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ABSTRACT 
 
Coral size structure distributions (i.e. the distribution of individual colony sizes within a 

population) have been shown to vary between and among populations exposed to different 

environmental regimes and disturbance histories. Subsequently, assessing size structure spatio-

temporal variability in relation to biogeophysical factors can provide insight into underlying 

mechanisms driving spatial patterns observed in coral populations. A total of 22 species of coral 

are now listed as threatened under the U.S. Endangered Species Act (ESA); however species 

level data on demographic processes and responses of corals to threats needed for effective 

management is deficient.  This includes:  1) quantitative assessments of population status, and 2) 

identification of potential environmental drivers that influence the status of a given species. 

Here, analysis of a rare ESA-listed species, Isopora crateriformis (Isopora spp. used as a proxy), 

and an abundant species, Montastrea curta, from a 2015 NOAA Ecosystem Sciences Division 

(ESD) survey across five islands in American Samoa (within 0 – 30m depth range) was used to 

determine spatial variation in population size structure patterns across two spatial scales (site- 

and strata-level resolution). Using co-located data available, a range of environmental (e.g. 

benthic geomorphology), oceanographic (e.g. temperature, wave energy), biological (e.g. benthic 

cover), and anthropogenic impact covariates were collated and synthesized at comparable spatial 

scales to the coral population data. Generalized modeling and multi-model inference were used 

to evaluate the strength and magnitude of the relationship between biogeophysical/anthropogenic 

covariates (explanatory covariates) and size distribution parameter estimates (response variable) 

for each coral species. Due to its versatility and effectiveness, the Weibull distribution was used 

to characterize the observed size spectra and the distribution shape parameter, k, was used as the 

size spectra response metric in statistical modeling. Analyses reveal that i) size structure spatially 
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varied among and between species and ii) modeled biogeophysical relationships varied 

significantly between species. Mean net carbonate accretion rate and net carbonate accretion rate 

variability (i.e. net carbonate accretion rate coefficient of variation), in addition to 

geomorphological slope and slope variability, accounted for a large proportion of spatial 

variation in the Isopora spp. site-level size spectra (R2 = 58%). For Isopora spp. strata-level 

analysis, wave energy and mean accretion rate explained a large proportion of spatial variation 

(R2 = 46%). In contrast, for Montastrea curta site-level analysis, irradiance (photosynthetically 

active radiation), percent coral cover, wave energy, mean depth, M. curta juvenile abundance, 

and SST explained a large proportion of spatial variation in the size spectra (R2 = 45%). For M. 

curta strata-level analysis, irradiance, mean accretion rate, SST, and wave energy explained a 

large proportion of spatial variation (R2 = 57%). Our results suggest that the Weibull shape 

parameter, k, is a reliable metric that captures variability in the coral size distribution and that 

species-specific biogeophysical factors explain coral size structure variability across space. 
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1. INTRODUCTION 
 

Within the marine environment, coral reefs are among the most threatened global 

ecosystems, and among the most vital (Costanza et al. 1997, Bryant et al. 1998, Reaser et al. 

2000, Wilkinson 2000). Reefs are of critical global importance, especially in developing 

countries, as they provide subsistence food for a large portion of populations, serve as primary 

structures for coastal protection for many tropical islands, and contribute major income and 

foreign exchange from tourism (Costanza et al. 1997, Wells et al. 2001, Salm et al. 2001). The 

value of biological resources (e.g. fisheries) and services (e.g. tourism earnings and coastal 

protection) provided by coral reefs has been estimated at ~ $375 billion annually (Costanza et al. 

1997). Coral reefs also provide habitat for some of the greatest biodiversity globally (Ray 1988).  

Crustose coralline algae and scleractinian corals are the foundational benthos which 

deposit calcium carbonate, acting to consolidate reef substrate and enable coral reef development 

and persistence (e.g. Littler and Littler 1984). Both physical and biological processes naturally 

structure coral reef communities over various spatial and temporal scales (Brown 1997, Done 

1999). Environmental processes influence coral reef ecosystem functioning including coral 

growth rates, extent, abundance, morphology, and diversity (Brown 1997). Thus, in studies or 

assessments of the state of coral reefs, it is important to consider both spatial (e.g. depth, 

location) and temporal variations in environmental conditions (Anthony & Larcombe 2002). 

Coral cover has commonly been used as a composite metric to measure stony coral 

abundance in coral reef community structure and theoretically represents the net outcome of 

population dynamic rate processes (i.e. recruitment, growth, and survivorship; Smith et al. 2011). 

However, studies of total coral cover alone may not accurately determine changes in reef 

composition and species dominance (Franklin et al. 2013), and do not directly represent the 



 2 

population dynamic processes themselves (Smith et al. 2011) or possibly reef health. Instead, 

colony size is an important characteristic for scleractinian corals as many life history processes, 

such as growth, reproduction and mortality, are strongly related to size (Connell 1973, Hughes 

and Jackson 1980, Hall and Hughes 1996). An organism’s body size reflects its energetic 

requirements, resource utilization, and its potential in competition (Werner and Gilliam 1984). 

Within populations and between species, variation in body size is a significant way to avoid 

overlap in resource use (Schoener 1974) and can act as a driving mechanism in structuring 

community composition (Brooks and Dodson 1965, Hall et al. 1976). A collapse or disruption in 

the size structure distribution (i.e. numbers at size) of a population can limit the population’s 

capacity for population replenishment and leave it vulnerable to environmental disturbances, 

ultimately altering the population’s resilience (Haedrich and Barnes 1997). For clonal organisms, 

such as corals, biological processes are more closely tied to size than age (Connell 1973, Loya 

1976, Hughes & Connell 1987, Szmant 1991, Soong 1993). This stems from corals exhibiting 

fragmentation, fission, fusion, and partial mortality throughout their life cycle (Bak 1975, 

Highsmith et al. 1980, Hughes & Jackson 1980, 1985, Meesters et al. 1996, 1997), which 

contributes to the decoupling of size and age (i.e. individuals of the same size may be a different 

age). Thus, size is a better representation of population structure and dynamics (Meesters et al. 

2001).  

Coral reef community structure and composition are likely to be determined by the 

interaction of multiple forcing functions operating on a variety of scales (Murdoch and Aronson 

1999). The size structure of coral populations may vary with different management regimes and 

fishing pressure (McClanahan et al. 2008) and within-species size structure may vary among 

populations exposed to different environmental conditions and disturbance histories (Meesters et 
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al. 2001, Bauman et al. 2013b). Subsequently, assessing size structure dynamics enables 

comparison of key population demographics (differences among individuals and species, growth, 

mortality, and reproduction) to evaluate effects from ecological processes and environmental 

conditions over a range of spatial and temporal scales (Bak and Meesters 1998, 1999, Meesters 

et al. 2001). 

Several spatial and environmental variables have been noted as influencing coral species 

size structure, distribution, growth and community structure. Most notably, and recognized in 

early studies of global coral reef distribution, limiting environmental variables include light, 

temperature, salinity, sedimentation, and hydrodynamic factors (Glynn 1976, Achituv and 

Dubinsky 1990, Brown 1997, Kleypas et al. 1999, Lirman et al. 2003, Done, 2011). Collectively, 

these factors can affect coral reef growth rate, extent, form and reproduction, ultimately affecting 

the overall abundance, composition and diversity of reef communities (Brown 1997, Kleypas et 

al. 1999, Done 2011).  

Coral community growth and tolerance limitations have long been synonymous with 

ocean temperature variability. The sensitivity of corals and their symbiotic zooxanthellae to 

elevated ocean temperatures has been documented extensively (e.g. Hoegh-Guldberg 1999). 

Thermal stress can cause coral bleaching where partial and total mortality from bleaching events 

has resulted in large-scale loss of coral cover, change in coral community structure, and declines 

in reef health (Baker et al. 2008). Slower coral growth rates have been linked to higher sea 

surface temperatures and an increase in the frequency of mass bleaching events (Bauman 2013b) 

and size-dependent responses to bleaching include a higher likelihood of survival for recruits and 

small/juvenile coral colonies versus larger colonies (Mumby 1999, Loya et al. 2001, Shenkar et 

al. 2005). Under projected changing global conditions and rates of ocean warming, thermal 
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tolerance limits of reef building corals could be exceeded altering physiological and genetic 

adaptability in coral populations (Glynn 1993).  

Light attenuation affects the growth and survival of coral communities as coral reefs have 

minimum light requirements. Variability in light attenuation explains reduced reef calcification 

with depth (Kleypas et al. 1999) and seasonally low light penetration at higher latitudes could 

limit reef calcification and growth to shallower depths than observed in the tropics (Grigg 1982). 

Reduced aragonite saturation and light penetration, both of which co-vary with temperature, are 

thought to be a limiting factor in reef development (Kleypas et al. 1999) as carbonate saturation 

is most likely a significant factor in controlling reef calcification and photosynthesis 

(Buddemeier 1994). 

