and C 
13

O2.  
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In contrast to equilibrium isotope effects, a kinetic isotope effect is associated with 

reactions that are incomplete and unidirectional. As described in Section 1.1, KIEs occur when 

reaction rates of a reaction involving the heavy or light isotope differ. The KIE associated with 

the hydration of CO2 is an example of a normal KIE which occurs when the molecular 

compound containing the lighter isotope reacts more rapidly than the heavier isotope resulting in 

an accumulation of the light isotope in the product (Zeebe and Wolf-Gladrow, 2001). Because 

the reaction rate of the isotope with the smaller mass is faster than that of the isotope with the 

larger mass, the isotope ratio of the product will be depleted in the heavy isotope relative to the 

isotope ratio of the reactant.  

In summary, equilibrium isotope effects lead to an observable fractionation between 

different chemical phases that are in thermodynamic equilibrium. Most equilibrium isotope 

fractionation factors (denoted here as either α or ε) involving the CO2 hydration reaction are well 

constrained for carbon and oxygen from earlier theoretical and experimental studies (Vogel et 

al., 1970; Mook et al., 1986; Zhang et al., 1995; Brenninkmeijer et al., 1983; Beck et al., 2005). 

Calculating the values for ε between different phases of the CO2 hydration reaction will play a 

critical role in this study when calculating final KIFs and will be described with more detail in a 

later section. Although KIF is important as well, there is a large gap between α and KIF because 

only a few studies have determined KIEs during CO2 hydration, as described in Section 1.1.  

In this study, we conducted laboratory experiments to constrain kinetic isotope 

fractionation factors (KIF; i.e. 13KIF and 18KIF for carbon and oxygen, respectively) during 

CO2  hydration. The experimental setup used in this study was adapted from McConnaughey 

(1989) but with important modifications that will be discussed in detail in Chapter 2, Section 5. 

The results from our precipitation experiments will help define the magnitude of KIFs during 
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CO2 hydration and provide the experimental data necessary to evaluate the accuracy of 

theoretical calculations. Final conclusions of the results of this study and future outlook is 

described in Chapter 3. 
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CHAPTER 2. EXPERIMENTAL DETERMINATION OF KINETIC FRACTIONATION 

OF CARBON AND OXYGEN ISOTOPES DURING CO2 HYDRATION 

 

 

ABSTRACT 

 
  Kinetic isotope effects (KIE) during the inorganic hydration of carbon dioxide (CO2) in 

aqueous solution is a topic of growing interest as this phenomenon is key to several important 

physicochemical, geochemical, and biological processes. Despite the growing evidence of KIEs 

occurring in nature (e.g. speleothem calcites, skeletal formation of corals, formation of cryogenic 

carbonates, and more) the currently available experimental data is limited to only a few studies. 

In this study, we conducted laboratory experiments to constrain kinetic isotope fractionation 

factors during the hydration of CO2. The experimental approach was adapted from an earlier 

study but with important modifications to systematically determine the kinetic isotope 

fractionation (KIF) of carbon and oxygen during CO2 hydration. The setup consisted of a 

NaHCO3 stock solution, a reactor chamber where BaCO3 was rapidly precipitated from a 

dissolved barium chloride BaCl2  + buffer solution, and a diaphragm pump to circulate internal 

gas throughout the system. BaCO3 samples were analyzed for carbon and oxygen isotopes by 

isotope ratio mass spectrometer (IRMS). Results of the stable carbon and oxygen isotope 

analyses were separated into four batches, which were organized based on the group of samples 

that were analyzed in the same queue of the IRMS. We discuss possible experimental errors 

among the four batches and determine that our best results are from Batch-4. The average δ
13

C 

and 
18

O values of Batch-4 BaCO3 samples produced at pH 8.0 are -29.7 ± 0.10‰ (vs. VPDB) 

and 18.9 ± 0.20‰ (vs. VSMOW), respectively. Equilibrium δ
13

C and 
18

O values of CO2 (g)  and 

instantaneously formed HCO3
-
 were calculated from known equilibrium isotope fractionation 

factors, and used to calculate the carbon and oxygen KIFs (13KIF and 18KIF, respectively) 
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relative to Batch-4. A 13KIF between CO2 (g) and CO2 (aq) of ~2.0‰ was determined 

experimentally by a previous study and if full KIF between CO2 (g) and CO2 (aq) is assumed then 

the mean Batch-4 13KIF is ~17.6 ± 0.43‰. Our final mean 13KIF and 18KIF are 17.6 ± 0.43‰ 

and 5.3± 0.09‰, respectively. These results are compared with reported KIFs of previous 

experimental studies and are the largest values out of all but one study, which may suggest our 

values are closest to full isotope disequilibrium during the hydration of CO2. 
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1. INTRODUCTION 

 
The hydration of carbon dioxide is a fundamental chemical transformation involved in 

several physicochemical, geochemical, and biochemical systems. In marine environments, the 

CO2 hydration reaction and its affiliated ionic compounds (e.g. CO3
2-

, H2CO3, HCO3
-
, H+

) play 

an essential role in major oceanic processes such as, ocean acidification, biological and inorganic 

mineral precipitation, carbon fixation, CO2 sequestration, etc. (Caldeira and Wickett, 2003; 

Dunsmore, 1992; Brown et al., 2009; Hopkinson et al., 2011; Stirling, 2011; Tresguerres and 

Hamilton, 2017). When the CO2 hydration reaction proceeds unidirectionally it is associated 

with a kinetic isotope effect (KIE), where the reaction product is typically depleted in the heavy 

isotopes of carbon ( C 
13

) and oxygen ( O 
18

) relative to the reactant (Eq. (2.1) and (2.2); Bigeleisen 

and Wolfsberg, 1958; Zeebe & Wolf-Gladrow, 2001). For example, the reaction for the CO2 

hydration can be independently written in two forms for C 
12

 and C 
13

 isotopes: 

C 
12

O2+H2O 

 
𝑘 

12
+

⇌
𝑘 

12
−

H C 
12

O3
- + H+

                (2.1) 

C 
13

O2+H2O  

 
𝑘 

13
+

⇌
𝑘 

13
−

   H C 
13

O3
- + H+

               (2.2) 

If the reaction rate constant for CO2 hydration involving C 
12

O2 ( 𝑘+ 
12 ) is greater than the other 

counterpart for C 
13 O2 ( 𝑘+ 

13 ), the reaction product HCO3
-
 will be depleted in C 

13
 with respect to 

the CO2 (aq) as a result of KIEs for the CO2 hydration reaction, which is given by 12k+/13k+ (also 

note the KIE for the reverse reaction, or HCO3
-
 dehydration is given by 12k -/13k -). Furthermore, 

KIE and the equilibrium fractionation (α) for the same chemical reaction is related by: 
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𝐾 
13 ′

𝐾 12
= 𝛼  = (

𝑘 
13 ′

+

𝑘 13 ′
−

) (
𝑘 

12
− 

 

𝑘 12
+ 

 )                 (2.3) 

 

where 𝐾 and 𝐾′ are equilibrium constants for the reactions of C 
12

 and C 
13

, respectively (Eq. (2.1) 

and (2.2); Zeebe and Wolf-Gladrow, 2001). Also note that rate laws (Eq. (2.1) and (2.2)) as well 

as the definition of KIE illustrated above can be analogously written for oxygen isotopes O 
16

 and 

O 
18

, where KIE for CO2 hydration is given by 16k+/18k+. In the remaining text, KIEs in terms of 

carbon and oxygen isotopes is denoted as 13KIE and 18KIE, respectively.  

Evidence of KIEs during the hydration of CO2 have been observed in various marine 

processes such as, in speleothem calcites, during the formation of cryogenic carbonates, skeletal 

formation in corals, and more (Swart, 1983; Adkins et al., 2003; Mickler et al., 2004; Mickler et 

al., 2006; Daëron et al., 2019). Yet, to date, KIEs for CO2 hydration are not well constrained in 

terms of both carbon and oxygen isotopes, which is exemplified by the inconsistencies in the 

proposed magnitude of KIEs reported in previous experimental and theoretical studies (Marlier 

and O’Leary, 1984; Clark and Lauriol, 1992; Guo, 2008; Zeebe, 2014; Sade and Halevy, 2017).   

 One study by Clark and Lauriol (1992) experimentally grew cryogenic calcite and 

determined carbon and oxygen kinetic isotope fractionation (13KIF and 18KIF) associated with 

HCO3
-  dehydration to be ~ 32.0‰ and ~ 6‰, respectively, at 0°C. Provided with the carbon and 

oxygen equilibrium fractionation factors ( 𝛼  
 

13 and 𝛼 
18 ) (Zhang et al., 1995 and Beck et al., 2005) 

and the KIEs for HCO3
-
 dehydration determined by Clark and Lauriol, 13KIE and 18KIE during 

CO2 hydration can be calculated as 19.7‰ and 3.7‰, respectively, based on the relationship 

given by Eq. (2.3) (Zeebe, 2014; Sade and Halevy, 2017). However, the mineralogical formation 

of cryogenic calcite is uncertain, so the KIEs Clark and Lauriol originally calculated may not be 

characteristic of calcite but rather another type of polymorph such as vaterite or ikaite (Lacella et 
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al., 2009; Sade and Halevy, 2017). A second experimental study, Marlier and O’Leary (1984) 

developed methods to determine 13KIEs during CO2 hydration and HCO3
-
 dehydration. For CO2 

hydration, phosphoenolpyruvate (PEP) carboxylase was used to catalyze rapid precipitation of 

HCO3
-
 to form malate. For HCO3

-
 dehydration, CO2 degassed from buffered NaHCO3 solution by 

helium sweeping was trapped using liquid nitrogen. Based on subsequent isotope analyses on the 

resultant malate and CO2 gas, they reported a 13KIF during CO2 hydration of ~6.9‰ at 24°C. 

However, in a subsequent study performed by the same group (O’Leary et al., 1992), the 13KIF is 

oddly reported as 13‰, not 6.9‰ with no further explanation. 

Theoretical calculations have also been employed to quantify KIEs associated with CO2 

hydration. Guo (2008) theoretically calculated the 18KIF during HCO3
-
 dehydration and reported 

an O 
18

 depletion in CO2 relative to HCO3
-
 of ~7‰ at 25°C. Sade and Halevy (2017;2018) 

reported a 18KIF during CO2 hydration of ~16.4‰ using the relationship between 18KIF for 

HCO3
-
 dehydration reported by Guo (2008) and 𝛼 

18   from Beck et al. (2005). However, a more 

recent theoretical study by Guo and Zhou (2019) reported an estimated 18KIF for the hydration of 

CO2 of 4.3‰ at 25°C. Zeebe (2014) reported 13KIF and 18KIF at 25°C to be between ~ 23 and 

33‰ and ~13 and 15‰, respectively. These values were based on theoretical calculations where 

it was assumed that the hydration of CO2 proceeds in a stepwise fashion through a HCO3
-
  – 

H3O
+
 intermediate state rather than directly to the product (H2CO3), with each pathway leading 

to different KIFs (for review, see Section 2.2 or Zeebe, 2014). However, whether or not the CO2 

hydration reaction follows a direct or stepwise pathway is still uncertain. The 18KIFs by Zeebe 

(2014) reported were calculated using H2CO3 as the product of CO2 hydration and compared the 

isotopic rate constants for CO2 hydration to the fractionation between instantaneously produced 

H2CO3 and CO2 in isotopic equilibrium with H2O. However, Sade and Halevy (2017; 2018) 
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separated the individual components of the equilibrium fractionation factor (i.e. CO2 and H2O) 

to calculate the 18KIF between HCO3
-
 relative to CO2 and H2O as two separate 18KIFs. The 

revised 18KIFs reported by Sade and Halevy for HCO3
-
 relative to CO2 and HCO3

-
 relative to H2O 

is between 4.3 and 6.2‰ and 0 to 9.6‰, respectively.  

  McConnaughey (1989) conducted calcite precipitation experiments in an attempt to 

replicate kinetic isotope disequilibrium observed in biogenic carbonates. Although his 

experimental data at 21°C show O 
18

 and C 
13

 depletions of ~5‰ and ~8.3‰ relative to δ
13

C and  


18

O values estimated for CO2 in isotopic equilibrium with Galapagos seawater, we have 

concerns for the values derived from McConnaughey’s precipitation experiments. First, there 

was no control on solution pH, such that it varied between pH 7.4 and 8.5 during CaCO3 

precipitation. Controlling the solution pH is critical because it dictates whether CO2 hydration 

(predominant at low pH) or CO2 hydroxylation (predominant at high pH) is the primary reaction 

during precipitation. Thus, there is a chance that McConnaughey’s (1989) experimental 

carbonates do not fully record the KIE associated with CO2 hydration. Second, the C 
13

 and O 
18

 

depletions of McConnaughey’s experimental CaCO3 were scaled relative to the δ
13

C and  
18

O 

value of the CO2 source gas. However, the actual δ
13

C and  
18

O values of the CO2 source gas 

were never provided, which makes it difficult to determine the C 
13

 and O 
18

 partitioning specific 

to the CO2 (g)-DIC-H2O system in his study. More details about McConnaughey (1989) will be 

discussed further in Section 5.  

In summary, the currently available experimental data is limited to a few studies and 

carbon and oxygen KIFs reported in the current literature are inconsistent between experimental 

and theoretical studies (Table 2.1). The scarcity of available data and notably large inconsistency 
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*The values reevaluated by Sade and Halevy (2017 and 2018). 
aKIF between CO2(g) and H2CO3 

 

Table 2.1. The average 13KIFs and 18KIFs of CO2 hydration reported from previous experimental and theoretical 

studies.  

therein (e.g. by a factor of ~5; see Table 2.1) suggest more experimental work is required in 

order to determine the KIE and fully understand the CO2 hydration/dehydration mechanism.  

In this study, we conducted laboratory experiments to constrain kinetic isotope 

fractionation factors during CO2 hydration. The experimental setup used in this study was 

adapted from McConnaughey (1989) but with important modifications that will be discussed in 

detail in Section 3. We report the results from our carbonate precipitation experiments, which 

will help define the magnitude of KIFs during CO2 hydration. The results reported here will also 

provide the experimental data necessary to evaluate the accuracy of theoretical calculations, 

which have yet to be confirmed by experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference T 
(°C) 

(E)xperimental/(T)heoretical KIFCO2−HCO3
− 

13  

(‰) 

KIFCO2−HCO3
− 

18  

(‰) 

Clark & Lauriol (1992) 0 E 19.7 3.7* 

Marlier & O’Leary 
(1984) 

24 E 6.9 -- 

O’Leary et al. (1992) 24 E 13 -- 
McConnaughey (1989) 21 E 8.3 5 

Zeebe (2014) 25 T 23-33 (n ≥ 4) 13-15 (n ≥ 4)a 

Zeebe (2014)   10-14(n ≤ 3) 10.5-15 (n ≤ 3 ) 
 25 T -- 5.2* 
Guo (2008) 0 T -- 16.4 

Guo & Zhou (2019) 25 T  4.3 
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2. THEORY 

 

The reaction mechanism for the hydration of CO2 and dehydration of HCO3
-
 can be 

written as (Eigen et al., 1961; Zeebe and Wolf-Gladrow, 2001): 

 

 

(2.4) 

 

 

where the 𝑘±’s are the reaction rate constants and the overall rate constant is 𝑘 = 𝑘+1
∗ + 𝑘+2

 .   

It has been demonstrated through quantum chemistry calculations that the two reaction pathways 

(i.e. [(I)→(II)→(III)] and [(I)→(III)]) are likely associated with two different reaction 

mechanisms leading to different KIEs for both carbon and oxygen (Zeebe, 2014). However, there 

is an ongoing debate as to whether HCO3
-
 forms directly following a concerted pathway (I→III) 

or if the reaction proceeds to H2CO3 in a stepwise fashion via HCO3
- − H3O

+
 intermediate state 

(I→II→III) (Nguyen et al., 2008; Stirling and Papai, 2010; B. Wang and Cao, 2013; Zeebe, 

2014). Thus, placing accurate constraints on the KIEs for CO2 hydration could even reconcile the 

reaction pathways and molecular mechanisms of CO2 hydration. For this study we define the 

CO2 hydration/dehydration reaction as: 

 

CO2+H2O⇌HCO3
-
+H

+
                 (2.5) 
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Eq. (2.5) is the predominant reaction that occurs at pH ≤ 8.5 (McConnaughey, 1989; Johnson, 

1982), while at pH ≤ 8.5 the concentration of hydroxyl ions (OH-) increases and favors the 

hydroxylation/dehydroxylation reaction: 

 

CO2+OH
-⇌HCO3

-
                   (2.6) 

 

The hydration and hydroxylation reaction (Eq. (2.5) and (2.6), respectively) are associated with 

different KIEs, so controlling the pH is critical to successfully determine KIF during CO2 

hydration (Johnson, 1982; McConnaughey, 1989; Guo, 2008; Sade and Halevy, 2017).  

KIEs of carbon and oxygen during CO2 hydration can be determined by comparing δ 
13

C and 

δ 
18

O values of experimental HCO3
-
 (via quantitative transformation into BaCO3) to the δ 

13C and 

δ 
18

O values of CO2 (g) and instantaneously formed HCO3
-
, in which the latter δ 

13
C and 

δ 
18

O values are constrained from equilibrium 13C and 18O partitioning in the CO2 (g) – DIC –  

H2O system calculated from well-known ε (Brenninkmeijer et al., 1983; Zhang et al., 1995). If 

KIEs exist, the δ 
13

C and δ 
18

O values of BaCO3 will be different from those of equilibrium of 

CO2 and instantaneously formed HCO3
-
. The lower δ 

13
C and δ 

18
O  values of the product (i.e. 

experimental BaCO3) than that of equilibrium CO2 (g) and instantaneously formed HCO3
-
, 

suggests the reaction rate of the lighter C 
12

 and O 
16

 isotopes is greater than the reaction rate of 

the heavier C 
13

 and O 
18

 isotopes. As a result of the lighter isotopes having a greater reaction rate, 

C 
12

 and O 
16

 will be preferentially incorporated in the product (HCO3
-
 and hence, BaCO3), while 

C 
13

 and O 
18

 will be enriched in the unreacted reactant (CO2). We define KIFs here by the 13C 

and 18O depletions observed in BaCO3 relative to equilibrium CO2 (g) and instantaneously 
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formed HCO3
-
. Sections 2.1 and 2.2 will discuss the relevant equilibrium reaction sequences for 

both carbon and oxygen, the theoretical calculations used to determine the stable isotope values 

of equilibrium DIC components, and the equations used to calculate 13KIF and 18KIF. 

 

 

2.1 Carbon Isotope Fractionation 

In our experimental setup, CO2 (g) is liberated from a NaHCO3 stock solution and 

circulated throughout the system until it is isotopically equilibrated with the NaHCO3 stock 

solution reservoir (further described in Section 3). The 13𝜀 between CO2 (g) and HCO3
-
 (Eq. (2.5)) 

is known and can be used in combination with the measured δ 
13

C value of NaHCO3 

(δ 
13

CNaHCO3 (VPDB) = −2.8 ± 0.16‰) to calculate the δ 
13

C  value of CO2 (g). The 13𝜀 between 

CO2 (g) and HCO3
-
 was reported as a function of temperature by Zhang et al. (1995) as: 

 

𝜀(𝐻𝐶𝑂3
−

 
−𝐶𝑂2 (𝑔))

 
 

13 = (−0.1141 ± 0.0028)(T°C) + (10.78 ± 0.04‰)      (2.7) 

 

where Tc is the temperature in °C at which the reaction occurs ( 𝜀(𝐻𝐶𝑂3
−

 
−𝐶𝑂2 (𝑔))

 
 

13 = 7.9 ±

0.04‰ (VPDB) at T=25°C). By substituting 𝜀(𝐻𝐶𝑂3
−

 
−𝐶𝑂2 (𝑔))

 
 

13  and the measured δ 
13C of 

NaHCO3, the δ 
13

C  value of CO2 (g) in equilibrium with HCO3
-
 can be determined. Changes in 

temperature affect the magnitude of 𝜀(𝐻𝐶𝑂3
−

 
−𝐶𝑂2 (𝑔))

 
 

13  in an anticorrelated fashion such that, 

fractionation increases with decreasing temperatures and decreases as temperatures increase 

( 𝜀(𝐻𝐶𝑂3
−

 
−𝐶𝑂2 (𝑔))

 
 

13   10.8 and 6.8‰ at T=0° and 35°C, respectively; Zhang et al., 1995; Zeebe 

and Wolf-Gladrow, 2001). 
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  We define our experimental 13KIF for the remainder of this study to be between 

equilibrium CO2 (g) and experimental BaCO3 which can be calculated from the equation: 

 

KIF=
δ CCO2 (g)

+1000 
13

δ CBaCO3
+1000 

13 
13                    (2.8) 

 

where 13KIF reports the magnitude of the observed isotope fractionation between equilibrium 

CO2 (g)  and experimental BaCO3, which will be reported in per mil (‰; i.e. (13KIF-1)*1000). 

 

2.2 Oxygen Isotope Fractionation 

  Constraining the equilibrium oxygen isotope partitioning in the CO2 − H2O system is 

slightly more complex than that of carbon. The relevant equilibrium reactions associated with 

oxygen isotope equilibration include Eq. (2.5) and (2.6), and the equilibrium reaction between 

gaseous CO2 and H2O: 

 

CO2 (g)⇌ H2O                     (2.9) 

 

Although, the oxygen isotope composition of CO2 (g) (δ OCO2 (g) (vs. VSMOW)
 

18
) was not directly 

measured in this study, but can be determined from the equation provided by Brenninkmeijer et 

al. (1983) for 𝛼 
18   of CO2 (g) relative to H2O: 

 

𝛼(CO2(g)-H2O(l))
 

 
18

 
=

17.604

T
+0.98211 ( ± 0.00005)           (2.10) 
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where T is the temperature in Kelvin ( 𝛼(CO2(g)-H2O(l))
 

 
18  = 1.04115  or 𝜀(CO2(g)-H2O(l))

 
 

18  = 41.2‰  

at T=25°C). The unknown value of δ OCO2 (g) (vs. VSMOW)
 

18
 can be derived by the relationship 

between 𝛼(CO2(g)-H2O(l))
 

 
18  and the measured δ OH2O (vs. VSMOW) 

18
 (δ OH2O (vs. VSMOW) 

18 =  −3.1 ±

0.04‰). Reactant ratios (i.e. 18𝑅𝐶𝑂2(𝑔)
 and 18𝑅𝐻2𝑂) can be used to determine the isotope ratio of 

HCO3
-
 ( 18𝑅𝐻𝐶𝑂3

−) instantaneously produced from the reaction between CO2 (g) and H2O 

(McConnaughey, 1989; McConnaughey, 2003; Zeebe, 2014):  

 

 18RHCO3
- = 

2

3

 

R 
18

CO2(g)
+

1

3
 18RH2O               (2.11) 

 

where  18𝑅𝐻𝐶𝑂3
− is the isotope ratio of HCO3

-
 instantaneously produced from CO2 + H2O without 

fractionation. 

  We define our experimental 18KIF for the remainder of this study to be between 

instantaneously formed HCO3
-
 (Eq. (2.11)) and experimental BaCO3 calculated by the equation: 

 

KIF=
δ Oinstant HCO3

- +1000 
18

δ OBaCO3
+1000 

18 
18                   (2.12) 

 

where 18KIF represents the magnitude of the observed fractionation between instantaneously 

formed HCO3
-  and experimental BaCO3 given in per mil (‰; i.e. (18KIF-1)*1000). 
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3. METHODS 

3.1 Overview of the Experimental Approach 

 

We used an experimental approach similar to the methods described by McConnaughey 

(1989), but with important modifications (Fig. 2.1a). To test for KIEs, we first established full 

isotopic equilibrium between CO2 (g) and the NaHCO3 stock solution (see Section 3.3). Once 

isotopic equilibrium was established, the CO2 (g) bubbled through a buffered BaCl2  solution (i.e. 

the reactor solution). The thin liquid film surrounding the bubbles allowed CO2 (g) to diffuse 

across the gas-liquid interface (Fig. 2.1b). Upon the hydration of CO2 (aq), all of the HCO3
-
 

formed in solution was quantitatively removed from solution by immediately reacting with Ba
2+

 

to form solid BaCO3 precipitates. Use of a buffer in the reactor solution minimized pH change 

upon  

a
. 

b. 

Fig. 2.1. a) Schematic view of the experimental setup used in this study. The setup allows continuous transfer of 
internal gas through the stock solution vessel and reactor chamber in a closed circuit by a diaphragm pump. All 

components are connected by flexible and gas -impermeable tubes. b) A cross-section across the gas-solution 

interface during the precipitation of BaCO3, where the thin film of the bubbles produced in the reactor chamber 
above the frit is shown in blue. Labels (1), (2), and (3), indicate the steps that can cause isotope fractionation. (1) 

CO2 (g) diffuses across the thin film, (2) the hydration/hydroxylation of CO2 (aq), where an additional oxygen (shown 

in red) is derived from either H2 O or OH
-
, and (3) BaCO3 precipitation. Step (2) is the isotope fractionation during 

CO2 hydration/hydroxylation that we aim to capture with this experimental system. 
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BaCO3 precipitation, an important modification from McConnaughey (1989), as pH dictates 

hydration/hydroxylation. 

Equilibrium partitioning of carbon and oxygen isotopes between CO2 (g) and NaHCO3 

was constrained from measured δ
13

C and 
18

O values of NaHCO3 and H2O as well as the 

relevant equilibrium fractionation factors discussed in Section 2. Thus, the δ
13

C values of 

bubbling CO2 (g) and 
18

O values of instantaneously-formed HCO3
-
 (from Eq. (2.10)) was 

precisely known, which represents another improvement compared to the methods used by 

McConnaughey (1989). With this information, we can quantify KIFs for CO2 hydration as the 

offsets between δ
13

CBaCO3
 and δ

13
CCO2 (g)

, and δ
18

OBaCO3
 and δ

18
OHCO3

-.  

 

3.2 Experimental Setup 

The setup consisted of two separate containers, a stock solution vessel and a reaction 

chamber, which are connected with gas-impermeable C-Flex tubing and a fully sealed diaphragm 

pump (Single-head Air Cadet; Fig. 2.1b.). To control the temperature of the experiment, the 

stock solution vessel was placed inside of a temperature-controlled water bath throughout the 

duration of the experiment. A thermometer was placed inside of the reactor chamber and a 

temperature controlled wrap was placed around the reactor until the desired temperature was 

reached. The reactor chamber was equipped with a pair of air ports located on the top and bottom 

of the 1L vessel. Placed on the bottom of the reactor chamber was a fritted disk with 25-50m 

porosity (designation C) that allowed internal gas to pass through. The reactor chamber was 

initially free of any solution during the gas equilibration period. The top of the stock solution 

vessel was sealed with a rubber stopper to which two air tight tube connections were attached. 

The bottom port of the reactor chamber was connected to one of the tubes atop the stock solution 
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vessel through which internal gas from the headspace of the stock solution vessel flowed to the 

bottom port of the reactor. The second tube on the stock solution vessel was connected to the 

pressure port of the diaphragm pump. The tube connected to the pump extended into the stock 

solution vessel through which internal air continuously bubbled the stock solution (the CO2 

source). The pump vacuum port (in flow) was connected to the leak proof rubber stopper on top 

of the reactor chamber, which pulled the internal gas into the pump and allowed the gas to 

continuously circulate throughout the entire system until complete C and O isotope equilibrium 

in the CO2 (g)-DIC-H2O system was established. 

 

3.3 Experimental Procedures 

The NaHCO3 stock solution was prepared to a concentration of 1M (pH 7.9) by 

dissolving isotopically homogenous NaHCO3 powder (13CVPDB = -2.8  0.08‰, 18OVSMOW = 

14.5  0.09‰, 1 S.D., pH 7.9, n=8; Certified A.C.S. grade: Fisher Lot#177037) into Milli-Q 

ultra-pure deionized water of known isotopic composition (D.I. H2O; δ
18

OVSMOW = -3.1  

0.04‰, 1 S.D., n=5). It is important to note that the δ
18

OVSMOW of the D.I. H2O was constant 

throughout the study period and the same D.I. H2O source was used for all aspects of the 

experiments. 