Wave energy and exposure have also been significant contributors to coral reef 

community spatial distribution and structure (Dollar 1982, Done 1982, van Woesik and Done 

1997, Franklin et al. 2013). Disturbance caused by wave energy and storm frequency were found 

to be the primary driver structuring coral reefs in the Hawaiian Islands (Dollar 1982, Grigg 1983, 

Engels et al. 2004, Jokiel et al. 2004, Storlazzi et al. 2005) and storm severity can alter coral size 

structure distributions, increasing probability for dislodgement in larger size classes (Done and 

Potts 1992). Wave energy and exposure in conjunction with benthic geomorphology can also 

alter coral population size structure distributions. Higher proportions of small coral colonies at 

shallower depths has been attributed to decreasing hydrodynamic pressure with increasing depth 

which inhibits development of large colonies due to strong water motion (Adjeroud et al. 2015). 

Declines in coral reefs have been recurrently tied to human rather than natural causes. 

Fishing pressure may affect coral size structure and reduce coral growth by negatively impacting 

herbivorous fish populations and subsequently altering competitive interactions with algae 
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(McCook et al. 2001). Poor water quality has been found to lower the radiation tolerance of 

scleractinian corals (Wooldridge 2009) and has been linked to a reduction in coral recruitment 

and the abundance of small colonies yielding populations with fewer small colonies, lower 

variance, and overly centralized size distributions (Meesters et al. 2001). While eutrophic 

conditions have typically been associated with anthropogenic activities, recent evidence suggests 

that natural enhanced levels of chlorophyll-a may positively influence coral reef ecosystems 

(Gove et al. 2013) through an increase in availability of nutrients important for the growth and 

development of some benthic organisms, such as corals (e.g. Sebens et al. 1996, Leichter and 

Genovese 2006). Hence the influences of chlorophyll-a on coral reef ecosystems may be 

geographically specific (Gove et al. 2013) and covary with anthropogenic influence.  

  Much of this research has indicated the significance in understanding the responses of 

coral populations to environmental variation, especially in a changing climate, however little 

work has been done to identify environmental variables associated with coral size distributions 

(but see: Adjeroud et al. 2015, Bauman et al. 2013a, 2013b, Crabbe 2009). Additionally, using 

coral size structure distributions in relation to environmental variables has presented challenges 

due to the absence of a single robust metric to quantitatively describe the shape of coral size 

structure distributions. With increasing changes in the global climate, consequential instabilities 

in a range of environmental variables are predicted to affect the growth rate, growth form, and 

reproductive capacity of corals (Brown 1997, Kleypas et al. 1999). Additionally, changing global 

conditions are projected to affect the size structure of coral populations, primarily affecting 

recruits and smaller size classes, which would shift distributions towards larger size classes with 

lower variance and more centralized distributions (Bak and Meesters 1999). Thus, investigating 

the size structure of coral populations at various spatial and temporal scales with a single, robust 
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size structure metric can provide important insight into how populations have been affected by 

local environmental conditions and/or recent disturbance events (Bak and Meesters 1999, 

Meester et al. 2001). 

In this context, the purpose of this research was to investigate biophysical relationships 

by identifying variation in coral population size structure distribution metrics that can be 

explained by environmental and anthropogenic variables. Two coral species with contrasting 

spatial size structure and abundance patterns were examined across five American Samoa 

island/atoll coral reef systems with varying environmental, biological, and anthropogenic 

gradients. Using a statistical modeling framework, I examine coral size distribution parameters in 

relation to a range of factors – temperature, irradiance, primary productivity, wave energy, 

benthic community cover, calcification accretion rates, coral juvenile abundance, slope, human 

population density – to identify and assess the underlying mechanisms driving coral population 

size structure patterns and spatial distributions. 

Size distribution parameter estimates at both site- and stratum-level spatial resolutions 

were used to examine biophysical relationships. In contrast to site-specific estimates, stratum-

level population estimates are converted from site-level estimates, using robust statistical survey 

designs (Smith et al. 2011, Swanson 2011), and allow for assessment of coral populations at the 

ecosystem scale. Stratum-level analysis, hereafter referred to as ‘Habitat Use Analysis’ (HUA), 

can potentially provide more relevant and robust estimates of size structure variability and, 

hence, was used in addition to site-level analysis. 

This thesis will address a number of research questions including: 

1) How does coral population size structure vary?  

2) What are the potential biophysical factors influencing coral population size structure 
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variability (inter-regional and intra-island) in the American Samoa island complex?  

3) How do relevant factors vary across species? 

Research questions will be addressed by testing the following hypothesis: 

Variation in coral population size structure can be explained by variability in biophysical 

factors (oceanographic, geomorphological and biological factors, and species-specific 

characteristics). (Null hypothesis: there is no relationship between coral population size-

structure and biophysical factors.) 
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2. METHODS 
 

To examine spatial variability in the size structure of each coral species in relation to 

environmental, biological, and anthropogenic factors, it is necessary to i) establish a robust 

metric that is able to capture variability among size spectra and ii) estimate the biophysical 

factors that influence coral population structure on relevant time and space scales. To obtain a 

size spectra metric, various size structure distribution fits were statistically assessed and a 

relevant parameter was selected based on these results (see section 2.2 Coral size structure 

characterization, subsection ‘Coral size structure metric’). In the interest of investigating coral 

populations at both site- and ecosystem-scales, size distribution parameters were estimated for 

each spatial resolution (see section 2.2 Coral size structure characterization, subsection ‘Coral 

size structure spatial resolution’). Descriptive statistics for each size distribution, median size 

and skewness, were also generated to examine how variability in the chosen size spectrum 

parameter corresponded with variability in median size and skewness. Using co-located data 

available, a range of environmental, biological, and anthropogenic covariates were collated and 

synthesized at comparable spatial scales to the coral population data (see section 2.3 Biophysical 

characterization). Finally, generalized modeling and multi-model inference is used to evaluate 

the strength and magnitude of the relationship between the environmental, biological, and 

anthropogenic covariates (explanatory covariates) and the size distribution parameters (response 

variable) for each coral species and at each spatial resolution (see section 2.4 Biophysical 

statistical analyses). 

2.1 Study location 

Coral size spectra variability is examined across American Samoa which consists of four 

main volcanic islands, one low-lying island, and one atoll situated in the central tropical South 
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Pacific at approximately 14° S and 170° W (Figure 1). The four volcanic islands are part of a 

hotspot chain, which includes the islands of independent Samoa and several seamounts to the 

west as well as ridges extending to the southeast of two American Samoa islands and an active 

underwater volcano to the east. Swains Island and Rose Atoll are much older than the volcanic 

islands and are not geologically related (Fenner et al. 2008). In addition to Rose and Swains, the 

islands of Tutuila and the Manu’as (Ofu, Olosega, Ta’u) will be used in this study, together 

comprising the “American Samoa island complex”. Tutuila is the largest and most populated 

island (~ 66,900 in 2007) followed by Ta’u, and Ofu/Olosega (human populations ~ 790 and 353 

respectively; Fenner et al. 2008). Swains Island is small, about 1.5 miles long, and exhibits a 

transient human population of about 17. Rose Atoll is uninhabited with 20 acres of land and is 

protected as part of the Pacific Remote Islands National Wildlife Refuge Complex 

(http://www.fws.gov/refuge/rose_atoll/). A National Park is distributed across American 

Samoa’s three main islands, consisting of approximately 4,448 acres of coral reef area 

(http://www.nps.gov/npsa/index.htm). 

American Samoa lies within the westward-flowing Pacific South Equatorial Current 

(SEC), characterized by warm (28-30°C), oligotrophic surface waters with a deep mixed layer, 

and is seasonally impacted by episodic long period swells originating from both hemispheres 

(Fenner et al. 2008). The islands exhibit narrow reef flats with shallow water environments (0-30 

m) consisting mainly of fringing coral reefs, with spur and groove formations common on the 

reef slopes of Tutuila and the Manu’as. Rose Atoll has a large (1,600 acres) central lagoon 

enclosed by a fringing reef with a steep forereef slope, with a single channel connecting the 

lagoon to the deep ocean. 



 10 

The coral reef communities in American Samoa are relatively diverse with approximately 

288 reef-building coral species (Birkeland et al. 2007). Coral communities appear to maintain 

resilience from acute disturbances and appear to be in good condition, despite being historically 

severely affected by large-scale disturbances including predation by outbreaks of crown-of-thorn 

starfish (Acanthaster planci), hurricanes, and warming-induced coral bleaching (Birkeland et al. 

2007).  Human activity has contributed to declines in reef health at the sub-island scale including 

chronic sedimentation from high-island watershed run-off and fishing pressure (Birkeland et al. 

2007, Fenner et al. 2008). Over the past few years, coral reef communities on Tutuila have been 

impacted by crown-of-thorn outbreaks, which have propagated to some of the other islands. In 

2014, NOAA listed 20 new coral species as threatened under the Endangered Species Act (ESA), 

including 15 species in the Indo-Pacific 

(http://www.nmfs.noaa.gov/stories/2014/08/corals_listing.html). Eight of these species are 

thought to occur in American Samoa. 