The reactor solution was prepared by dissolving barium chloride dihydrate 

(BaCl2•2H2O) crystals (Reagent A.C.S. grade: J.T. Baker #H10587) into 20mL of 0.4 M TRIS 

(NH2C(CH2OH)
3
) buffer solution. Prior to making the reactor solution, the Tris buffer was 

adjusted to the desired pH values by titration with 1N HCl, during which pH was monitored by a 

benchtop pH meter (Thermo Scientific Orion 3-Star model) equipped with an AccuTupH 

electrode (Cole Parmer #55501-02). The pH electrode was calibrated before every use using 
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Orion pH buffers (pH 4.01, 7.00, 10.01) that are traceable to NIST standard reference material. 

Note that the prepared Tris buffer was maintained at experimental temperatures by storing it in 

the same water bath where the stock solution vessel was placed. Finally, ~488.52 mg of 

BaCl2•2H2O crystals were dissolved into 20 mL of the Tris buffer to yield a 0.1M concentration 

immediately before injection into the reactor chamber to ensure no precipitants formed prior to 

entering the system. To ensure precipitation of BaCO3 was indeed quantitative and prevent re-

equilibration between HCO3
-
 and dissolved CO2 (aq), we compared the initial moles of barium 

(Ba) in the reactor solution to the moles of Ba precipitated out of solution as BaCO3. If the initial 

moles of Ba is greater than the moles of Ba in the precipitated BaCO3, then it can be said that 

precipitation of BaCO3 was quantitative.  

Prior to introducing the Tris+BaCl2  reactor solution for BaCO3 precipitation, the internal  

CO2 gas was circulated throughout the system for a minimum of 16 hours, which is theoretically 

sufficient to establish full carbon and oxygen isotope equilibrium in the CO2 (g)-DIC-H2O system 

at our experimental conditions (see Eq. (A1-a) and Eq. (A1-b) in Appendix; Zeebe and Wolf-

Gladrow, 2001; Usdowski et al., 1991).  Once the equilibration time elapsed, the reactor solution 

was dispensed into the reactor chamber through an injection port located on top of the chamber 

using a syringe. The reactor solution sat above the fritted disk inside the reactor chamber where 

it bubbled for two minutes. Fig. 2.1b illustrates the cross section of the thin gas-liquid interface 

produced from the bubbles and the steps at which isotope fractionation can occur during the 

transformation from CO2 (g) to solid BaCO3. The isotope fractionation during CO2 

hydration/hydroxylation (Step (2) from Fig. 2.1b) is the fractionation we aim to capture by 

immediately precipitating HCO3
-
 as solid carbonate (i.e. BaCO3). 
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Table 2.2. Parameter descriptions of the 4 batches of experiments, including the total number of experiments per 

batch and the time frame at which each batch was ran. The pH was measured in the tris buffer/reactor solution. 

The BaCO3 precipitates formed during the two minutes of bubbling were quickly 

removed from the reactor and filtered onto a 0.45 m cellulose ester membrane filter, followed 

by a rigorous D.I. H2O rinse. After filtration, the BaCO3 collected onto the filter was oven-dried 

at approximately 65°C overnight. Once precipitates were completely dried, the samples were 

homogenized and stored in glass vials until stable isotope analyses. Each precipitation 

experiment was performed in duplicate to account for reproducibility. Experiments were 

separated into 4 batches with slightly different conditions described in Table 2.2. For a full 

description of all of the different parameter runs refer to Table A1 in the Appendix. 

 

 

 

 

3.4 Stable Isotope Analyses 

Stable isotopes are measured and reported on the conventional delta notation. Barium 

carbonate samples were sent to the University of California, Santa Cruz Stable Isotope 

Laboratory to be analyzed for stable carbon and oxygen isotopes. Approximately 60g aliquots 

of homogenized samples were analyzed by conventional acid digestion using 

Batch # Date of Experiments Total T (°C) pH 
[BaCl2] 

(mol L-1) 

1 
August 2017 – October 

2017 
15 21 

8.2 (n=13) 

10.3 (n=2) 

0.1 (n=11) 
0.2 (n=2) 

0.3 (n=2) 

2 
December 2017 – 

February 2018 
8 21 

8.0 (n=6) 

9.0 (n=2) 
0.1 

3 April 2018 – July 2018 22 
25 (n=19), 30 

(n=3) 

7.5 (n=5) 
8.5 (n=10) 
9.0 (n=2) 

9.2 (n=2) 
9.5 (n=2) 

0.1 (n=20) 
0.2 (n=2) 

4 
July 2018 – November 

2018 
12 

18 (n=2), 25 

(n=10) 
8.0 0.1 
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ThermoScientificKiel IV carbonate device coupled to a ThermoScientific MAT-253 dual-inlet 

isotope ratio mass spectrometer (IRMS). During the analysis, samples are reacted with H3PO4 

orthophosphoric acid (specific gravity = 1.92g/cm3) at 75°C to produce CO2 from BaCO3. The 

H2O produced is then cryogenically separated and non-condensable gases are removed prior to 

introduction of CO2 analyte into the IRMS. All samples were analyzed with several replicates of 

the externally calibrated in-house standard reference material (CM12) and the NBS-18 limestone 

international standard reference material for a drift correction. Two natural samples of ‘Atlantis 

II’ powdered coral are run daily to monitor operational performance. Typical reproducibility of 

replicate δ13C and δ
18

O measurements on the NBS-18 standards were better than ± 0.05‰ and 

± 0.10‰ (±1σ), respectively.  The NBS-18 standard has the assigned δ
18

O value of -23.2‰ 

relative to VPDB which is established by applying a correction derived from comparing the 

δ
18

O of the CO2 liberated from NBS-18 via phosphoric acid digestion and the CO2 reference gas. 

Because this cross-referencing method is used, the BaCO3 acid fractionation factor is not applied 

(Böttcher, 1996). Measured δ13C and δ18O values of BaCO3 samples were reported on the 

VPDB-scale, however, for calculating 18KIF, δ
18

O values had to be re-scaled to VSMOW using 

the equation given by Coplen et al. (1983): 

 

δ18OVSMOW = 1.03091 × δ18OVPDB + 30.91‰           (2.13) 

 

Here, we report all δ
18

Ovalues will be reported relative to VSMOW and all δ13C values will be 

reported relative to VPDB. 

Deionized H2O samples were analyzed for δ
18

O at the Stable Isotope Biogeochemistry 

(SIB) Lab located at the University of Hawaii at Manoa on a fully-automated Picarro L2130-i 
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WS-CRDS cavity ring-down spectrometer fitted with an A0211 High Precision Vaporizer and 

HTC PAL autosampler. Results were normalized to VSMOW using the following three in-house 

reference materials: desalinated deep seawater (KONA; δ
18

O = 0.51‰) laboratory deionized 

water (LAB DI; δ
18

O = -5.11‰ ), and melted snow collected from Mauna Kea summit 

(MKSNOW; δ
18

O = -13.44‰). The final results were reported using  notation in permil (‰) 

relative to VSMOW. The in-house reference materials were extensively calibrated against NIST 

reference materials (including Standard Light Antarctic Precipitation-2 (SLAP-2), Vienna 

Standard Mean Ocean Water-20 (VSMOW-2), and Greenland Ice Sheet Precipitation (GISP) 

from the International Atomic Energy Agency (Vienna, Austria). Accuracy and precision of 

analysis was determined by repeated analysis of Evian bottled water and was found to be within 

accuracy capabilities of the instrument reported by the manufacturer (δ
18

O = 0.2‰). Sample 

precision for δ
18

O values of our D.I. H2O samples at 1 standard deviation was 0.03‰ from n=5 

D.I. H2O samples.  

 

4. RESULTS 

4.1 Isotopic Equilibrium of DIC Species in the Carbonate System 

As discussed in Section 3, equilibrium partitioning of C and O isotopes must be 

constrained to calculate equilibrium δ
13

C and δ
18

O values of the compounds that were not 

directly measured in the CO2 (g)-DIC-H2O system. For easier comparison, all equilibrium isotope 

fractionation factors for the remainder of the text will be expressed in permil (‰) and denoted as 

𝜀. Fig. 2.2 compares the carbon and oxygen equilibrium isotope values calculated from Eq. (2.7), 

(2.10), and (2.11) to the mean δ
13

C and δ
18

O values of Batch-4 BaCO3 to illustrate KIF during  

CO2 hydration (Eq. (2.8) and Eq. (2.12)). 
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The 13𝜀 between HCO3
-
 and CO2 (g) ( ε 

13
HCO3

-
-CO2(g)

) calculated from Eq. (2.7) is ~8 

± 0.04‰ at 25°C, where the δ
13

C value of equilibrium HCO3
-
 is isotopically lighter than the 

δ
13

C value of equilibrium CO2 (g). The 𝜀 
13

HCO3
-
-CO2(g)

 is indicative of the equilibrium fractionation 

between stock solution NaHCO3 and the CO2 (g) evolved from the stock solution, which was 

circulated throughout the system. From the relationship between 𝜀 
13

HCO3
−−CO2

 and the δ
13

C value 

measured for NaHCO3, we can derive the δ
13

C value of CO2 (g) from the following equation: 

 

δ CCO2 (g)
 = 

δ CNaHCO3
 − α 

 13
HCO3

- -CO2 (g) 
13

[(
α 

13
HCO3

- -CO2 (g)

1000
)+1]

 
13                (2.14) 

 

where the δ CCO2 (g) 

13 ≈ -10.7 ± 0.17‰ at 25°C. Table 2.1 reports the 𝜀 
13  and the isotopic 

compositions calculated for CO2 (g) and DIC species at the different temperatures each 

experimental batch was performed.   

Equilibrium 𝜀 
18

CO2 (g)-H2O calculated from Eq. (2.10) is 41.2‰, where the 
18

O value of 

CO2 (g) (i.e. δ
18

OCO2(g)
) is isotopically heavier relative to the isotopic composition of H2O. The 

δ
18

OCO2(g)
 can be calculated using the relationship between 𝜀 

18
CO2 (g)-H2O and the measured 

δ
18

OH2O by the equation: 

 

δ OCO2 (g)
 = [ α 

18
CO2 (g)-H2O

∙(δ OH2O+1000)
 

18 ]
 

18

− 1000         (2.15)  
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where the δ
18

OCO2(g)
 ≈ 38 ± 0.49‰ at 25°C. Using the calculated value for δ

18
OCO2(g)

 and the 

measured δ
18

OH2O, the 
18

O value of HCO3
-
 instantaneously produced from CO2 and H2O 

without fractionation was determined from Eq. (2.11) to be ~24.3± 0.49‰ at 25°C (Table 2.3). 

 

 

 

Fig. 2.2. A schematic illustration of carbon and oxygen equilibrium fractionation and KIF during CO2 hydration at 

25°C, where all values are expressed in ‰. a) For carbon, the δ
13

C value of HCO3
-
 is arbitrarily set to 0‰ on the left 

of the axis. The 𝜀 
13  between HCO3

-
 and CO2 (g) is ~8‰ (blue) on the right of the axis, where the blue arrow direction 

indicates HCO3
-
 is isotopically heavier relative to CO2 (g), which is roughly given by the difference between -values 

(i.e. 𝜀𝐻𝐶𝑂3
−−𝐶𝑂2(𝑔)

≈ δ
13

CHCO3
- -δ

13
CCO2(g) 

13 ). Similarly, the difference between δ
13

CCO2 (g)
 and the mean δ

13
CBaCO3

 

yields the mean 13KIF (19.6±0.25‰; red), where BaCO3 is isotopically lighter relative to CO2 (g) (red arrow). b) For 

oxygen, the 
18

O value of H2O is arbitrarily set to 0‰ and the 
18

O of HCO3
-
 instantaneously produced without 

fractionation from CO2 and H2 O is 27‰, calculated from Eq. (2.11) (blue arrow). 
18

O values that fall below 27‰ 

indicate KIEs. The difference between δ
18

OHCO3
-
(instant) and the mean δ

18
OBaCO3

 is equal to the mean 18KIF 

(5.3±0.55‰; red), where BaCO3 is isotopically lighter relative to HCO3(instant)
-

 (red arrow). The 18KIF (green) is 

calculated from the difference between the δ
18

OCO2(g)
 and the mean δ

18
OBaCO3

 where BaCO3 is isotopically lighter 

relative to CO2 (g) (green arrow). 
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Table 2.3. The equilibrium 13𝜀 and 18 𝜀 between the relevant CO2 (g)-DIC-H2O species estimated based on the 

temperature dependence of the fractionation factors previously determined. The 13C and 18O values for CO2 (g) 

were constrained from the calculated equilibrium ε, along with the 13C of NaHCO3 (
13C = -2.8‰ (VPDB)) and 

18O of H2O (18O = -3.1 (VSMOW)) directly measured and used for the experiments. The 18O value of instant 

HCO3
-
 was calculated from Eq. (15). All ε and  values are reported in ‰ and temperature is reported in °C.  

 

a Calculated using the equilibrium fractionation between HCO3
− and CO2 (g) given by Zhang et al. (1995) from Eq. (11).  

b Calculated from the αCO2(g)−H2O 
18  provided by Brenninkmeijer et al. (1983) from Eq. (14) and converted to a permil value by the equation 

(α -1)*1000. 

 

 

 

 

 

 

 

4.2 BaCO3 Data 

  A complete list of sample details and the results of IRMS analysis can be found in Table 

A1 in the Appendix. The pH described for each batch in the following text refers to the pH of the 

reactor solution in which the BaCO3 samples were precipitated. The uncertainty for individual 

samples and its replicate measurement is reported as the ±2σ S.D. (95% confidence level) of the 

average measurement for each sample and its duplicate measurement. The uncertainty reported 

for mean sample measurements represents the standard error of the mean (±σ𝑚).  

The Batch-1 experiments were run at T=21°C and pH at either 8.2 (n=9) or 10.3 (n=2) 

from August 2017 to October 2017. An average of ~54.6 mg of BaCO3 were produced from 

these experiments. The moles of Ba in the initial reactor solution and moles of Ba in the final 

BaCO3 were calculated using the molecular weight of Ba (M.W. Ba = 137.33 g/mole). The 

initial moles of Ba in the reactor solution had an average of ~4.34 mmol and an average of ~0.40 

mmol Ba was calculated from the mass of the final BaCO3 precipitates. The δ
13

C values of 

Batch-1 samples produced at pH 8.2 ranged from -30.2  0.06 to -27.7  0.27‰ with mean of -

Batch # T 𝛆CO2 (g)−HCO3
-

 
𝟏𝟑 𝒂

 

(±0.04) 

𝛆CO2 (g)−HCO3
-

 
𝟏𝟖  𝛆CO2(g)−𝐇𝟐 𝐎

𝐛

(±𝟎.𝟎𝟎𝟎𝟎𝟓)
 

𝟏𝟖

 
𝛅𝟏𝟑𝐂𝐂𝐎𝟐 (𝐠)

 𝛅𝟏𝟖𝐎𝐂𝐎𝟐 (𝐠)
 𝛅𝟏𝟖𝐎𝐈𝐧𝐬𝐭𝐚𝐧𝐭.𝐇𝐂𝐎𝟑

− 

1 21 8.3 13.6 ± 0.02 42.0 -11.1 ± 0.18 38.7 ± 0.50 24.8 ± 0.50 

2 21 8.3 13.6 ± 0.02 42.0 -11.1 ± 0.18 38.7 ± 0.50 24.8 ± 0.50 

3 25 
30 

7.9 
7.3 

13.4 ± 0.02 
13.0 ± 0.02 

41.2 
40.2 

-10.7 ± 0.17 
-10.1 ± 0.17 

38.0 ± 0.49 

37.0 ± 0.48 

24.3 ± 0.49 
23.6 ± 0.48 

4 18 
25 

8.7 
7.9 

13.8 ± 0.02 
13.4 ± 0.02 

42.6 
41.2 

-11.5 ± 0.18 
-10.7 ± 0.17 

39.3 ± 0.51 

38.0 ± 0.49 

25.2 ± 0.51 
24.3 ± 0.49 
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28.9  0.56‰, whereas 
18

O ranged from 18.9  0.12 to 20.0  0.04‰ with an average of 19.6  

0.25‰ at the same pH. The BaCO3 samples produced at pH 10.3 (n=2) had δ
13

C values that 

range between -26.2  0.21 to -25.0  1.73‰ with a mean δ
13

C value of -25.6  1.26‰. The 


18

O values of BaCO3 samples produced at pH 10.3 range from 15.5  0.21 to 16.4  3.45‰ 

with a mean 
18

O value of 15.9  0.92‰. 

Batch-2 experiments (n=6) ran at T=21°C and pH 8.0 from December 2017 to February 

2018 produced typical BaCO3 yields of ~58.2 mg. The initial moles of Ba in the reactor solution 

had an average of ~3.54 mmol and an average of ~0.42 mmol Ba was calculated from the mass 

of the final BaCO3 precipitates. The δ
13

C values of Batch-2 samples produced at pH 8.0 ranged 

from -28.9  1.29 to -30.8  0.08‰ with a mean value of -30.2  0.79‰. For oxygen, 
18

O 

values ranged from 16.0  0.03 to 17.4  0.45‰ with a mean value of 17.0  0.45‰. The δ
13

C 

and 
18

O values of Batch-2 experiments produced at pH 9 (n=2) ranged between -31.2  0.54 to -

19.7  3.76‰ with a mean of -25.4  11.52‰ and 14.2  0.03 to 15.4  0.12‰ with a mean of 

14.8  1.23‰, respectively. 

Batch-3 experiments were ran at several pH and two different temperatures between 

April 2018 to July 2018, with a total of 22 experiments (see Appendix for all Batch-3 results). 

An average of ~64.1 mg of BaCO3 was produced in these experiments (n=22). The initial moles 

of Ba in the reactor solution had an average of ~3.91 mmol and an average of ~0.47 mmol Ba 

was calculated from the mass of the final Batch-3 BaCO3 precipitates. For experiments that were 

ran at T=30° and pH 8.5 (n=3) δ
13

C values ranged from -29.9  0.83‰ to -27.8  0.16‰ with a 

mean value of -28.7  1.26‰. and were run at T=25°C and pH 8.5 from April 2018 to July 2018. 

The δ
13

C values of BaCO3 samples produced at T=25°C and pH 8.5 (n=7) ranged from -30.9  
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0.75 to -23.1  0.47‰, with a mean value of -27.9  2.49‰, whereas 
18

O values ranged from 

15.0  0.07 to 17.2  0.10‰, with a mean value of 16.3  0.64‰. Batch-3 samples produced at 

pH  9 (n=7) had δ
13

C values that range between -31.7  0.04 to -23.0  0.12‰ with a mean of -

28.0  4.59‰ and 
18

O values that range between 13.2  0.01 to 16.0  0.05‰ with a mean 

value of 14.1  1.38‰. A more detailed report of Batch-3 data including specific pH is reported 

in Table A1 located in the Appendix. Some of the data from Batches 1, 2, and 3 had issues 

(discussed further in Section 5) and hence are not used to constrain KIEs, these data can also be 

found in Table A1 in the Appendix.  

Batch-4 experiments were ran at pH 8.0 and either T=25°C (n=10) or 18°C (n=2) 

between July 2018 to November 2018. The average amount of BaCO3 produced in these 

experiments was ~46.8 mg. The initial moles of Ba in the reactor solution had an average of 

~3.58 mmol and an average of ~0.34 mmol Ba was calculated from the average mass of the final  

Batch-4 BaCO3 precipitates (n=12). The δ
13

C values of BaCO3 samples produced at T=25°C and 

pH 8.0 (n=10) ranged from -32.2  0.22 to -27.8  0.02‰ (Fig. 2.3) with a mean value of -29.7  

0.71‰, and the 
18

O values of the same BaCO3 samples ranged from 17.2  0.04 to 20.1  

0.21‰ (Fig. 2.3) with a mean value of 18.9  0.56‰.The δ
13

C values of BaCO3 samples 

produced at T=18°C and pH 8.0 (n=2) ranged from -30.5  0.14 and -31.8  0.20‰ with a mean 

value of -31.1  1.26‰, while the 
18

O values of the BaCO3 produced at the same experimental 

conditions ranged from 17.0  0.01 and 17.4  0.20‰ with a mean value of 17.2  0.40‰.  
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Figure 2.3. The δ
13

C (vs. VPDB) and 
18

O (vs. VSMOW) values of all 4 batches. The temperature and pH of the 

experiments are discussed in detail in Section 4.2. Error-bars represent the 2 standard deviations between a sample 

measurement and its replicate measurement for both δ
13

C and 
18

O values (see Section 3.4 for details). 
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5. DISCUSSION 

5.1 Potential Factors Influencing Isotopic Compositions of BaCO3 

The variation in δ
13

C and δ
18

O values of BaCO3 samples produced at pH  9, pH  ≤ 8.5 

and at T=18°, 21°, 25°, and 30°C (Fig. 2.3; also see Table A1 in Appendix), suggests little to no 

systematic dependence to temperature and pH. The moles of Ba in the initial reactor solution for 

all experiments in each batch were greater than the moles of Ba calculated from the mass of the 

final BaCO3 precipitates (see Appendix Table A2). On average, only ~11% from the initial 

moles of Ba were precipitated in the final BaCO3. This suggests that HCO3
-
/CO3

2-
 was 

quantitatively precipitated out of the reactor solution. The range in δ
13

C and δ
18

O values of 

BaCO3 that is observed in the four batches may in part be due to experimental errors which 

include, temperature inconsistencies, invasion of NaHCO3 stock solution inside the reactor 

chamber, and internal to external gas exchange due to improper seals at tube connections. In the 

forthcoming paragraphs, three potential experimental errors will be discussed to help validate the 

δ
13

C and δ
18

O values that best reflect the values we will use to determine KIEs in this study.   

The first potential source of error is due to inconsistent temperature control, which 

affected Batch-1 and Batch-2 experiments. The temperature of the reactor chamber and stock 

solution vessel in Batch-1 and Batch-2 experiments were approximately the same as the ambient 

lab air which ranged between 20° and 24°C over the course of the experiment. Thus, without any 

control, experimental temperatures could fluctuate between 20° and 24°C throughout the 

duration of the experiment. This results in substantial uncertainty in our estimation of δ
13

C and 

δ
18

O values for equilibrium CO2 and instantaneous HCO3
-
 because the relevant fractionation 

factors ( 𝜀/𝛼 
13  and 𝜀/𝛼 

18 ) required for the calculation of KIF are all sensitive to temperature 

(Table 2.3; See also Eq. (2.7), (2.10), (2.17), and (A2.1); Brenninkmeijer et al., 1983; Usdowski 
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and Hoefs, 1990; Zhang et al., 1995; Beck et al., 2005). Variations in δ
13

C and δ
18

O values for 

equilibrium CO2 (g) and instantaneous HCO3
-
 would affect the accuracy of the values calculated 

for 13KIF and 18KIF (see Eq. (2.8) and (2.12)). To minimize the issue for Batch-3 and Batch-4, 

we placed the stock solution chamber in a circulating water bath and insulated the reaction 

chamber.  

The second potential source of error is BaCO3 precipitation from direct interaction with 

the NaHCO3 stock solution and the Tris-BaCl2 reactor solution, rather than the reaction between 

CO2 (g) and the reactor solution. During the equilibration of CO2 (g) with the NaHCO3 stock 

solution, internal gas was steadily pumped between the stock solution and reactor chamber 

(Section 3). In some experiments, droplets of NaHCO3 stock solution were taken up into the gas 

flow of the experimental setup and transferred to the bottom of the reactor chamber due to 

vigorous bubbling in the stock solution. Over several hours, the droplets would accumulate in the 

reactor chamber, which was visible across the internal wall and over the fritted-disk located on 

the bottom of the reactor. Because the experimental system was to remain closed, there was no 

mechanism to remove the stock solution that entered the reactor chamber without compromising 

the equilibration process. Hence, the stock solution remained in the chamber during the 

precipitation of BaCO3. To mitigate stock solution contamination, we attached a liquid/vapor 

trap to a tube connecting the stock solution vessel to the reactor chamber. The use of the 

liquid/vapor trap was fully implemented in batches 3 and 4. Although the trap reduced the 

amount of NaHCO3 stock solution entering the reactor chamber, contamination still occurred 

sometimes which was evident by a light layer of mist that accumulated along the walls of the 

reactor chamber. 
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It was noted for two experimental runs, one from Batch-2 and one from Batch-3, that a 

large volume (estimated to be ~20mL) of stock solution entered the reactor chamber. The volume 

of stock solution was large enough to form bubbles above the frit prior to adding Tris-BaCl2 

reactor solution to precipitate BaCO3. The δ
13

C and δ
18

O value of BaCO3 produced from the 

Batch-2 experiment are -19.7  3.76‰ and 14.2  0.03‰, and the δ
13

C and 18O value of 

BaCO3 produced from the Batch-3 experiment are -23.7  0.43‰ and 15.0  0.07‰, 

respectively. The contaminated BaCO3 sample from Batch-2 exhibited a 10.7‰ enrichment in 

C 
13

 when compared to the average δ
13

C value of all other experiments in the same batch. 

Similarly, the contaminated BaCO3 sample from Batch-3 was enriched in C 
13

 by 4.3‰ when 

compared to the average δ
13

C value of all other Batch-3 experiments. Since the NaHCO3 

dissolved in the stock solution has a δ
13

C value of -2.8  0.08‰, which is substantially higher 

than the calculated δ
13

CCO2 (g) 
of about -11 to -10‰ (Table 2.3), then the C 

13
 enrichments in δ

13
C 

of the two BaCO3 samples mentioned may be due to the direct reaction with NaHCO3 stock 

solution during BaCO3 precipitation.  

For oxygen, NaHCO3 used in the stock solution had a δ
18

O value of 14.6 ± 0.07‰ (vs. 

VSMOW). As the HCO3
-
 in NaHCO3 stock solution approaches isotopic equilibrium with H2O, 

the δ
18

O value of stock solution HCO3
-
 will increase to ~27.8‰ at 25°C (calculated using 

𝜀HCO3
-
-H2O 

18  from Beck et al. (2005) and the measured δ OH2O  

18
= -3.1  0.08‰ (vs. VSMOW); 

See Eq. (A2) in the Appendix). BaCO3 produced with stock solution contamination from Batch-

2 was depleted in 18O by 2.5‰ when compared to the average δ
18

O value of Batch-2 

experiments. The contaminated BaCO3 sample from Batch-3 was depleted in 18O by 1.2‰ when 

compared to the average δ
18

O value of Batch-3 experiments.  
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The third experimental error considered is the possibility of gas exchange between 

external air and internal experimental gas during the equilibration period caused by an improper 

seal at a tube connection. If gas exchange between the internal gas and ambient lab air occurred 

there is a possibility that full isotopic equilibrium between CO2 (g) and the stock solution would 

not be reached. As mentioned in an earlier section, if full isotopic equilibrium between CO2 (g) 

and the stock solution is not established it would influence the δ
13

C and δ
18

O values of BaCO3. 

There is also a possibility that isotopic equilibrium between CO2 (g) and the stock solution was 

established however, the equilibrated CO2 (g) would be a mixture of ambient lab air and CO2 (g) 

produced from stock solution rather than evolving from the stock solution due to air entering 

and/or escaping the system. If this were the case, the equilibrium CO2 (g) would have different 

δ
13

C and δ
18

O values than those calculated from equilibrium fractionation factors.  