2.2 Coral size structure characterization 

Coral survey data and species 

Coral population data from ESD’s (Ecosystem Sciences Division) benthic REA (Rapid 

Ecological Assessment) surveys from Reef Assessment and Monitoring Program (RAMP) 

cruises (2002-2015) (http://www.pifsc.noaa.gov/cred/pacific_ramp.php) is used to examine size 

structure across the American Samoa island complex. Benthic REA surveys of corals are 

conducted on shallow-water coral reefs, from 0 to 30 m depth, and focus on the distribution, 

abundance, population structure, and condition of corals. Data collected include individual 

colony identification, life-stage (juvenile, fragment, adult), morphology, size (maximum 

diameter), partial morality, and condition. For coral colony size, because maximum diameter is 
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highly correlated with total surface area, only one size metric (maximum diameter) is obtained 

during surveys. For this research, the maximum diameter for individual coral colonies is used to 

characterize individual coral size. 

Two coral species of contrasting abundance, Isopora crateriformis (Figure 2) and 

Montastrea curta (Figure 3), are used in this study. In 2014, I. crateriformis was listed as 

threatened under the ESA and was the most abundant and widespread ESA-listed species 

observed during ESD’s 2015 survey effort in American Samoa. As I. crateriformis was not 

consistently identified at the species-level across all surveys (due to the similarity to I. cuneata 

when both exhibit an encrusting morphology), quantitative assessment of the genus Isopora is 

used as a proxy, which can provide relevant demographic information about I. crateriformis. 

Complementary assessment of an abundant coral species, Montastrea curta, can further yield 

relevant comparable estimates with Isopora spp.  

Within the past 4 years, NOAA’s ESD has incorporated a probabilistic survey design for 

corals, employing a two-stage stratified random sampling design with a stratification scheme that 

includes reef zone, depth, and habitat structure. The purpose of this design is to provide a robust 

framework for estimating population-level metrics, to obtain high precision estimates at low 

sample sizes, and to avoid potential bias by randomly selecting sample locations (Smith et al. 

2011). ESD has also incorporated habitat-use analysis (see details in ‘Coral size structure spatial 

resolution’ subsection below), following Swanson 2011, which functions as the quantitative 

foundation to integrate both environmental and biological data to investigate relationships across 

space and time. Due to this change in sampling methodology and data constraints prior to 2015 

in American Samoa, only coral population data from the 2015 RAMP cruise is used. As such, 

my research focuses on assessment of coral populations in space (versus time) and provides a 
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snap shot in time. In spite of this limitation, the analyses proposed in this research have the 

potential to establish a quantitative pathway for future use, investigating biophysical 

relationships using coral size distributions, and will be critical in determining the essential 

habitats and respective environmental drivers for coral populations.  

Coral size structure metric 

The size distribution is used to quantify coral population structure and describes the 

frequency of occurrence of different coral size classes. Various analytic distributions (power law, 

lognormal, exponential, gamma, and Weibull distributions) and parameters that characterize the 

size distribution (e.g. mean, maximum, minimum and median size, standard deviation, skewness, 

kurtosis) were tested. Candidate distributions and their parameter estimates were fit using 

maximum likelihood estimation and distributions were assessed and compared with goodness-of-

fit tests (Cramer-von Mises, Kolmogorov-Smirnov and Anderson-Darling statistics, D’Agostino 

and Stephens 1986; Akaike and Bayesian information criteria) using the fitdistrplus package 

(Delignette-Muller and Dutang 2015) in R v3.2.3 (R Development Core Team, 2015).  

The Weibull distribution was the best-fit distribution and is a comprehensive metric that 

captures other size characteristics such as median size and skewness (see below), and thus 

selected to quantify coral size structure. The Weibull distribution has been widely used in 

survival analysis (e.g. Mudholkar et al. 1996) to model the lifetime of an object and reliability 

engineering (e.g. Jiang and Murthy 2011) due to its versatility and flexibility as a frequency 

distribution. Weibull distributions have also been used to quantitatively describe size structure 

distributions and life data in ecology such as tree diameter frequency distributions (e.g. Muller-

Landau et al. 2006, Zhang et al. 2003) and survivorship of individual plants and animals in 

natural populations (Pinder III et al. 1978). 
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Coral size data for individual coral colonies was fit to a Weibull distribution with probability 

density function 

f(x) = (k/λ) (x/λ)k-1  e ^ (-(x/λ)k) 

x ≥ 0 ; k > 0, λ > 0 

where k is the shape parameter and λ is the scale parameter. Because variability in the shape 

parameter, k, (also known as the Weibull slope) can have a strong effect on the behavior and 

shape of the distribution and more effectively captures variability in the distribution shape 

(compared to the scale parameter, λ), this parameter was chosen as the representative coral size 

structure metric and used as the response variable in the statistical model. Prior to generating the 

shape parameter metric for each distribution, size data was log-transformed to increase resolution 

amongst the smaller size classes and emphasize variability in the response at the low end of the 

size-frequency distribution (sensu Bak and Meesters 1998, 1999).  

In most empirical analyses of coral population size distributions, the parameters mean 

and median size, standard deviation, kurtosis, and skewness have typically been used to quantify 

and assess distribution variability amongst populations, between species, and in space (e.g. Bak 

and Meesters 1998, 1999, Meesters et al. 2001, Adjeroud et al. 2015). Variability in mean size 

within species has been shown to vary significantly spatially indicating that colony size is mostly 

influenced by differences in the environment (e.g. Meesters et al. 2001, Bauman et al. 2013b). 

With respect to skewness (asymmetry around the mean of a frequency distribution), the size 

structure of coral populations has been shown to be positively skewed (e.g Soong 1993, Oigman-

Pszczol and Creed 2004) where distributions consist primarily of smaller colonies and relatively 

few large ones. In contrast, negatively skewed distributions exhibit a high frequency of larger 

colonies and relatively few smaller/juvenile colonies, which may indicate a lack of successful 
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recruitment and implies a risk of population decline (Meesters et al. 2001, Guzner et al. 2007, 

Alvarado-Chacon and Acosta 2009). Here, median size and skewness parameters were generated 

to examine how variability in the size spectra shape parameter corresponds with variability in 

median size and skewness. These comparisons were used to further characterize spatial 

variability in the size distribution for each coral species. 

Only adult coral size structure distributions (≥ 5 cm maximum diameter) will be assessed 

in this study. Spatio-temporal variation in adult and juvenile coral populations infers variability 

in growth and survival between these two life-stages and, subsequently, the abundance and size 

structure of both life-stages should be examined separately (Swanson 2011). To examine the 

effects of juvenile influx and survival on adult coral size structure distributions, juvenile 

abundance will be used as an explanatory covariate in statistical modeling (see section 2.3.3 

Biological Data for details).  

Coral size structure spatial resolution  

Coral size structure, density, and abundance estimates were made for Isopora spp. and 

Montastrea curta in the American Samoa island complex. Isopora spp. (n = 813 colonies) was 

present only on the islands of Tutuila, Ofu and Olosega, and Tau whereas Montastrea curta (n = 

1,526 colonies) was present at all islands and Rose Atoll. Weibull shape parameter metrics were 

estimated for each coral population at two intra-island spatial scales (Table 1): shape parameter 

estimates at the raw site-level scale (Figure 4.1) and shape parameter estimates at the stratum-

level (based on spatial strata designations via Habitat Use Analysis (HUA)) (Figure 4.2). 

Because a minimum of five data values is required to generate Weibull distribution parameter 

estimates, strata with a sample size less than five were excluded from analysis (Isopora spp., n = 

1 of 14 strata; M. curta, n = 2 of 32 strata) and sites with a sample size less than five were either 
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pooled or excluded from analysis (Isopora spp., n = 27 of 48 sites; M. curta, n = 40 of 132 sites). 

To minimize elimination of samples from site-level analysis, sites with insufficient samples (< 5 

data values) were either pooled with each other or were pooled with another site that had a 

sufficient sample size. Sites were only pooled if they were adjacent to each other and had the 

same depth range or adjacent depths (i.e. shallow and mid-depth sites were combined, or mid- 

and deep-depth sites were combined). A total of 18 sites for Isopora spp. (out of 48 sites) and 27 

sites for M. curta (out of 132 sites) were pooled in this manner. Sites that were not pooled were 

excluded from analysis (Isopora spp., n = 9 of 48 sites; M. curta, n = 13 of 132). Additionally, 

due to a lack of remote sensing data for the Rose Atoll backreef/lagoon environment, sites and 

strata that overlaid this area were excluded from analysis (Isopora spp.: n = 0 of 48 sites, n = 0 of 

14 strata; M. curta: n = 3 of 132 sites, n = 1 of 32 strata). See Table 1 for final sizes of samples 

used in statistical modeling.   

Coral size structure, density, and abundance estimates for strata were provided by Dr. 

Dione Swanson (NOAA/PIFSC/ESD). HUA uses procedures established by Manly et al. 1993 

and demonstrated by Swanson (2011) to convert site-level surveys to population level estimates 

and includes a quantitative evaluation of individual coral populations to determine spatial 

variation in abundance and size structure. This is done using existing benthic habitat maps and 

GIS applications to partition the reef by geomorphologic characterizations and habitat strata (e.g. 

depth zone, habitat type, reef zone, reef complexity). Habitat strata layers were spatially 

represented as polygon shapefiles in ArcGIS at each island/atoll in American Samoa and were 

merged where appropriate based on each species’ respective abundance (density and total) and 

size structure distributions. Because of the differences in each species’ abundance and density 

signature, habitat strata layers vary for each species.  
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HUA analyses result in stratum-specific estimates of size-structure that may represent 

more meaningful (less noisy) measures of size structure dynamics (vs. site-specific estimates of 

size structure). The resulting size distribution patterns potentially infer spatial variation in growth 

and survival of coral populations which ultimately tells us how a population is selecting and 

utilizing resource(s) as well as how other population dynamics may vary over space (Manly et al. 

1993). HUA results show distinct size distribution patterns that correspond to habitat use of 

individual species and identifies areas where individual coral species have relatively low, 

moderate, or high abundance estimates (negative, neutral, or positive habitat use respectively, 

inferring variation in coral growth and survival from size distribution patterns; Swanson 2011). 

See Figure 5 for a spatial overview and size structure histograms of Montastrea curta HUA 

results for Tutuila. 

2.3 Biophysical characterization 

A suite of oceanographic, geomorphological, biological, and anthropogenic factors was 

identified and characterized to evaluate biophysical relationships at the intra-island scale along 

the American Samoa island complex. Factors include: chlorophyll-a, sea surface temperature, 

irradiance, wave energy, net accretion rates, benthic cover, coral juvenile abundance, mean 

depth, geomorphological slope metrics, and human population density (see Table 2 for list of 

final variable metrics and details). These variables were selected as they are theorized to be 

primary and fundamental biophysical factors in structuring coral communities. To evaluate 

biophysical relationships, variables were used as explanatory covariates in statistical modeling. 

While there were a wide range of candidate biophysical predictors identified, not all variables 

were included in statistical modeling (see section 2.4 Biophysical modeling for details on 

predictor selection).  
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Satellite-derived chlorophyll-a, sea surface temperature, and irradiance data was provided 

by Dr. Jamison Gove (NOAA/PIFSC/ESD) and Dr. Melanie Abecassis (NOAA/PIFSC/ESD) 

and model-derived wave energy flux (hereafter referred to as wave energy) was provided by S. 

Jeanette Clark (NOAA/PIFSC/ESD).  

Benthic cover, net accretion rates, coral juvenile abundance, mean depth, and 

geomorphological slope metrics were obtained from ESD’s American Samoa RAMP cruises. 

Benthic photoquadrat surveys were conducted at both benthic and fish REA sites in 2015 and 

serve as the basis of estimating benthic cover and composition. Rates of net calcium carbonate 

accretion were quantified from calcification accretion units (CAUs) collected in 2015 (deployed 

in 2012), which are used as recruitment and colonization instruments for primary calcifying 

organisms, crustose coralline algae and scleractinian corals (details below). Coral juvenile 

abundance and mean depth estimates were obtained from 2015 RAMP benthic REA surveys. 

Benthic habitat mapping products (from ESD RAMP and provided by the Pacific Islands Benthic 

Habitat Mapping Center, http://www.soest.hawaii.edu/pibhm) provide comprehensive 

bathymetric data in order to derive geomorphological metrics. 

  In order to link the coral size structure distributions to each explanatory covariate for 

statistical modeling, all oceanographic, geomorphological, biological, and anthropogenic data 

were spatially associated with each site and strata via ArcGIS spatial joining techniques. For 

strata, all explanatory covariates were initially obtained at each site. Sites and the linked 

covariates retained within their respective strata were then pooled and averaged to give covariate 

estimates for each stratum. 

2.3.1 Oceanographic Data   

Remote Sensing Data 
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Monthly averaged composites for AVHRR sea surface temperature (SST, units: °C) data 

covered months spanning from January 2002 to April 2016. Monthly averaged composites for 

MODIS chlorophyll-a (chl-a, units: mg m-3) and irradiance/photosynthetically active radiation 

(PAR, units: Einstein m-2 d-1) covered months spanning from July 2002 to July 2016. In order to 

obtain comparable spatial resolutions, chl-a and PAR (native spatial resolution of 0.04º) and SST 

(native spatial resolution of 0.1º) data sets were each regridded to 0.05º. This resolution is 

necessary to accurately evaluate biophysical relationships at the island/atoll scale, as exemplified 

by Gove et al. (2013). When integrating remotely sensed data, Gove et al. (2013) decreased the 

synthesized resolution to 0.0439° (4 km) which captured considerable spatial heterogeneity 

among each studied island/atoll. Due to contamination by land and increased reflectance in 

shallow water areas, remote sensing data in pixels in nearshore environments (< 30-m depth 

contour zone around each island) was removed from analysis (sensu Gove et al. 2013, Boss and 

Zaneveld 2003). Gap filling for missing or poor quality temporal data was achieved via linear 

interpolation or was excluded. The filtered dataset was used to generate climatological long-term 

mean values for chl-a and PAR (mean of monthly time series from July 2002 to July 2016) and 

SST (mean of monthly time series from January 2002 to April 2016) for each pixel around each 

island.  

Nearshore remote sensing extrapolation 

As a result of data elimination by spatial filtering within nearshore pixels, data holes were 

created in nearshore pixels that coincide with coral sampling sites. In order to obtain estimates 

for these blank pixels, a combination of both nearest neighbor spatial joining and extrapolation 

via statistically significant nearshore-offshore gradients in sectors of each island, were obtained 

to attach values to the blank pixels (sensu Tempera and Bates 2009; dataflow scheme outlined in 
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Figure 6). Nearest neighbor spatial joining was first used to attach long term mean chl-a, PAR, 

and SST values to all blank nearshore pixels (Figure 7-10). To more accurately capture spatial 

heterogeneity and the distribution of chl-a, PAR, and SST, nearshore-offshore gradients were 

extracted to different sectors of each island. Empirical Orthogonal Function (EOF) analysis of 

climatological seasonal means around each island was used to describe spatial modes or patterns 

of variability and how they change with time (Figure 11). EOF methodology decomposes time 

series data into representative dominant modes and enables analysis of data with complex spatial 

and temporal structures (Kaihatu et al. 1998). Mode 1 values were used for spatial pattern 

diagnostics as Mode 1 from the EOF analysis captured a majority of the variance for all remote 

sensing variables.. Additionally, seasonal means were used for spatial diagnostics (versus 

monthly means) as this metric better reflects spatial variability as it is subject to lower levels of 

high-frequency noise (Tempera and Bates 2009). Once spatial patterns were identified, cluster 

analysis was conducted around each island using Mode 1 values from EOF analysis. K-means 

cluster analysis was performed using base functions in R v3.2.3 (R Development Core Team, 

2015) and is a multivariate analysis approach that forms groups or “clusters” of observations that 

are similar to each other but differ among groups, using the Hartigan-Wong algorithm (1979). 

Sectors were created based off the optimal number of clusters identified and subsequent 

heterogenous groups formed around each island. Regression analysis was then run with the range 

of values found in each sectors and used as estimators of the nearshore-offshore gradients. In 

island sectors where statistically significant gradients were identified, nearest neighbor values 

were not used and, instead, each blank pixel was given predicted values based off the relative 

distance to shore. A total of six datasets were produced including three nearest neighbor datasets 

(SST, chl-a, PAR; hereafter referred to as ‘nearest neighbor’ variables) and three nearest 
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neighbor plus corrected nearshore-offshore gradient datasets (SST, chl-a, PAR; hereafter referred 

to as ‘gradient’ variables), which were subsequently used as predictors in statistical modeling. 

GIS was further used to relate the coral data and remote sensing products using a spatial joining 

technique (Figure 12a-c, 13a-c, and 14a-c).  

Wave Energy Data  

In the absence of numerical wave model and wave forcing observational site-level data at 

the desired spatial resolution, a wave exposure proxy was used to examine coral size structure 

distributions. Wave energy is represented as the cumulative wave power a site is exposed to over 

the course of one year (units: MW hr-1 m-1). Annual integrated mean estimates cover years 

spanning from 2002 to 2012 with a spatial resolution of 0.01º. 