The isotopic composition of CO2 (g) within the experimental system would reflect a 

mixture of CO2 sources if there was contamination by ambient air (CO2 (g)). For carbon, there are 

three sources of CO2 (g): 1) CO2 evolved from the stock solution, 2) from human respiration, and 

3) the local atmospheric CO2. The concentration of CO2 (g) produced from the stock solution is 

1M or 35,500 ppm. Affek and Eiler (2006) measured the δ
13

C (relative to VPDB) and δ
18

O 

(relative to VSMOW) values of CO2 from human respiration. However, since the δ
18

O value 

will vary depending on location, only the δ
13

C value will be considered from this study. The 

average δ
13

C (n=7) value of respired CO2 (g) was about -21.2  0.02‰ with an average CO2 (g) 

concentration of ~14,030 ppm (Affek and Eiler, 2006). The δ
13

C value of atmospheric CO2 

measured at Mauna Loa, Hawaii in 2014 had a monthly mean value of -8.4  0.07‰ and an 

annual mean concentration of CO2 in 2018 of ~408 ppm (NOAA/ESRL, 2019). Additionally, 
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indoor CO2 concentrations between 1000-1200 ppm is considered acceptable for indoor air 

quality according to the American National Standard Institute (AHSRAE, 2016). Because 

CO2 (g) was not measured in our experimental setup we can only speculate on how CO2 

contamination would impact the δ
13

C values of BaCO3. If all of the CO2 (g) inside of the 

experimental system was replaced with ambient CO2 (g), then we could expect to see a decrease 

in δ
13

C values of BaCO3, because it is likely that respired CO2 (g) makes up most of the ambient 

CO2 (g), which is depleted in 13C relative to both atmospheric CO2 (g) and CO2 (g) equilibrated 

with the stock solution. However, in order to successfully precipitate BaCO3, the CO2 (g) 

concentration in the system must exceed the CO2 (g) concentration of the ambient lab space, 

which was proven by a failed experimental test where we attempted to precipitate BaCO3 using 

only the CO2 (g) in the ambient lab. Thus, it is likely that the majority of the CO2 (g) within the 

experimental system evolved from the stock solution and that contamination of ambient CO2 (g) 

would have a small effect on the δ
13

C values of BaCO3.   

It is much more difficult to speculate how ambient air contamination affects the δ
18

O 

values of BaCO3 compared to δ
13

C values because the δ
18

O value of respired CO2 depends on 

the δ
18

O value of the local H2O in the environment. According to Scholl et al. (2007), the δ
18

O 

value of rainfall (i.e. source of the tap water in Hawaii) ranged between ~1 and 3‰. However, 

the measured oxygen isotope composition of H2O used in the stock solution has a δ
18

O value of       

-3.1‰. Since H2O is the largest isotopic reservoir of oxygen and if we assume equilibrium 

between H2O and CO2 (g), then the contamination of ambient CO2 (g) would have a small effect 

on the δ
18

O values of BaCO3. If oxygen isotope equilibrium is not established between CO2 (g) 

and H2O, then it is to be expected that the δ
18

O value of CO2 (g) would exhibit stronger 18O 
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depletions relative to the 18O value of equilibrium CO2 (g). In turn, the 18O values of BaCO3 

produced from CO2 (g) out of equilibrium with the stock solution would likely exhibit lower 

values when compared to the δ
18

O values of BaCO3 produced from equilibrium CO2 (g), 

however, this is not evident by the δ
18

O values of BaCO3. 

Two additional techniques were employed during Batch-4 experiments to ensure there 

were no air leaks. The first technique was to test for leaks by attaching a hand pump to a tube 

which was connected to a valve. Before starting an experiment, an attempt was made to pump air 

through the tube. If the experimental set-up was not sufficiently sealed, the hand pump would be 

able to push air through. If the system was fully sealed, no air could be pushed through.  The 

second technique used a syringe to insert the reactor solution into the reactor chamber. The 

procedure for inserting the reactor solution prior to implementing the new syringe technique was 

to open the valve, quickly insert the reactor solution, then close the valve. This method inevitably 

caused some of the internal gas of the experiment to escape while the valve was opened to 

introduce the reactor solution into the chamber. Hence, to limit gas exchange we applied the 

syringe technique, which was implemented as follows. First, the reactor solution was put in a 

syringe. Second, the syringe was sealed to a tube connected to a closed valve atop the reactor 

chamber a few minutes before the end of the equilibration period. Finally, when it was time to 

release the reactor solution into the chamber, the valve was opened and, without any exposure to 

ambient air, the reactor solution was inserted into the reactor chamber by the connected syringe. 

Since Batch-4 was the only one that utilized the two techniques described above, it is most likely 

that the δ
13

C and δ
18

O values of BaCO3 were the least affected by air entering or leaving the 

system.  
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  The discussion above suggest the δ
13

C and δ
18

O values of BaCO3 from experiments in 

batches 1, 2, and 3 were likely the most affected by experimental errors. Some of the δ
13

C and 

δ
18

O values of BaCO3 produced in batches 1, 2, and 3 may accurately reflect the results of an 

ideal experimental run, however, because of the errors associated with several of the experiments 

within those batches it is not certain which values are the most reliable. Batch-4 experiments 

were performed under the most ideal conditions where temperature was fully controlled, a vapor 

catch was used to limit invasion of NaHCO3 stock solution, and several precautions were made 

to ensure the experimental system was fully sealed before every experimental run. Because all of 

Batch-4 BaCO3 samples were produced under optimized experimental conditions and likely 

represent the most accurate δ
13

C and δ
18

O values to reflect CO2 hydration, only Batch-4 results 

will be used to calculate KIEs in the forthcoming paragraphs.  

 

Fig. 2.4. The average 13KIFs and 18KIFs at pH ≥ 9.0 from batches 1, 2, and 3 compared to the 
average 13KIF and 18KIF of Batch-4 data at pH 8.0. Each color represents the pH at which each 

experiment was conducted.  
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5.2 KIF During CO2 Hydration  

Apparent carbon and oxygen isotope fractionation as a result of KIEs for CO2 hydration 

can be quantified by comparing δ C 
13

 and δ O 
18

 values of the BaCO3 samples to δ C 
13

 of CO2 (g) 

(Eq. (2.8)) and δ O 
18

 of instantaneously formed HCO3
-
 (Eq. (2.12)), respectively, that are 

constrained for the equilibrium condition (Fig. 2.2). The calculated experimental KIFs represent 

the magnitude of the isotope fractionation, such that they are reported as positive values. Based 

on the justification of results provided in Section 5.1 only Batch-4 data will be discussed for the 

remainder of this section, with the exception of Section 5.2.1 where the effects of pH will be 

briefly considered. Furthermore, for the remainder of this paper, Batch-4 KIFs will be reported 

as 13KIFBatch-4 and 18KIFBatch-4 for carbon and oxygen, respectively, and are defined by the values 

reported in Table 2.4.  

The absolute uncertainty for individual KIFs is reported as the error propagation using 

the ±2σ S.D. of the relevant equilibrium fractionation factors and the ±2σ S.D. of the average 

δ C 
13

 and δ O 
18  values of each sample and its duplicate measurement. The absolute uncertainty 

for mean KIFs is the ± 2σm calculated from the error propagated from the analytical uncertainty 

between each sample and its replicate and the propagated uncertainty of the derived equilibrium 

C 
13

 and δ O 
18

 values. The 13KIFBatch-4 calculated between CO2 (g) and BaCO3 at T=25°C and pH 

8.0 range from 17.6 ± 0.29 to 22.2 ± 0.39‰ with a mean value (± 2σm; n=10) of 19.6 ± 0.12‰ 

(Table 2.4). The calculated 18KIFBatch-4 between HCO3
-
 instantaneously produced from CO2+H2O 

range from 4.0 ± 0.19 to 6.9 ± 0.33‰ with a mean value (± 2σm; n=10) of 5.3 ± 0.09‰ (Table 

2.4). Mean KIFs calculated for all batches are provided in Table A3 in the Appendix.  

 

 



 

 44 

5.2.1 Effects of CO2 Hydroxylation 

  As pH increases above pH 9, the CO2 hydration reaction becomes less favorable and CO2 

hydroxylation becomes dominant (as mentioned in Section 2; Kern, 1960). Additionally, there is 

some evidence to support the KIFs associated with the reactions from Eq. (2.5) and (2.6) differ 

(Siegenthaler and Münnich, 1981; Marlier and O’Leary, 1984; Clark et al., 1992). The mean 

KIFCO2 (g)-BaCO3 

13
 and KIFHCO3

-
 (instant)-BaCO3 

18
 (n=11) at pH ≥ 9 is 16.3 ± 2.60 and 9.6 ± 0.74‰ 

(𝜎𝑚). When the average 13KIF and 18KIF from high pH experiments is compared to the average 

13KIFBatch-4 and 18KIFBatch-4 at pH 8.0 (mean 13KIFBatch-4 = 19.6 ± 0.25‰ and 18KIFBatch-4 = 5.3 ± 

0.55‰) there is a~ -3.3 and +4.3‰ difference, respectively. If there was a systematic trend 

observed for carbon and oxygen, one might expect the change in both 13KIF and 18KIF with 

increasing pH to be consistent. Instead, the 13KIF and 18KIF vary independently where 13KIF 

decreases and 18KIF increases with increasing pH (Fig. 2.4). Given these results, we refrain from 

providing a robust statement on KIFs during CO2 hydroxylation. 
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5.2.2 Isotope Fractionation Between CO2 (g) and CO2 (aq) 

The mean 13KIFBatch-4 calculated from the values listed in Table 2.4 is 19.6 ± 0.25‰, 

which assumes that HCO3
-
 was produced from CO2 (aq) that had a δ C 

13
 value equal to the δ C 

13
 

value calculated for CO2 (g) (Table 2.3). However, the very first step for the interactions between 

the CO2 (g) and reactor solution is the diffusion across the gas-liquid interface provided by the 

bubbling (see Fig. 2.1b): 

 

CO2 (g)↔CO2 (aq)                   (2.16) 

Batch-4 
Sample # 

T (°C) 𝐊𝐈𝐅𝐂𝐎𝟐 (𝐠)−𝐁𝐚𝐂𝐎𝟑 
𝟏𝟑  𝐊𝐈𝐅𝐇𝐂𝐎𝟑

−(𝐢𝐧𝐬𝐭𝐚𝐧𝐭)−𝐁𝐚𝐂𝐎𝟑 
𝟏𝟖  

B4-1 
18 

19.6 ± 0.31 7.8 ± 0.35 

B4-2 18 21.0 ± 0.35 6.3 ± 0.29 

B4-3 25 19.9 ± 0.33 4.0 ± 0.19 

B4-4 25 17.6 ± 0.29 5.4 ± 0.25 

B4-5 25 19.5 ± 0.79 6.9 ± 0.33 

B4-6 25 18.9 ± 0.31 5.4 ± 0.24 

B4-7 25 19.0 ± 0.31 5.3 ± 0.24 

B4-8 25 20.2 ± 0.33 6.2 ± 0.28 

B4-9 25 22.3 ± 0.39 4.1 ± 0.19 

B4-10 25 19.8 ± 0.32 5.1 ± 0.23 

B4-11 25 19.2 ± 0.33 5.7 ± 0.28 

B4-12 25 19.6 ± 0.42 4.8 ± 0.23 

Mean 25 19.6 ± 0.23 5.3 ± 0.28 

Mean* 25 17.6 ± 0.43*      -- 

Table 2.4. Batch-4 13KIF between equilibrium CO2(g) and experimental BaCO3 and 18KIF 

between instantaneous HCO3
-  and experimental BaCO3, calculated from Eq. (15) and (16), 

respectively. The mean 13KIF and 18KIF at T=25°C is also reported. All Batch-4 experiments 

were conducted at pH 8.0. The uncertainty for the calculated KIFs represents a 2σ standard 
deviation. The mean uncertainties represent the 95% confidence interval of the standard 

deviation of the mean (2σ𝑚) for Batch-4 samples at T=25°C.  

*The mean 13KIF value of Batch-4 including the 13KIF between CO2(g) and CO2(aq) determined by Mook (1986) and others  

to be ~2‰. 
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Thus, it is the dissolved CO2 (aq) that reacts with H2O to yield HCO3
-
. The equilibrium 𝜀 

 
 

13  

associated with Eq. (2.16) was previously constrained by Zhang et al. (1995): 

 

𝜀CO2 (aq)-CO2(g)

 
 

13 = −(0.0049 ±  0.003)(T) − 1.31 ±  0.06‰        (2.17) 

 

where T is temperature in °C and 𝜀CO2 (aq)-CO2(g)

 
 

13 =1.4‰, where CO2 (aq) is depleted in 13C by 

1.4‰ relative to equilibrium CO2 (g) at T=25°C. So, the values for 13KIFBatch-4 in Table 2.4 would 

decrease by 1.4‰ and the mean 13KIFBatch-4 would equal 18.2‰. Other values constrained for 

εCO2 (aq)-CO2(g)

 

 

13  by other authors agree well with Zhang et al. (1995), with a standard deviation of 

0.2‰ (Vogel et al., 1970; Zhang et al., 1995; Szaran, 1998). 

In the case where the reaction from Eq. (2.16) does not reach equilibrium, there is a 

13KIE to be considered. Previous experimental studies to determine 13KIEs associated with Eq. 

(2.16) reported a KIFCO2(g)-CO2(aq) 

13
 of ~2.0 ± 0.20‰ at 25°C, where CO2 (aq) is depleted in 13C 

relative to CO2 (g) (Inoue and Sugimura, 1985; Wanninkof, 1985; Mook, 1986; Zhang et al., 

1995). In this study, we assume full 13KIF between CO2 (g) and CO2 (aq), so the values reported in 

Table 2.4 would be lower by ~2.0 ± 0.20‰ and the mean 13KIFBatch-4 should be ~17.6 ± 0.23‰ .  

For oxygen, Vogel et al. (1970) reported the 𝜀CO2(aq)-CO2 (g) 
18  to be 0.8‰ at 0°C where 

CO2 (aq) is enriched in 18O relative to CO2 (g). Due to gas sampling limitations, higher temperature 

values for 𝜀CO2(aq)-CO2 (g) 
18  were deemed unreliable (Vogel et al., 1970). To the best of our 

knowledge, Vogel et al. (1970) is the only study that attempted to constrain 𝜀CO2(aq)-CO2 (g) 
18  and 

we are unaware of a study that determined 18KIF between CO2 (g) and CO2 (aq). 

 



 

 47 

5.3 Previous Experimental and Theoretical Studies  

  Previous experimental 13KIFs reported during CO2 hydration (see Table 2.1) were 

inconsistent amongst studies and ranged widely between 6.9 and 19.7‰ (Marlier and O’Leary, 

1984; Clark and Lauriol, 1992; O’Leary et al., 1992; Sade and Halevy, 2017; 2019). The average 

KIFCO2−HCO3
− 

13  determined from Clark and Lauriol’s (1992) experimental results agrees best 

with our average 13KIFBatch-4, differing by ~0.1‰. Although the average KIFCO2−HCO3
− 

13  from 

Clark and Lauriol’s (1992) study was based on experiments conducted at 0°C, Zeebe (2014) 

calculated that the temperature dependence of 13KIF during CO2 hydration is at most 1.8‰ 

between 0° and 25°C. The smaller discrepancy between our 13KIFBatch-4 at T=25°C and the 13KIF 

reported by Clark and Lauriol at T=0°C compared to the temperature dependence calculated by 

Zeebe (2014) may suggest 13KIFs are even less affected by temperature than what was 

previously estimated. The largest discrepancy of ~12.7‰ is observed between the average 

13KIFBatch-4 and the KIFCO2−HCO3
− 

13  reported by Marlier and O’Leary (1984), with the smaller 

13KIF reported by the latter. In comparison to Zeebe’s (2014) theoretical calculations, our 

average 13KIFBatch-4 compares best with the reported range of ~23 to 33‰, which are the values 

reported for the CO2 hydration reaction mechanism involving n ≥ 4 water molecules (Table 3 in 

Zeebe (2014)). The lower 13KIF value in the range reported by Zeebe for n=4 and n=8 water 

molecules is ~3.4‰ larger than our mean 13KIFBatch-4 of 19.6 ± 0.12‰. In contrast, a discrepancy 

of ~9.5‰ and 5.5‰ is observed between the mean 13KIFBatch-4 and the values for 13KIF reported 

for n=1 and n=3 water molecules, respectively. The 5.5‰ increase in the 13KIF reported for n=3 

water molecules to the value we report as the mean 13KIFBatch-4 may be indicative of the reaction 

mechanism switching from a one-step hydration mechanism to a multi-step hydration 

mechanism involving n ≥ 4, first recognized in the initial reporting by Zeebe (2014) when the 
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theoretical 13KIFs reported increased by 6.5‰ as n increased from 3 to 4 water molecules. If the 

larger 13KIFBatch-4  compared to the 13KIF reported for n ≥ 4 indicates a multi-step hydration 

mechanism, then the dominant reaction pathway for the CO2 hydration reaction is to proceed 

stepwise through a HCO3
-
-H3O

 
+
 intermediate state (see Eq. (2.4) where the reaction proceeds via 

I→II→III), rather than a concerted pathway to lead directly to the products (i.e. I→III, see Eq. 

(2.4)).  

  The average 18KIFBatch-4 calculated from Table 2.4 is 5.3± 0.09‰ at 25°C and pH 8.0. 

However, to directly compare the 18KIFs of this study to those reported in previous studies we 

will define the mean 18KIF to be between equilibrium CO2 (g) and Batch-4 BaCO3 (written here 

as, 18KIFBatch-4*), which has a mean value of 18.7 ± 0.02‰ . The only available experimental 

data for 18KIF is reported by Clark and Lauriol (1992), who determined the 18KIF for HCO3
-
 

dehydration. Based on the relationship between equilibrium fractionation and KIF described by 

Eq. (2.3) and by the value reported by Sade and Halevy (2017; 2018), the 18KIF based on the 

experimental data of Clark and Lauriol (1992) yields a 18KIF for the CO2 hydration of ~3.7‰, 

which is ~15‰ smaller than our average 18KIFBatch-4*. As mentioned in Section 1.1, one of the 

issues with the study by Clark and Lauriol (1992), was that the cryogenically produced CaCO3 

runs the risk of producing mixed polymorphs (i.e. carbonate precipitation other than calcite), 

which can affect KIFs. Because of the uncertainty in the 18KIF reported by Clark and Lauriol 

(1992), Sade and Halevy (2017;2019) assumed calcite as the only polymorph and re-calculated 

their 18KIF during CO2 hydration to be 7.3‰, which is ~11‰ smaller than our average 

18KIFBatch-4*.  Sade and Halevy (2017; 2019) also re-calculated 18KIFs reported originally in the 

theoretical studies by Zeebe (2014) and Guo (2008) as described in Section 1.1. The calculated 

18KIF for CO2 hydration based on the results of Guo (2008) was estimated to be 16.4‰ (Sade 
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and Halevy 2017; 2018). More recently, Guo and Zhou (2019) reported theoretical estimates of 

18KIF for CO2 hydration to be 4.3 and 8.7‰ where the difference between the two values is the 

result of 18O coming from CO2 or H2O, respectively at 25°C. Guo and Zhou (2019) reported 

4.3‰ for 18KIE during CO2 hydration, which is ~14‰ smaller than the mean 18KIFBatch-4*. The 

range for 18KIFs reported by Zeebe (2014) is 13-15‰ for n ≥ 4 water molecules and between 

~11-15‰ for n ≤ 3 water molecules, where the larger value in both ranges agree best with our 

average 18KIFBatch-4* compared to all other experimental and theoretical estimates mentioned for 

18KIF. It is stated in Zeebe (2014) that the 18KIF during CO2 hydration is likely to be smaller 

than that of carbon for n ≥ 4 because rate constants for 18KIF and oxygen isotope fractionation 

without subsequent oxygen exchange are similar in magnitude, which suggests the total oxygen 

KIF will be less affected by 18O and 16O isotope exchange.  
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Fig. 2.5. A schematic illustration comparing mean 13KIFs and 18KIFs from Batch-4 and McConnaughey (1989) at 
T=25°C and 21°C, respectively, where the scaling of the arrows denoting KIFs is only estimated. A) The 13KIFs 

of Batch-4 (left of center axis) and McConnaughey (right of center axis) in permil (‰). The 13KIF between 

BaCO3/ CaCO3 and equilibrium HCO3
-
 (red arrows) were calculated from the δ C 

13  of BaCO3/ CaCO3 and   the 

measured δ C 
13  value of NaHCO3 for Batch-4, and the known 𝜀𝐻𝐶𝑂3

−−𝐶𝑂2 
13  reported by Emrich et al. (1970) and 

Deines et al. (1974) for McConnaughey (green arrow). The 13KIF between BaCO3/ CaCO3 and CO2 (aq) (purple 

arrows; *i.e. 2‰ less than if compared to CO2 (g) (magenta arrows; Mook, 1986)), where CO2 (g) of Batch-4 was 

derived from Eq. (2.7) and the measured δ C 
13  value of NaHCO3, and the CO2 (g) from McConnaughey was directly 

measured. The KIF 
13  between CO2 (g) and CO2 (aq) (Eq. (2.17)) and the δ C 

13  values for CO2 (g) from Batch-4 and 

McConnaughey were used to calculate the final 13KIF between BaCO3/ CaCO3 and CO2 (aq). B) The 18KIFs of 

Batch-4 (left of axis) and McConnaughey (1989) (right of axis). The line labelled δ𝐶𝑎𝐶𝑂3
 on the right side of the 

center axis represents the δ O 
18  value of CO2 (g) liberated from CaCO3 by acid dissolution in equilibrium with 

VSMOW. **The acid fractionation factor between the liberated CO2 (g) and the solid CaCO3 is ~10.2‰, so the 

true δ O 
18  value of McConnaughey’s solid CaCO3 is ~10.2‰ lighter than δ𝐶𝑎𝐶𝑂3

 (black arrow), which will be the 

value used to calculate 18KIFs that can be directly compared to 18KIFs of Batch-4. The 18KIF between BaCO3 and 

CO2 (g) (magenta arrow) was determined from the δ O 
18  value of CO2 (g) derived from the relationship between Eq. 

(2.10) ( 𝜀𝐶𝑂2 (𝑔)−𝐻2𝑂 
18 ; light blue arrow) and the measured δ O 

18  value of H2 O (-3.1‰). The same 18KIF for 

McConnaughey was calculated using the measured δ O 
18  value of CO2 (g) used in the experiments. The 18KIF we 

defined from Eq. (2.12) is given by the green arrow. 
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5.3.1 Comparison to KIF of McConnaughey (1989) 

McConnaughey (1989) reported 13KIEs of his experimental results relative to two 

equilibrium δ
13

C values. The first 13KIF was calculated by comparing the measured δ
13

C of the  

CO2 source gas to the δ
13

C of his experimental CaCO3 ( KIFCO2(g)−CaCO3
  

13 ), which yielded an 

average KIFCO2(g)−CaCO3
  

13   of 8.3‰ at 21°C and pH between 7.89 and 8.24. The second 13KIF 

was calculated between experimental CaCO3 and the δ
13

C value expected for CO2 (g) in isotopic 

equilibrium with Galapagos seawater at 21°C, which yielded an average 

KIFGalapagos CO2−CaCO3
  

13  of ~16‰. To directly compare our results to McConnaughey, the 

former KIFCO2(gO−CaCO3
  

13  will be used. There is a large discrepancy of ~11.3‰ between the 

mean 13KIFBatch-4 and McConnaughey’s mean KIFCO2(g)−CaCO3
  

13  at T=25° and 21°C (Fig. 2.5 and 

Fig. 2.6).  

McConnaughey (1989) defined 18KIFs as the observed 18O depletion in the experimental 

CaCO3 relative to the measured CO2 (g) source, which is associated with a ~10‰ enrichment in 

the 
18

O values. After accounting for the 10‰ enrichment, the 18KIFs ranged from 15.9 to 

16.3‰ at T = 21°C (n=2, 18KIFaverage(T=21°C) = 16.1‰) and 14.6 to 16.2‰ at T = 1.1 to 4.3°C 

(n=4, 18KIFaverage(T<4°C) = 15.4‰) (Fig. 2.5).  When comparing the mean KIFBatch−4∗ 
18  at 

T=25°C to McConnaughey’s KIFCO2(g)−CaCO3
  

18  at 21°C, the difference is ~3‰, where Batch-4 

BaCO3 exhibits a stronger 18O depletion relative to CO2 (g) compared to the 18O depletion 

observed in McConnaughey’s CaCO3 relative to CO2 (g) (Fig. 2.5 and Fig. 2.6). 

The close agreement observed between KIFBatch−4∗ 
18  and the KIFCO2(g)−CaCO3

  
18  

compared to the large difference between KIFBatch−4∗ 
13  and KIFCO2(g)−CaCO3

  
13  might suggest re-

equilibration between HCO3
-
 and the reactants is being expressed in the 13KIF of 



 

 52 

McConnaughey’s experimental CaCO3. In contrast, because oxygen isotope equilibrium is 

slower than that of carbon isotopes, McConnaughey’s 18KIFs may be close to the full kinetic 

effect as full isotope dis-equilibrium is approached, which would hence explain the similarity in 

magnitude to the mean KIFBatch−4∗ 
18 . 

It is important to note that McConnaughey’s CO2 (g) source was analyzed for its carbon 

and oxygen isotopes, while the δ
13

C and 
18

O of our CO2 (g) was estimated from the relationship 

between the known 𝜀HCO3
-
-CO2(g) 

13  (Eq. (2.7)) and the measured δ
13

C and 
18

O value of NaHCO3. 

Unfortunately, McConnaughey (1989) did not provide enough information to confidently 

determine whether the CaCO3 precipitation was truly quantitative. Also, the reaction time for 

CaCO3 precipitation was not provided so it is unclear whether partial HCO3
-
 re-equilibration with 

dissolved CO2 could occur. If re-equilibration did occur, it is estimated that McConnaughey’s 

13KIF values would approach 𝜀HCO3
-
-CO2(g) 

13 , which is ~8.4‰ at T=21°C (Eq. (2.7); Zhang et al., 

1995).  
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6. CONCLUSIONS AND IMPLICATIONS 

We performed quantitative BaCO3 precipitation experiments to determine 13KIF and 

18KIF during the hydration of CO2. In all experiments performed in this study we observed 

kinetic effects on HCO3
-
 during CO2 hydration when the 13C and 18O values of BaCO3 were 

compared to the δ
13

C and 
18

O values derived for equilibrium CO2 (g) and instantaneously 

formed HCO3
-
. However, experimental errors that occurred in the early stages of the project (i.e. 

Batches 1, 2 and 3) suggest that some experimental results are unreliable. The KIFs determined 

from Batch-4 data appear most reliable as those experiments were performed under most 

optimized conditions to minimize experimental errors. Based on these data we conclude the most 

Fig. 2.6. A comparison between 13KIFs and 18KIFs of Batch-4 between CO2 (g) and BaCO3 at T = 18°C 

(green triangles) and 25°C (red circles), and the 13KIFs and 18KIFs between CO2 (g) and CaCO3 reported by 

McConnaughey (1989) at T = 21°C (dark blue circles) and 1.1 to 4.3°C (light blue circles). The positive 

increase in 13KIFs and 18KIFs indicates stronger 13C and 18O depletions in BaCO3 (or CaCO3) relative to 

equilibrium CO2 (g).  
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reliable 13KIF and 18KIF reported in this study is 19.6 ± 0.75‰ and 5.3 ± 0.55‰, which 

represent the mean 13KIF and 18KIF of Batch-4 experiments. 

 When compared to 13KIFs reported previously for the hydration of CO2, our mean 

experimental 13KIF (13KIFBatch-4 = 19.6 ± 0.75‰) agrees best with the experimental 13KIF from 

Clark and Lauriol (1992; 13KIF = 19.7‰) and the theoretical 13KIF calculated by Zeebe (2014; 

13KIF = 23 to 33‰ for n ≥ 4). The small discrepancy (~0.1‰) between the 13KIF of Batch-4 and 

the value reported by Clark and Lauriol (1992), may suggest there is a very little temperature 

effect on KIEs during CO2 hydration. For oxygen, our mean experimental 18KIF between CO2 (g) 

and BaCO3 (18KIFBatch-4=18.9 ± 0.56‰) is ~2.8‰ larger than the largest experimental 18KIF 

reported by McConnaughey (1989; Table 2.1) and ~4‰ larger than the largest 18KIF calculated 

by Zeebe (2014).   