  Developed by S. Jeanette Clark to examine Pacific Island nearshore ecological 

communities in relation to wave exposure, wave energy estimates were derived utilizing Wave 

Watch III (WW3) global wave model data and coastline analysis of wave exposure. This is 

achieved by: 1) Determining the incident wave swath for a specific site at an island using a 360º 

radial plot and degree-bin elimination based on a swath’s intersection with land or relevant 

bathymetric contour. 2) Selecting the closest WW3 pixel and extracting the time-series for 

significant wave height, peak period, and peak direction. 3) Calculating wave power (units: kW 

hr-1 m-1) with significant wave height and peak period using the following equation:   

Ef = ρg / 64π  * Hs
2 * Tp /1000 

where ρ is the density of seawater (1024 kg m-3), g is the acceleration of gravity (9.8 m s-2), Hs is 

the offshore significant wave height, and Tp is the dominant wave period (1/wavelength). 4) 

Lastly, annual wave energy data is filtered and organized into respective degree bins based on 

peak direction and summed to give a wave energy estimate at each site. 
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Climatological long-term means for annual wave energy were calculated for each 0.01º 

pixel and estimates were spatially coupled with each coral REA site and strata via ArcGIS spatial 

joining techniques (Figure 15a-c). Wave energy data was available for pixels in the nearshore 

environment (<30 m depth contour zone) and did not require extrapolation methods used for the 

remote sensing data. For coral sites with unavailable wave energy data (n=55 sites), nearest 

neighbor methodology was performed to extrapolate values to sites. Because the wave energy 

metric calculated here is based on offshore wave height and does not account for variation with 

depth, an interaction term between depth and wave energy was included in all starting models to 

capture variation in wave effects when they are extrapolated inshore. 

2.3.2 Geomorphological Data 

Multibeam bathymetric data for the American Samoa island complex was collected 

during the 2004 and 2006 NOAA Reef Assessment and Monitoring Program (RAMP) surveys 

and combined with 2001-2002 multibeam data collected by Dr. Dawn Wright at Oregon State 

University and Dr. Dave Naar of University of South Florida. Data was post-processed and 

bathymetric products (spatial resolution of 5 m) were provided by the Pacific Islands Benthic 

Habitat Mapping Center (PIBHMC, www.soest.hawaii.edu/pibhmc). Multibeam data was 

incomplete for the 0-25 m depth nearshore environments. In order to provide complete 

bathymetric coverage of nearshore reef environments around the American Samoa island 

complex, bathymetric gaps for the 0-25 m depth zone were filled in with “estimated depths” 

using IKONOS satellite imagery (Lyzenga 1985).  

For the island of Tutuila, NOAA Coastal Digital Elevation Model (DEM) bathymetry 

(spatial resolution of 10 m) was used 

(https://www.ngdc.noaa.gov/mgg/inundation/nthmp/nthmp.html).  NOAA’s National 
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Geophysical Data Center (NGDC) builds integrated bathymetric-topographic DEMs which are 

used to support tsunami forecasting and modeling efforts and provides high-resolution and more 

accurate, seamless bathymetry. NOAA Coastal DEM products were unavailable for other 

American Samoa islands. 

Four measures of benthic geomorphology were derived from the native bathymetry data 

layers: slope, mean slope, slope range, and slope coefficient of variation (hereafter referred to as 

‘slope variability’). Slope, measured in degrees, is the maximum change in elevation (0º to 90º) 

between a depth grid cell and its 8 neighbors and was derived using the slope function in the 

ArcGIS v10.4.1 Spatial Analyst toolbox. Mean slope and slope range, measured in degrees, were 

derived from the slope layer product using the Focal Statistics function in the ArcGIS v10.4.1 

Spatial Analyst toolbox. Mean slope is the average slope value and slope range is the difference 

between the maximum and minimum slope values of the grid cells in the specified surrounding 

neighborhood. Slope variability is the amount of variation around the mean slope and was 

calculated by dividing the standard deviation by the mean slope. 

In order to synthesize slope metrics (mean, range, variability) at the same spatial scale as 

coral REA site-level data (50 m2), neighborhood settings were set to quantify 50 m2 rectangular 

planar areas surrounding each site. Geomorphological metrics were spatially coupled with each 

coral site and strata via ArcGIS spatial joining techniques. 

Average depth was also used as a geomorphological covariate. For site-level data, 

average depth estimates were obtained directly at each benthic REA site. For each strata, depth 

estimates were averaged for all site-level data that fell within a given strata to give a strata mean 

depth.  

2.3.3 Biological Data 
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Benthic cover and composition data were collected via benthic photoquadrat surveys in 

the American Samoa island complex in 2015. Photoquadrat surveys were conducted along two 

25 m transects at both benthic and fish REA sites in which photographs were obtained at 1 m 

intervals (30 photographs per site). Benthic photographs were analyzed for percent cover of five 

benthic functional groups (coral, crustose coralline algae (CCA), macroalgae, turf algae, and soft 

coral) using Coral Point Count with Excel Extensions (Kohler and Gill 2006). For site-level coral 

size structure distributions, benthic percent cover estimates were obtained directly at each 

benthic REA site. For each strata, benthic percent cover estimates were averaged for all benthic 

and fish REA sites that fell within a given strata to give a strata mean percent cover of each 

benthic group.  

Net carbonate accretion rate (hereafter referred to as accretion rate) data was measured 

via calcification accretion units (CAUs) collected in the American Samoa island complex in 

2015. CAUs are used for the recruitment and colonization of primary reef calcifiers (CCA and 

hard corals) and measurements of net accretion provide information on how much calcium 

carbonate is deposited on a coral reef over a given time frame (i.e. spatio-temporal variability in 

accretion rates). CAUs collected in 2015 in American Samoa were deployed in 2012 (3-year 

soak time) and total net accretion was calculated by measuring the change in weight of each 

CAU at each site deployed over the given time period (units: g CaCO3 m-2 yr-1). A CAU site has 

on average 4 CAU units and thus the metrics i) mean net carbonate accretion rate (average of all 

CAU units at each site) and the ii) net carbonate accretion rate coefficient of variation (standard 

deviation divided by the mean rate; hereafter referred to as ‘accretion rate variability’) were 

calculated for each CAU site and used in these analyses. Because benthic REA and CAU sites 

did not overlap, a nearest neighbor approach was used to obtain accretion rate estimates at 
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benthic REA sites. For strata, all CAU sites that fell within a given stratum were used and 

accretion rate estimates were calculated using CAU units to obtain a stratum-level mean 

accretion rate and accretion rate variability estimates. 

As coral-recruit settlement patterns and post-settlement survivorship to adulthood (Done 

1982) are important causal factors in the distribution and structure of coral communities, juvenile 

coral abundance was also used as an explanatory covariate.  Juvenile abundance is a proxy for 

larval supply, settlement, and growth and survival to adulthood (Swanson 2011) and juvenile 

corals are defined as individuals ≤ 4 cm maximum diameter. Juvenile coral demographic data is 

collected at benthic REA sites where site-level abundance metrics are estimated for each site. For 

strata, Dr. Swanson provided strata-weighted juvenile abundance estimates.  

2.3.4 Anthropogenic Data 

It is suggested that, when considering predictors of coral community structure and 

condition, environmental variables should include anthropogenic activity. Multiple studies have 

tied declines in coral reefs to human rather than natural causes. The American Samoa island 

complex exhibits a range of human impact sites, from high human-impact to almost no human-

impact. As a proxy for potential human impact, human population density estimates scaled per 

unit reef area were used in this research. Human population density estimates are expressed as 

number of people (2010 US census; http://www.census.gov/2010census/) within a 10 km and 20 

km buffer divided by the forereef area (sensu Williams et al. 2015b). Estimates were obtained for 

each benthic REA site and thus used directly in correlation with site-level coral size structure 

distributions. Site-level estimates within the respective strata were averaged to give human 

population density estimates for each stratum. 

2.4 Biophysical statistical analyses 
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Prior to developing statistical models, potential (multi)collinearity among explanatory 

covariates was examined using Pearson correlations, unconstrained ordination (e.g. PCA), and 

variance inflation factors (VIF). PCA biplots were initially used to assess which covariates were 

moving together and potentially exhibiting collinearity. Pearson’s correlation values were used 

next to remove covariates with a threshold correlation of 0.75 (exclusion if r > 0.75). The 

following variables were strongly correlated: percent cover of soft coral and macroalgae (r = 

0.86); chl-a gradient and nearest neighbor (r = 0.86); mean slope and slope range (r = 0.81); 

human population density within a 10-km radius and chl-a nearest neighbor (r = 0.89) and chl-a 

gradient (r = 0.81). Percent soft coral cover was the only covariate removed using Pearson’s 

correlation values. Percent macroalgae cover, chl-a gradient and nearest neighbor, human 

population density, mean slope, and slope range were of mechanistic interest in testing the 

hypothesis and were not removed. These covariates were further assessed using VIF calculations 

(see below) and were removed based off these results.  

With the remaining covariates, VIFs were calculated and evaluated using 3 as a threshold 

(Zuur et al. 2010).  Covariates with the highest VIF were dropped, then recalculated and 

sequentially dropped until all VIFs were less than 3. Covariates were tested for multi-collinearity 

and removed as needed for both site-level and strata-level datasets. Nineteen in total 

environmental, biological, and anthropogenic variables were used as explanatory covariates in 

statistical modeling (see Table 2 for final list of predictors; see section 3. Results for final 

predictors used in each model). To account for differences in sampling effort at each site, the 

total area surveyed at each site (m2) was used as a predictor in site-level analysis. Because the 

survey design and analysis used to generate coral population-level metrics for strata inherently 
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accounts for variation in sampling effort, it was not necessary to use total area surveyed as a 

predictor in strata analysis. 

For each coral species and spatial resolution (site and strata), the Weibull shape 

parameter, k, of log transformed data was used as the response variable to examine relationships 

between coral size structure distributions and variations in the predictors. Initial examination of 

the response versus predictors showed no evidence of major non-linearity. Generalized Linear 

Models (GLM) were initially fit with a gamma distribution using the inverse link function and 

the assumptions of linearity and the error distribution were tested. Due to a small sample size, 

only main predictor effects were initially tested in all models and two-way interactions were later 

tested based on initial top candidate model selection (see interactions below). 

Model selection and model-averaging procedures were conducted using the dredge 

function in the MuMIn R package (Bartoń 2016) and models were ranked according to Akaike’s 

Information Criterion corrected (AICc) for small sample sizes. As an additional measure of 

model performance, likelihood-ratio based R² values were calculated. All models were retained 

based on ΔAICc ≤ 2. For candidate models with ΔAICc ≤ 2, importance of each predictor was 

assessed to assist with best model selection. Predictor importance calculates the sum of the 

Akaike weights (based on normalized, relative model likelihoods) over all models (models with 

ΔAICc ≤ 2) where the predictor variable occurs. Top candidate main effects GLMs were selected 

based on a combination of ΔAICc ≤ 2 criteria, likelihood-ratio based R² values, and predictor 

variable importance. 

On the basis of results for main effects GLMs, interaction models were fit and tested with 

combinations of all top candidate model main effects and all two-way interactions. Model 

selection and model-averaging procedures were performed on interaction models and models 
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were ranked and retained based on ΔAICc ≤ 2. If interaction terms were significant, the top 

candidate interaction GLM(s) was compared to the top candidate main-effects GLM(s) and 

ranked based on ΔAICc ≤ 2. Top candidate models were chosen based on ΔAICc ≤ 2. 

To account for spatial autocorrelation, a Generalized Additive Model (GAM) using the mgcv 

package in R (Wood 2011) was fit which included a 2D smoother on ‘site’ and ‘strata’ location, 

i.e. s(latitude, longitude). GAM models were compared to their equivalent GLM and/or 

interaction GLM based on ΔAICc ≤ 2. Models were compared based on ΔAICc ≤ 2 criteria. 

Finally, the top candidate main effects and interaction GLMs were refit as a GAM in order to test 

the assumption of linearity. Given a small sample size in all models, the number of knots for the 

smoothing terms was reduced to three to prevent overfitting. GAM models were compared to 

both main effect GLMs and interaction GLMs based on ΔAICc ≤ 2. A final best-fit model(s) was 

selected based off these results (see Results section for all main effect GLM, interaction GLM, 

and GAM results). 

Model diagnostics were assessed by examining residual diagnostic plots. Significant or 

influential outliers (criteria of Cook distance > 1; Fox 2002) were identified. If influential 

outliers were present, they were removed from the dataset and models were re-run and 

reexamined using residual diagnostic plots. Influential outliers were removed permanently only 

if this greatly improved residual behavior in model diagnostics. Additionally, models were refit 

with alternate link functions (e.g. ‘log’) and model diagnostics were reassessed to determine the 

most relevant link function needed. 

For final best-fit models, the relative importance of each predictor in explaining the total 

variance was determined by hierarchical partitioning using the hier.part package in R (Walsh 

and MacNally 2013). Hierarchical partitioning examines the effect of removing each predictor 
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from the whole model hierarchy using all combinations of variables and subsequently provides 

the average contribution of each variable of the total explained variance. 

All computations and statistical modeling was carried out using R v3.2.3 (R Development 

Core Team, 2015). EOF analysis was carried out in MATLAB R2014a. 

 
 
3. RESULTS 
 
3.1 Site-level results 
 
3.1.1 Isopora spp. site-level data 
 

Isopora spp. size structure varied significantly across sites and islands, with shape 

parameters, k, ranging from 3.89 to 14.06. Variability in size structure shape parameters was also 

highly correlated with variability in median coral colony size and skewness but deviated from the 

observed patterns for shape parameters > 10 (Figure 17a, 18a, 19a). When compared to median 

size, there was a significant positive linear relationship with the size structure shape parameter 

(shape parameter < 10; analysis of deviance type II test, p = 7.13e-04) where sites with the 

higher shape parameters also had larger median coral colony size (Figure 17a). In relation to 

skewness, there was a significant negative linear relationship (shape parameter < 10; analysis of 

deviance type II test, p = 1.76e-03) where sites with lower shape parameters were more 

positively skewed (higher frequency of smaller colonies and relatively few large colonies) and 

sites with higher shape parameters were more negatively skewed (high frequency of larger 

colonies and relatively few small colonies; Figure 18a). Sites with positively skewed 

distributions had an average size structure shape parameter of 5.43 (ranging from 3.89 to 10.30) 

whereas negatively skewed distributions had, on average, a slightly larger size structure shape 

parameter of 6.91 (ranging from 4.83 to 14.06). Median size and skewness exhibited a strong 
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negative linear relationship (shape parameter < 10; analysis of deviance type II test, p = 7.42e-

05) where an increase in positive skewness correlated with smaller median size and an increase 

in negative skewness correlated with larger median size (Figure 19a). The relationship between 

median size and skewness appeared to deviate from the observed pattern for shape parameters > 

10. 

Isopora spp. size structure spatial variability in relation to intra-island biophysical 

variability was modeled using GLMs. Initial steps included testing for multi-collinearity among 

predictors, in which the following covariates were removed from the starting model: percent turf 

alga and coral cover, and chl-a (gradient and nearest neighbor), SST and PAR (gradient), mean 

slope, and slope variability. Remaining predictors were total area surveyed at each site, mean 

depth, human population density within a 10-km radius, PAR and SST (nearest neighbor), wave 

energy, Isopora juvenile abundance, 2015 mean accretion rate and accretion rate variability, 

percent CCA cover, slope, and slope variability. In all candidate models, influential outliers were 

assessed in model diagnostics however no outliers were removed. 

A GLM fit with a gamma distribution using the inverse link and only main effects were 

initially tested due to a low sample size (n = 48 sites; see interactions below). Two candidate 

models were chosen based on ΔAICc ≤ 2. Based on these results, candidate models were re-run 

with all 2-way interactions included and three models were chosen based on ΔAICc ≤ 2 (Table 

3). The top ranked models included 2015 mean accretion rate and accretion rate variability, 

slope, and slope variability. The additional predictor, Isopora juvenile abundance, was included 

in the third best model (ΔAICc = 1.84) however this covariate did not significantly improve 

model explanatory power (analysis of deviance type II test, p = 0.152).  



 30 

The model with the highest AICc weight included the interaction between slope and 

slope variability, which had a significant effect on the response (analysis of deviance type II test, 

p = 0.05) and increased the overall explained deviance of the model from 48 to 58%. The 

selected best model was: 

(1) shape_log ~ 2015 mean accretion rate + 2015 accretion rate variability + slope + 

slope variability + slope : slope variability 

To account for spatial autocorrelation, a GAM was fit and included a 2D smoother on ‘site’: 

(2) shape_log ~ 2015 mean accretion rate + 2015 accretion rate variability + slope + 

slope variability + slope : slope variability + s(latitude, longitude) 

Based on ΔAICc ≤ 2 criteria, model 1 (without 2D smoothed term; ΔAICc = 0) was significantly 

better than model 2 (with the 2D smoothed term; ΔAICc = 7.96) and model 1 was chosen. The 

assumption of linearity was then tested by refitting model 1 as a GAM: 

(3) shape_log ~ s(2015 mean accretion rate) + s(2015 accretion rate variability) + 

s(slope)  + s(slope variability) 

The GLM (model 1) was the best model, however there was not a significant difference between 

the GLM (model 1; ΔAICc = 0) and the GAM (model 3; ΔAICc = 0.77). Because the GLM is a 

simpler and “less expensive” model, the GLM (model 1) was selected as the final best-fit model. 

Model diagnostics were run on the resulting best model and residuals were uniformly distributed 

with no significant outliers. Residuals did not differ significantly from a normal distribution 

(Shapiro-Wilks test, p = 0.11). The best-fit model was refit with alternate link functions (e.g. 