Other than the single experimental study by Clark and Lauriol (1992), we report the largest 

13KIF and 18KIF when compared to all of the experimental studies listed in Table 2.1. Our values 

being the largest might suggest our Batch-4 KIFs reflect full isotope disequilibrium during CO2 

hydration (or closest to full isotope disequilibrium), which would mean our values exhibit the 

full magnitude of the kinetic effect. From the comparison made between Batch-4 and the values 

reported by Zeebe (2014), our 13KIF and 18KIF compare best with the values Zeebe reported for 

the CO2 hydration reaction mechanism involving n≥4 water molecules. If this is indeed the case, 

then it would suggest the dominant hydration pathway proceeds stepwise through a HCO3
-
 - 

H3O+ intermediate state (i.e. I→II→III, see Eq. (2.3)).  

Since Batch-4 experiments were only performed at T=25°C (n=10) and 18°C (n=2),  

it is unclear how variation in temperature below 18°C and above 25°C in these experiments 

would affect the magnitude of the 18KIEs. Based on the similar 13KIFs reported for Batch-4 and 
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Clark and Lauriol (1992) produced at 25° and 0°C, respectively, temperature appears to have 

little effect on the magnitude of the 13KIE. For pH, Batch-4 BaCO3 were produced from one 

reactor solution of pH 8.0, which is close to that of sea water pH (8.2). Variation observed in the 

δ
13

C and 
18

O values of BaCO3 produced at pH ≥ 9, pH ≤ 8.5 and at T=18°, 21°, 25°, and 30°C 

(Fig. 2.3), suggests little to no systematic dependence to the parameters manipulated in the 

experiments. However, the possible experimental errors associated with the batches containing 

these data make them less reliable so, additional tests to verify/falsify the effects of varying 

temperature and pH on KIEs would be necessary.  

  KIEs associated with the hydration of CO2 is fundamental parameter that will be relevant 

to a wide range of studies. To the best of our knowledge, the results of this study represent the 

most systematic experimental study, which will help improve paleo-proxies interpretations since 

kinetic effects are present in biogenic carbonates used in paleoclimate reconstructions. 

Additionally, the results of this study will assist in resolving the molecular mechanism of the 

CO2 hydration pathway, which has been a topic of theoretical studies for several years (e.g. 

Tautermann et al., 2002; Nguyen et al., 2008; Stirling and Papai, 2010; Wang and Cao, 2013; 

Zeebe, 2014). Determining the dominant pathway for the CO2 hydration reaction is important 

because CO2 hydration and its products play a large role in aqueous environments, which 

includes ocean acidification, biological carbon fixation, biological mineral precipitation, and 

more. Thus, understanding the underlying mechanism involved with the CO2 hydration reaction 

can help re-evaluate KIEs involved in those various oceanic processes as well as provide insight 

into exactly how the ocean will respond to increasing atmospheric CO2 concentrations.  
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CHAPTER 3. SUMMARY 

The CO2 hydration reaction is a fundamental chemical transformation, ubiquitous in 

aqueous solutions that contain DIC and critical in several geochemical, physicochemical, and 

biological processes. A characteristic KIE is associated with the CO2 hydration reaction where 

the reaction product, HCO3
-
, is depleted in the heavy isotopes of carbon and oxygen. Prior to this 

study, the magnitude of KIEs during CO2 hydration was not well constrained, evidenced by the 

sparse and inconsistent experimental data currently reported in the literature. We performed 

systematic precipitation experiments to report the most reliable KIF during CO2 hydration.  

To carry out the precipitation experiments we used an experimental approach that was 

modified from the methods described by McConnaughey (1989). Experimental errors in the 

early stages of the project were made apparent by the large variation in the carbon and oxygen 

isotope compositions measured in the first three batches of experimentally produced BaCO3. 

Batch-4 experiments were performed under the most optimal experimental conditions and the 

more consistent results of the stable isotope analyses suggest Batch-4 data was the most reliable 

out of all four batches.  

Our mean 13KIF compared best with the 13KIF reported by Clark and Lauriol (1992) at 

0°C, which may suggest temperature has a small effect on this KIF. On the other hand, our mean 

13KIF and 18KIF of 19.6 ± 0.75‰ and 18.7 ± 0.56‰, respectively, were the largest values of all 

of the experimental KIFs reported previously, which may suggest that our KIFs reflect the 

magnitude of the kinetic effect closest to full isotope disequilibrium during CO2 hydration.  

In the future, it would be beneficial to expand the experimental parameters tested in this 

study to include, for example, a larger temperature range. Additional experiments may also be 

done to account for possible systematic variations during CaCO3 precipitation that are less 
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known due to the long time frame that is necessary for DIC species to fully equilibrate in 

solution (see Zeebe, 1999 and Watkins et al., 2013). To account for these possible systematic 

variations during CaCO3 precipitation, the addition of the enzyme carbonic anhydrase (CA) 

could be used in future experiments to speed up equilibration between CO2 and HCO3
-
, which 

would ensure no disequilibrium exists in solution (Uchikawa and Zeebe, 2012). These 

equilibrium precipitation experiments could then be compared with the results of our kinetic 

precipitation experiments to guarantee our KIFs are truly kinetically driven. Finally, future work 

to analyze the clumped isotope composition of our BaCO3 samples would provide experimental 

results to aid in understanding isotope disequilibrium effects in isotope clumping during CO2 

hydration (Tripati et al., 2015; Daëron et al., 2019; Guo and Zhou, 2019). 
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APPENDIX 

 

The inverse time constant 
1

𝜏
 to calculate the time it takes for oxygen isotopes to fully 

equilibrate (Zeebe and Wolf-Gladrow, 2001): 

 

𝜏−1 = (0.5) ∙ {𝑘+2 + 𝑘+4[OH−]} ∙ {1 +
[CO2]

𝑆
− [1 + (

2

3
∙

[CO2]

𝑆
) + (

[CO2]

𝑆
)2]

1/2
}         (A1-a) 

 

where, [OH−] can be constrained from pH and known kinetic rate constants (Usdowski et al., 

1991), and 𝑆 = [H2CO3] + [HCO3
−] + [CO3

2−]. The time required for 99% 18O equilibration (t99%) 

can calculated using the relationship between kinetic rate constants for CO2 hydration (see 

Usdowski et al., 1991) as: 

 

𝑡99% = −ln (0.01) ∙ 𝜏                         (A1-b) 

 

Equation to calculate the oxygen equilibrium isotope fractionation factor between HCO3
− 

and H2O given by Mook et al. (2005): 

 

𝜀𝐻𝐶𝑂3
−−𝐻2𝑂 = 2.59 ± 0.00(106 T−2) + 1.89 ± 0.04 

18                     (A2) 

 

 

where, T is the temperature in Kelvin.
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Batch # Sample ID T (°C) pH  𝛅𝟏𝟑𝐂 (‰; 

VPDB) 

2σ S.D. 𝛅𝟏𝟖𝐎  (‰; vs. 
VSMOW) 

2σ S.D. Experimental notes: 

1 AUG21_2017TEST1 21 8.2 -30.78575 0.2503 19.59752198 0.0032 Started timer once BaCl2 solution started bubbling in reactor (~30sec delay 

from when solution was added). Trial run with increased BaCl2 
concentration: 0.3M BaCl2 +tris solution. Spilled some sample during 

filtering. 16 hour equilibration period. 

1 AUG22_2017TEST2 21 8.2 -30.90925 0.5374 19.5996828 0.19 Duplicate run of AUG21_2017TEST1.  

1 AUG23_2017TEST3 21 8.2 -31.41544 0.1024 19.62618472 0.0224 Increased BaCl2 concentration: 0.2M BaCl2.Tubing seal on stock solution 
vessel came loose. Did quick fix but may cause unreliable data for this run. 

Bubbling delay time ~53 seconds. 16 hour equilibration period 

1 AUG24_2017TEST4 21 8.2 -
31.02982887 

0.5499 19.8139067 0.1147 Duplicate of AUG23_2017TEST3: Increased BaCl2 concentration: 0.2M 
BaCl2. 12 second lag time before bubbling started. Total bubbling 

time=2min 9seconds.  

1 AUG25_2017TEST5 21 8.2 -30.21725 0.0566 19.62499259 0.2208 Test run using 0.1M BaCl2 + tris solution. 16 hour equilibration period.  

1 AUG29_2017TEST6 21 8.2 -30.0263526 0.2867 19.65198797 0.1987 Duplicate run of AUG25_2017TEST5, using 0.1M BaCl2. Used the last of 
the NaHCO3 for stock solution. Bubbling lag time was about 18.37 seconds. 

1 AUG31_2017TEST7 21 10.3 -24.96875 1.7268 16.38495538 3.4587 Test run using 0.1M BaCl2 + high pH tris buffer (made on 7/5/17) with a pH 

10.255. 1 minute 7 seconds bubbling lag time. 16 hour equilibration period.  

1 SEPT5_2017TEST8 21 10.3 -26.22525 0.2065 15.46468575 0.2066 Duplicate run of AUG31_2017TEST7 with high pH tris buffer (pH 10.255). 
40 seconds bubbling lag time.  

1 SEPT7_2017TEST9 21 8.2 -29.26625 0.0141 19.59284388 0.0596 Test run with increased reactor solution volume to 20mL. 16 hour 
equilibration period. 

1 SEPT14_2017TEST10 21 8.2 -27.99925 0.0679 19.71728154 0.0036 Duplicate run of SEPT7_2017TEST9 with increased reactor solution volume 

to 20mL, no bubbling lag time, some stock solution vapor condensed on 
reactor chamber walls. 

1 SEPT18_2017TEST11 21 8.2 -29.0210756 0.1872 19.84331019 0.0721 Increased reactor solution volume to 30mL . Some stock solution vapor on 

reactor chamber walls. 16 hour equilibration period. 

1 SEPT26_2017TEST12 21 8.2 -29.03675 0.0297 20.00942807 0.0448 Increased reactor solution volume to 40 mL. Stock solution vapor on inside 
reactor chamber. 16 hour equilibration period. 

1 SEPT27_2017TEST13 21 8.2 -
27.73210925 

0.2748 19.96291099 0.2817 Duplicate test of SEPT26_2017TEST12. Some stock solution vapor inside 
reactor chamber.  

1 OCT3_2017TEST14 21 8.2 -28.68875 0.0382 19.14628381 0.1447 Increased reactor solution volume to 40mL (volume increased in order to 

increase amount of precipitates collected), first time using  liquid/vapor trap. 
Some stock solution vapor inside reactor chamber. Reactor solution formed 

smaller bubbles than normal when bubbling in reactor. 16 hour equilibration 
period. 

1 OCT5_2017TEST15 21 8.2 -28.44875 0.0523 18.85992578 0.1184 Duplicate test of OCT3_2017TEST14  using new liquid/vapor catch set up. 

Reactor solution formed small bubbles when bubbling.  

2 12_5_2017TEST1 21 8.0 -28.865 1.2869 17.41023355 0.452 Tris buffer pH 8 - 16 hours 21 mins equilibration period. 

2 12_11_2017TEST2 21 8.0 -31.5 2.4042 17.0751878 0.3791 Duplicate run of 12_5_2017TEST1 

2 12_13_2017TEST3 21 9.0 -31.17 0.5374 15.44635 0.1166 High pH tris buffer (pH 9) - 16 hours equilibration period. 

2 1_9_2018Test4 21 9.0 -19.65 3.7618 14.2195671 0.0292 Duplicate run of 12_13_2017TEST3 - stopped experiment 5 mins early 

because stock solution was going into reactor  

Table A1. Full experimental description of batches 1-4 including sample ID, temperature, pH, δ13C, δ18O, and experimental notes recorded at the time of the 
individual experiment. 
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2 1_16_2018Test5 21 8.0 -30.22 0.0849 17.33806985 0.0437 Tris buffer pH 8 - 100 mL HCl added to stock solution - stock solution pH 
remained the same - 16 hours and 4 mins equilibration period 

2 1_18_2018Test6 21 8.0 -30.75 0.0849 15.95665045 0.3645 Duplicate run of 1_16_2018Test5 

2 2_5_2018Test7 21 8.0 -29.34 0.2263 16.8483876 0.0292 Tris buffer pH 8 - 24 hours equilibration period (8 hours per day for 3 days)   

2 2_12_2018Test8 21 8.0 -30.65 0.1414 17.29683345 0.1604 Duplicate run of 2_5_2018Test7 

3 April_4_2018_T1 25 8.5 -30.87 0.7538 16.90077845 0.468 Temperature set to 25C, 8.5 tris buffer pH. 16 hours equilibration period.  

3 April_6_2018_T2 25 8.5 -30.43 1.9177 16.35336524 0.4972 Temperature set to 25C, 8.5 tris buffer pH.16 hours equilibration period. 

3 April_12_2018_T3 30 8.5 -28.54 1.3746 17.82395835 1.006 Temperature set to 30C, 8.5 tris buffer pH. 16 hours equilibration period.  

3 April_17_2018_T4 30 8.5 -27.75 0.1598 17.88735932 0.1735 Temperature set to 30C, 8.5 tris buffer pH. 16 hours equilibration period.  

3 April_19_2018_T5 30 8.5 -29.91 0.8301 17.15489776 0.4257 Temperature set to 30C, 8.5 tris buffer pH. 16 hours equilibration period.  

3 April_24_2018_T6 25 9.5 -22.84 0.0382 14.04721957 0.0015 Temperature set to 25C, 9.5 tris buffer pH. 16 hours equilibration period.  

3 April_26_2018_T7 25 9.5 -23.54 0.1131 15.98996946 0.0525 Temperature set to 25C, 9.5 tris buffer pH. 16 hours equilibration period.  