‘log’), however the ‘inverse’ link function yielded better model diagnostic results based on 

inspection of the residuals. 
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Modeled biological and geomorphological variables explained a large proportion of 

spatial variation in site-specific Isopora spp. size spectra (overall deviance explained, R2 = 58%) 

and varied significantly across sites and islands (Figure 20). Accretion rates ranged from a low of 

0.045 (southeast side of Tutuila) to a high of 0.092 g CaCO3 m-2 yr-1 (southeast side of 

Ofu/Olosega), accretion rate variability ranged from 0.10 (southwest side of Tutuila) to 0.504 g 

CaCO3 m-2 yr-1 (southeast side of Ofu/Olosega), slope ranged from 1.274 degrees (southwest 

side of Tutuila) to 21.252 (southeast side of Tutuila), and slope variability from 0.285 degrees 

(east side of Tutuila) to 1.019 degrees (southeast side of Tutuila). Results from hierarchical 

partitioning indicated that accretion rate variability, mean accretion rate, slope, and slope 

variability explained 14, 12, 12, and 10% of the overall deviance, respectively. These predictors 

explained 48% of the overall variance and the interaction term, slope and slope variability, 

increased the overall deviance to 58%. All covariates had strong effects on size spectra. Size 

spectra shape parameters decreased linearly with increasing mean accretion rates (analysis of 

deviance type II test, p = 0.05), accretion rate variability (analysis of deviance type II test, p = 

0.001), and slope variability (analysis of deviance type II test, p = 0.03). Size spectra shape 

parameters increased linearly with increasing slope (analysis of deviance type II test, p = 0.014) 

(Figure 20). The significant interaction between slope and slope variability (analysis of deviance 

type II test, p = 0.05) indicated that at low to moderate slope values, the shape parameter does 

not change significantly with increasing slope variability, however along steeper slopes (higher 

values) the shape parameter decreases significantly with increasing slope variability, especially 

when slope variability is low (Figure 20).  

3.1.2 Montastrea curta site-level data 
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M. curta size structure varied significantly across sites and islands, with shape 

parameters, k, ranging from 3.13 to 17.33. Variability in size structure shape parameters was also 

highly correlated with variability in median coral colony size and skewness but deviated from the 

observed pattern with median size for shape parameters > 13 (Figure 17b, 18b, 19b). When 

compared to median coral colony size, there was a significant positive linear relationship with 

the size structure shape parameter (shape parameter < 13; analysis of deviance type II test, p = 

0.02) where sites with higher shape parameters also had larger median coral colony size (Figure 

17b). In relation to skewness, there was a significant negative linear relationship (analysis of 

deviance type II test, p = 2.89e-11) where sites with lower shape parameters were more 

positively skewed (higher frequency of smaller colonies and relatively fewer large colonies) and 

sites with higher shape parameters were more negatively skewed (high frequency of larger 

colonies and relatively fewer small colonies; Figure 18b). Sites with positively skewed 

distributions had an average size structure shape parameter of 5.72 (ranging from 3.13 to 9.16) 

whereas negatively skewed distributions had a larger average size structure shape parameter of 

8.36 (ranging from 5.99 to 17.33). Median size and skewness exhibited a strong negative linear 

relationship where an increase in positive skewness correlated with smaller median size and an 

increase in negative skewness correlated with larger median colony size (analysis of deviance 

type II test, p = 1.58e-04; Figure 19b).  

M. curta size structure spatial variability in relation to intra-island biophysical variability 

was modeled and explained using GLMs. Initial steps included testing for multicollinearity 

among predictors, in which the following covariates were removed from the starting model: 

percent turf alga cover, chl-a (nearest neighbor), SST and PAR (gradient), 2015 accretion rate 

variability, mean slope, and slope variability. Remaining predictors were total area surveyed at 
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each site, mean depth, human population density within a 10-km radius, chl-a (gradient), PAR 

and SST (nearest neighbor), wave energy, M. curta juvenile abundance, 2015 mean accretion 

rate, percent CCA and coral cover, slope, and slope range.  

A GLM fit with a gamma distribution using the inverse link and only main effects was 

initially tested due to low sample size (n = 132 sites; see interactions below). Three influential 

outliers were identified in initial model runs. Model tests were performed in which these three 

outliers were removed, models were rerun, and reexamined using residual diagnostic plots. Two 

outliers were removed permanently as this greatly improved residuals in model diagnostics and 

increased the overall deviance explained from 29% to 43%. The third outlier was not 

permanently removed as removal did not improve model performance and the site (Swains 

pooled sites) was of interest mechanistically in testing the research hypothesis.  

One candidate model was chosen based on a combination of ΔAICc ≤ 2 criteria, ranking 

in model dredge, likelihood-ratio based R² values, and predictor variable importance (threshold > 

0.20). Based on these results, candidate models were re-run with all 2-way interactions included 

and two models were chosen based on ΔAICc ≤ 2 (Table 3). The top ranked models included the 

main effects PAR, percent coral cover, mean depth, M. curta juvenile abundance, SST, wave 

energy, and the interaction between SST and M. curta juvenile abundance.  

The two top ranked models performed similarly (ΔAICc = 0.41). The model with the 

highest AICc weight included two additional interaction predictors however these covariates did 

not significantly improve model explanatory power: mean depth and wave energy (p=0.11); M. 

curta juvenile abundance and wave energy (p=0.07). Thus, the simpler model was chosen. The 

selected best model was: 
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(1)   shape_log ~ mean depth + M. curta juvenile abundance + % coral cover + PAR + SST      

+ wave energy + SST : M. curta juvenile abundance  

To account for spatial autocorrelation, a GAM was fit and included a 2D smoother on ‘site’: 

(2) shape_log ~ mean depth + M. curta juvenile abundance + % coral cover + PAR + SST + 

wave energy + SST : M. curta juvenile abundance + s(latitude, longitude) 

Based on ΔAICc ≤ 2 criteria, model 1 (without 2D smoothed term; ΔAICc = 0) was significantly 

better than model 2 (with the 2D smoothed term; ΔAICc = 3.81) and model 1 was chosen. The 

assumption of linearity was then tested by refitting model 1 as a GAM: 

(3) shape_log ~ s(mean depth) + s(M. curta juvenile abundance) + s(% coral cover) + 

s(PAR) + s(SST) + s(wave energy) + SST : M. curta juvenile abundance 

Based on ΔAICc ≤ 2 criteria there was not a significant difference between the GAM (model 3; 

ΔAICc = 0) and the GLM (model 1; ΔAICc = 0.36). Because the GLM is a simpler and “less 

expensive” model, the GLM (model 1) was selected as the final best-fit model. 

Model diagnostics were run on the resulting best model and residuals were uniformly 

distributed with no significant outliers. Residuals did not differ significantly from a normal 

distribution (Shapiro-Wilks test, p = 0.19). The best-fit model was refit with alternate link 

functions (e.g. ‘log’), however the ‘inverse’ link function yielded better model diagnostic results 

based on inspection of the residuals. 

Modeled biological and geomorphological variables explained a large proportion of 

spatial variation in site-specific M. curta size spectra (overall deviance explained, R2 = 45%) and 

varied significantly across sites and islands (Figure 21). Mean depth ranged from 4.75 to 23 m, 

M. curta juvenile abundance ranged from 0 (west Ofu/Olosega) to 16 colonies (southern offshore 

bank on Tutuila), percent coral cover ranged from 0.34 (southern offshore bank on Tutuila) to 
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70.24% (north Tutuila), PAR ranged from 42.41 (northwest Tutuila) to 44.0 E m-2 d-1 (northeast 

Ofu/Olosega), wave energy ranged from 28.73 (north Tutuila) to 158.33 MW hr-1 m-1 (south 

Rose Atoll), and SST ranged from 28.73 (south Rose Atoll) to 29.3 °C (Swains). Results from 

hierarchical partitioning indicated that PAR, coral cover, wave energy, mean depth, juvenile 

abundance, and SST explained 16, 11, 8, 5, and <1% of the overall deviance, respectively. These 

predictors explained 43% of the overall variance and the interaction term, juvenile abundance 

and SST, increased the overall deviance to 45%. All covariates had strong effects on size spectra 

except for the main effect, SST. Size spectra shape parameters decreased linearly with increasing 

PAR (analysis of deviance type II test, p = 1.54e-05), juvenile abundance (analysis of deviance 

type II test, p = 0.04), and SST (analysis of deviance type II test, p = 0.14). In contrast, size 

spectra shape parameters increased linearly with increasing mean depth (analysis of deviance 

type II test, p = 4.0e-04) and coral cover (analysis of deviance type II test, p = 4.0e-03; Figure 

21). The significant interaction between juvenile abundance and SST (analysis of deviance type 

II test, p = 0.03) indicated that at higher SST values, the shape parameter did not change with 

increasing juvenile abundance (however variance is high at high juvenile abundance) while, at 

lower-moderate SST, the shape parameter decreased with increasing juvenile abundance, 

especially at low SST values (Figure 21). 

During initial model runs with the three strongest outliers removed, all main effects 

predictors were the same with the exception of model human population density within a 10-km 

radius, which did not have a significant effect on size structure shape parameter variability 

(analysis of deviance type II test, p = 0.21). 