3 May_8_2018_T8 25 9.5 -30.18 0.1075 13.18898699 0.0146 Temperature set to 25C, 9.5 tris buffer pH. 16 hours equilibration period.  

3 May_10_2018_T9 25 8.5 -30.84 1.5019 15.15029327 0.3076 Temperature set to 25C, 8.5 tris buffer pH. 16 hours equilibration period.  

3 May_15_2018_T10 25 9.2 -30.86 0.0665 13.36888079 0.0773 Temperature set to 25C, 9.2 tris buffer pH, 0.5M NaHCO3 stock solution 

(1L volume). 16 hours equilibration period. 

3 May_17_2018_T11 25 9.2 -31.65 0.0368 13.37712807 0.0364 Temperature set to 25C, 9.2 tris buffer pH, 0.5M NaHCO3 stock solution 

(1L volume). 16 hours equilibration period. 

3 May_22_2018_T12 25 8.5 -28.60 0.0495 16.76469833 0.0889 0.2M BaCl2 concentration, 8.5 tris buffer pH, temperature set to 25C. 16 
hours equilibration period. 

3 May_30_2018_T13 25 8.5 -27.72 0.0509 17.18737143 0.1006 0.2M BaCl2 concentration, 8.5 tris buffer pH, temperature set to 25C. 16 

hours equilibration period. 

3 June_5_2018_T14 25 7.5 -27.81 0.0453 18.20281778 0.1152 8 hours equilibration time, 7.5 tris buffer pH, 2M NaHCO3 stock solution 
concetration (1L volume), temperature set to 25C 

3 June_6_2018_T15 25 7.5 -27.04 0.2814 17.41050159 0.3238 7.5 tris buffer pH, 2M NaHCO3 stock solution concentration (1L volume), 
temperature set to 25C, 16 hours equilibration period. 

3 JUNE_19_2018_T16  25 7.5 -29.47 0.4455 17.6126218 0.3499 7.5 tris buffer pH, 2M NaHCO3 stock solution concentration (1L volume), 

temperature set to 25C but water bath cooled to 10C, carried out experiment 
despite temperature change. 16 hours equilibration period.  

3 JUNE_26_2018_T17 25 7.5 -23.85 0.4709 17.736331 0.6911 7.5 tris buffer pH, 2M NaHCO3 stock solution concentration (1L volume), 

temperature set to 25C. 16 hours equilibration period. 

3 JUNE_28_2018_T18  25 7.5 -27.78 0.3068 18.5867699 0.1868 7.5 tris buffer pH, 2M NaHCO3 stock solution concentration (1L volume), 
temperature set to 25C. 16 hours equilibration period. 

3 JULY_2_2018_T19 25 8.5 -23.07 0.4681 16.55439269 0.3893 8.5 tris buffer pH, 1M NaHCO3, temperature set to 25C. 16 hours 
equilibration period. 

3 JULY_8_2018_T20 25 8.5 -23.71 0.4285 15.04410954 0.0685 8.5 tris buffer pH, 1M NaHCO3, temperature set to 25C. 16 hours 

equilibration period. 

3 JULY_10_2018_T21 25 9.0 -23.03 0.1216 15.67399555 0.121 9.0 tris buffer pH, 1M stock solution concentration (1L volume), temperature 
set to 25C. 16 hours equilibration period. 

3 JULY_12_2018_T22 25 9.0 -31.33 0.0057 13.19723427 0.2858 9.0 tris buffer pH, 1M stock solution concentration (1L volume), temperature 

set to 25C. 16 hours equilibration period. 

4 JUL31_1A_2018 18 8.0 -30.51 0.1409 17.03177992 0.0117 Temperature of waterbath and stock solution=15C, actual temperature during 

reaction = 18°C, 21 hours equilibration time. pH 8, 1M NaHCO3 stock 
solution concentration. Started using syringe seal method (no stopping pump 
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when inputting reactor solution to maintain closed system) -  used pump test 
to assure no leaks 

4 AUG5_1B_2018 18 8.0 -31.78 0.2011 17.4268655 0.2006 Dulicate run of JUL31_1A_2018 

4 AUG14_2A_2018 25 8.0 -29.95 0.0474 20.13714341 0.1642 T=25C, using 0.4M HEPES buffer with pH 8.0, 16 hours equilibration time 

4 AUG20_2B_2018 25 8.0 -27.75 0.0161 18.75373723 0.147 Duplicate run of AUG14_2A_2018 

4 OCT11_3A_2018 25 8.0 -29.76 1.1063 17.24090965 0.0427 The first out of 4 runs under the following conditions: pH 8, T=25C, 16 

hours equilibration time, tris buffer.  

4 OCT17_3B_2018 25 8.0 -29.03 0.0512 18.76019501 0.1222 Duplicate 2 out of 4 

4 OCT19_3C_2018 25 8.0 -29.09 0.0804 18.81784988 0.0026 Duplicate 3 out of 4 

4 OCT23_3D_2018 25 8.0 -30.29 0.0311 17.98842639 0.1655 Duplicate 4 out of 4 

4 OCT25_4A_2018 25 8.0 -32.22 0.2232 20.07582386 0.2128 pH 8, T=25C, using HEPES buffer - possible air leak from bad seal on a tube 

4 OCT30_4B_2018 25 8.0 -29.86 0.0302 19.07163178 0.0774 Duplicate run of OCT25_4A_2018 

4 NOV7_5A_2018 25 8.0 -29.39 0.161 18.46816709 0.144 pH 8, T=25C, 16 hour equilibration period, tris buffer.  

4 NOV14_5B_2018 25 8.0 -29.80 0.4068 19.39879897 0.0728 Duplicate run of NOV7_5A_2018 
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Table A2. Initial mass of Ba measured from BaCl2•2H2O crystals and final mass of precipitated BaCO3 sample for all for 
batches. Moles of Ba were calculated from both the initial mass of Ba and final mass of Ba then subtracted to yield the 

remaining moles of Ba in solution.  

  

Batch # Sample Name Initial Mass Ba (g) Initial (moles Ba)
BaCO3 Sample 

Weight (g)

Final (Moles Ba 

from BaCO3)

Initial - Final 

(moles Ba)

2 12_5_TEST1 0.5048 0.003676 n/a n/a n/a

2 12_11_TEST2 0.4975 0.003623 0.037309 0.000272 0.003351

2 12_13_TEST3 0.4803 0.003497 0.019230 0.000140 0.003357

2 1_9_Test4 0.4682 0.003409 0.125090 0.000911 0.002498

2 1_16_Test5 0.4883 0.003556 0.048749 0.000355 0.003201

2 1_18_Test6 0.4917 0.003580 0.002519 0.000018 0.003562

2 2_5_Test7 0.4908 0.003574 0.062690 0.000456 0.003117

2 2_12_Test8 0.4900 0.003568 0.112010 0.000816 0.002752

Averages [g] or [moles] 0.4867 0.003544 0.058228 0.000424 0.003120

Batch # Sample Name Initial Mass Ba (g) Initial (moles Ba)
BaCO3 Sample 

Weight (g)

Final (Moles Ba 

from BaCO3)

Initial - Final 

(moles Ba)

1 AUG21_2017TEST1 0.7317 0.005328 0.008400 0.000061 0.005267

1 AUG22_2017TEST2 0.7396 0.005386 0.014800 0.000108 0.005278

1 AUG23_2017TEST3 0.4900 0.003568 0.008500 0.000062 0.003506

1 AUG24_2017TEST4 0.4901 0.003569 0.009500 0.000069 0.003500

1 AUG25_2017TEST5 0.2488 0.001812 0.005100 0.000037 0.001775

1 AUG29_2017TEST6 0.2577 0.001877 0.006300 0.000046 0.001831

1 AUG31_2017TEST7 0.2542 0.001851 0.040900 0.000298 0.001553

1 SEPT5_2017TEST8 0.2541 0.001850 0.082800 0.000603 0.001247

1 SEPT7_2017TEST9 0.4923 0.003585 0.045700 0.000333 0.003252

1 SEPT14_2017TEST11 0.4757 0.003464 0.064300 0.000468 0.002996

1 SEPT18_2017TEST12 0.7353 0.005354 0.075900 0.000553 0.004802

1 SEPT26_2017TEST14 0.9518 0.006931 0.149700 0.001090 0.005841

1 SEPT27_2017TEST15 0.9526 0.006937 0.175500 0.001278 0.005659

1 OCT3_2017TEST16 0.9513 0.006927 0.087900 0.000640 0.006287

1 OCT5_2017TEST17 0.9517 0.006930 0.044200 0.000322 0.006608

Averages [g] or [moles] 0.5985 0.004358 0.054633 0.000398 0.003960
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Batch # Sample Name Initial Mass Ba (g) Initial (moles Ba)
BaCO3 Sample 

Weight (g)

Final (Moles Ba 

from BaCO3)

Initial - Final 

(moles Ba)

3 April_4_T1 0.4951 0.003605 0.053399 0.000389 0.003216

3 April_6_T2 (T1 duplicate) 0.4910 0.003575 0.111730 0.000814 0.002762

3 April_12_T3 0.4947 0.003602 0.039770 0.000290 0.003313

3 April_17_T4 (T3 duplicate) 0.4812 0.003504 0.028480 0.000207 0.003297

3 April_19_T5 (T3 duplicate) 0.4909 0.003575 0.054200 0.000395 0.003180

3 April_24_T6 0.4939 0.003596 0.053729 0.000391 0.003205

3 April_26_T7 (T6 duplicate) 0.4851 0.003532 0.137450 0.001001 0.002531

3 May_8_T8 (T6 duplicate) 0.4848 0.003530 0.023720 0.000173 0.003357

3 May_10_T9 0.4986 0.003631 0.025549 0.000186 0.003445

3 May_15_T10 0.4982 0.003628 0.092319 0.000672 0.002956

3 May_17_T11 (T10 duplicate) 0.4856 0.003536 0.026589 0.000194 0.003342

3 May_22_T12 0.9894 0.007205 0.008669 0.000063 0.007141

3 May_30_T13 (T12 duplicate) 0.9797 0.007134 0.023339 0.000170 0.006964

3 June_5_T14 0.4891 0.003561 0.136720 0.000996 0.002566

3 June_6_T15 0.4856 0.003536 0.046750 0.000340 0.003196

3 JUNE_19_T16 0.4996 0.003638 0.021369 0.000156 0.003482

3 JUNE_26_T17 0.4974 0.003622 0.061670 0.000449 0.003173

3 JUNE_28_T18 (T17 duplicate) 0.4945 0.003601 0.090880 0.000662 0.002939

3 JULY_2_T19 0.4875 0.003550 0.170060 0.001238 0.002312

3 JULY_8_T20 (T19 duplicate) 0.4886 0.003558 0.089730 0.000653 0.002904

3 JULY_10_T21 0.4967 0.003617 0.051580 0.000376 0.003241

3 JULY_12_T22 (T21 duplicate) 0.4961 0.003612 0.063149 0.000460 0.003153

Averages [g] or [moles] 0.5365 0.003907 0.064130 0.000467 0.003440

Batch # Sample Name Initial Mass Ba (g) Initial (moles Ba)
BaCO3 Sample 

Weight (g)

Final (Moles Ba 

from BaCO3)

Initial - Final 

(moles Ba)

4 JUL31_1A_2018 0.4854 0.003535 0.043399 0.000316 0.003219

4 AUG5_1B_2018 0.4806 0.003500 0.041173 0.000300 0.003200

4 AUG14_2A_2018 0.4890 0.003561 0.038770 0.000282 0.003278

4 AUG20_2B_2018 0.4899 0.003567 0.038480 0.000280 0.003287

4 OCT11_3A_2018 0.4988 0.003632 0.058995 0.000430 0.003203

4 OCT17_3B_2018 0.4920 0.003583 0.048373 0.000352 0.003230

4 OCT19_3C_2018 0.4933 0.003592 0.053845 0.000392 0.003200

4 OCT23_3D_2018 0.4891 0.003561 0.043614 0.000318 0.003244

4 OCT25_4A_2018 0.4906 0.003572 0.046548 0.000339 0.003233

4 OCT30_4B_2018 0.5091 0.003707 0.053429 0.000389 0.003318

4 NOV7_5A_2018 0.4909 0.003575 0.048587 0.000354 0.003221

4 NOV14_5B_2018 0.4947 0.003602 0.046874 0.000341 0.003261

Averages [g] or [moles] 0.4920 0.0036 0.0468 0.0003 0.0032
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Batch # n 
Temperature 

(°C) 
pH 𝐊𝐈𝐅𝐂𝐎𝟐(𝐠)−𝐁𝐚𝐂𝐎𝟑 

𝟏𝟑  (‰) 𝐊𝐈𝐅𝐇𝐂𝐎𝟑
−

(𝐢𝐧𝐬𝐭𝐚𝐧𝐭)−𝐁𝐚𝐂𝐎𝟑 
𝟏𝟖  (‰) 𝐊𝐈𝐅𝐂𝐎𝟐(𝐠)−𝐁𝐚𝐂𝐎𝟑 

𝟏𝟖  (‰) 

1 13 21 8.2 19.01527401 5.066384439 18.74043201 

1 2 21 10.3 14.84607724 8.721872782 22.44565371 

2 6 21 8.0 19.68518172 7.667084107 21.37651451 

2 2 21 9.0 14.68712074 9.806589383 23.54512801 

3 5 25 7.5 16.51054333 6.229833716 19.66472916 

3 3 30 8.5 19.16149551 5.878301548 18.99899103 

3 7 25 8.5 17.25114666 7.844652521 21.30110857 

3 2 25 9.0 16.5145848 9.677238988 23.15816321 

3 2 25 9.2 20.77503467 10.73446243 24.2295024 

3 3 25 9.5 14.77486575 9.7038391 23.18511848 

4 2 18 8.0 20.30823905 7.049878372 21.73789001 

4 10 25 8.0 19.6152262 5.280787852 18.87114422 

Table A3. Average 13KIFs and 18KIFs during CO2 hydration for batches 1-4. KIFs are organized by temperature and pH. The value of n 

represents the amount of samples used to calculate the average KIFs at various parameters specified for each batch. 
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