3.2 Strata-level results 
 
3.2.1 Isopora spp. strata-level data 
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Isopora spp. size structure varied across strata and islands, with shape parameters, k, 

ranging from 4.6 (Ofu/Olosega southeast shallow- and mid-depth stratum) to 8.09 (Tau 

northwest mid-depth stratum). Variability in size structure shape parameters was also correlated 

with variability in skewness but was not correlated with median coral colony size (Figure 17a, 

18a, 19a). When compared to median size, the relationship with the size structure shape 

parameter was insignificant and variable across strata (analysis of deviance type II test, p = 0.99; 

Figure 17a). Skewness and the size structure parameter displayed a negative, but weak, linear 

relationship (analysis of deviance type II test, p = 0.06) where strata with lower shape parameters 

were positively skewed (higher frequency of smaller colonies and fewer larger colonies) and 

strata with higher shape parameters were negatively skewed (higher frequency of larger colonies 

and fewer smaller colonies; Figure 18a). Strata with positively skewed distributions had an 

average size structure shape parameter of 5.24 (ranging from 4.59 to 5.98) whereas negatively 

skewed distributions had an average size structure shape parameter of 6.08 (ranging from 4.77 to 

8.09). Median size and skewness exhibited a strong negative linear relationship (analysis of 

deviance type II test, p = 3.30e-03) where an increase in positive skewness correlated with 

smaller median size and an increase in negative skewness correlated with larger median size 

(Figure 19a).  

Isopora spp. size structure spatial variability in relation to intra-island biophysical 

variability was modeled using GLMs. Initial steps included testing for multi-collinearity among 

predictors, in which the following covariates were removed from the starting model: percent turf 

alga, CCA and coral cover, chl-a (gradient and nearest neighbor), SST and PAR (gradient), 

human population density within a 10-km radius, 2015 accretion rate variability, mean slope, 

slope, slope range. Remaining predictors were mean depth, PAR and SST (nearest neighbor), 
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wave energy, Isopora juvenile abundance, 2015 mean accretion rate, and slope variability. The 

covariates 2015 mean accretion rate and wave energy both had VIFs above 3 (4.15 and 4.10, 

respectively) and were negatively correlated when assessed via Pearson’s correlation (r = 0.61).  

Because these covariates were potentially mechanistically important, they were not removed 

from initial model runs. In all candidate models, influential outliers were assessed in model 

diagnostics however no outliers were removed. 

A GLM fit with a gamma distribution using the inverse link and only main effects were 

initially tested due to a low sample size (n = 14 strata; see interactions below). One candidate 

model was chosen based on ΔAICc ≤ 2. Based on these results, the candidate model was re-run 

with all 2-way interactions included. No interactions were included in the best models (ΔAICc ≤ 

2 criteria) and the results did not differ (Table 3). Thus, the candidate model was selected as the 

best model: 

 (1) shape_log ~ 2015 mean accretion rate + wave energy 

To account for spatial autocorrelation, a GAM was fit and included a 2D smoother on ‘stratum’: 

(2) shape_log ~ 2015 mean accretion rate + wave energy + s(latitude, longitude) 

Based on ΔAICc ≤ 2 criteria, model 1 (without 2D smoothed term; ΔAICc = 0) was significantly 

better than model 2 (with the 2D smoothed term; ΔAICc = 12.33) and model 1 was chosen. The 

assumption of linearity was then tested by refitting model 1 as a GAM: 

(3) shape_log ~ s(2015 mean accretion rate) + s(wave energy) 

The GLM (model 1) was the best model, however there was not a significant difference between 

the GLM (model 1; ΔAICc = 0) and the GAM (model 3; ΔAICc = 0.35). Because the GLM is a 

simpler and “less expensive” model, the GLM (model 1) was selected as the final best-fit model. 
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Model diagnostics were run on the resulting best model with no significant outliers. Residuals 

were not uniform due to a small sample size (n = 14), but did not differ significantly from a 

normal distribution (Shapiro-Wilks test, p = 0.47). The best-fit model was refit with alternate 

link functions (e.g. ‘log’), however the ‘inverse’ link function yielded better model diagnostic 

results based on inspection of the residuals. 

Modeled biological and geomorphological variables explained a large proportion of 

spatial variation in stratum-level Isopora spp. size spectra (overall deviance explained, R2 = 

46%) and varied significantly across strata and islands (Figure 22). Mean accretion rates ranged 

from 0.05 (Aunu’u Island stratum on southeast Tutuila, all depths) to 0.08 g CaCO3 m-2 yr-1 

(Ofu/Olosega southeast shallow- and mid-depth stratum) and wave energy ranged from 43.33 

(Ofu/Olosega northwest mid-depth stratum) to 120.20 MW hr-1 m-1 (Aunu’u Island stratum on 

southeast Tutuila, all depths). Results from hierarchical partitioning indicated that wave energy 

and mean accretion rate explained 40 and 6% of the overall deviance, respectively. Size spectra 

shape parameters decreased linearly with increasing mean accretion rate (analysis of deviance 

type II test, p = 0.16; Figure 22) and wave energy where the effect of wave energy on the 

response was significant (analysis of deviance type II test, p = 0.005; Figure 22).  

3.4 Montastrea curta strata-level data 
 

M. curta size structure varied significantly across strata and islands, with shape 

parameters, k, ranging from 2.73 (Swains southeast deep-depth stratum) to 12.74 (Tutuila 

southwest shallow/mid-depth stratum). Variability in size structure shape parameters was also 

highly correlated with variability in skewness and median coral colony size (Figure 17b, 18b, 

19b). When compared to median size, there was a strong positive linear relationship with the size 

structure shape parameter (analysis of deviance type II test, p = 6.55e-03; Figure 17b) where 
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sites with higher shape parameters also had larger median coral colony size (Figure 9b). 

Skewness and the size structure parameter displayed a strong negative linear relationship 

(analysis of deviance type II test, p = 6.57e-03) where strata with lower shape parameters were 

more positively skewed (higher frequency of smaller colonies and fewer larger colonies) and 

strata with higher shape parameters were more negatively skewed (higher frequency of larger 

colonies and fewer smaller colonies; Figure 18b). Strata with positively skewed distributions had 

an average size structure shape parameter of 6.13 (ranging from 2.73 to 12.74) whereas 

negatively skewed distributions had a larger average size structure shape parameter of 8.28 

(ranging from 6.28 to 11.05). Median size and skewness exhibited a strong negative linear 

relationship (analysis of deviance type II test, p = 3.44e-03) where an increase in positive 

skewness correlated with smaller median size and an increase in negative skewness correlated 

with larger median size (Figure 19b). 

M. curta size structure spatial variability in relation to intra-island biophysical variability 

was modeled and explained using GLMs. Initial steps included testing for multi-collinearity 

among predictors, in which the following covariates were removed from the starting model: 

percent turf alga and CCA cover, chl-a (nearest neighbor and gradient), SST and PAR (gradient), 

2015 mean accretion rate variability, mean slope, and slope range. Remaining predictors were 

mean depth, human population density within a 10-km radius, PAR and SST (nearest neighbor), 

wave energy, M. curta juvenile abundance, 2015 mean accretion rate, percent coral cover, slope, 

and slope variability.  

A GLM fit with a gamma distribution using the inverse link and only main effects were 

initially tested due to a low sample size (n = 25 strata; see interactions below). One influential 

outlier was identified in initial model runs (data point for Swains). In order to test the research 
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hypothesis and examine inter-island variability, this outlier was not removed permanently. One 

candidate model was chosen based on a combination of ΔAICc ≤ 2 criteria, likelihood-ratio 

based R² values, and predictor variable importance (threshold > 0.20). Based on these results, the 

candidate model was re-run with all 2-way interactions however model results did not change 

and did not include any interaction terms (Table 3). The second ranked model included all 

covariates and had the highest R2 value (R2 = 57%) and was thus selected as the best model: 

(1)   shape_log ~ 2015 mean accretion rate + PAR + SST + wave energy  

To account for spatial autocorrelation, a GAM was fit and included a 2D smoother on ‘stratum’: 

(2) shape_log ~ 2015 mean accretion rate + PAR + SST + wave energy + s(latitude, 

longitude) 

Based on ΔAICc ≤ 2 criteria, model 1 (without 2D smoothed term; ΔAICc = 0) was significantly 

better than model 2 (with the 2D smoothed term; ΔAICc = 4.72) and model 1 was chosen. The 

assumption of linearity was then tested by refitting model 1 as a GAM: 

(3) shape_log ~ s(2015 mean accretion rate) + s(PAR) + s(SST) + s(wave energy) 

The GAM (model 3) was the second best model, however there was not a significant difference 

between the GAM (model 3; ΔAICc = 0.6) and the GLM (model 1; ΔAICc = 0). Because the 

GLM is a simpler and “less expensive” model, the GLM (model 1) was selected as the final best-

fit model. 

Model diagnostics were run on the resulting best model.  Residuals were not uniform due 

to the outlier (data point for Swains), but did not differ significantly from a normal distribution 

(Shapiro-Wilks test, p = 0.38). The best-fit model was refit with alternate link functions (e.g. 

‘log’), however the ‘inverse’ link function yielded better model diagnostic results based on 

inspection of the residuals. 
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Modeled biological and geomorphological variables explained a large proportion of 

spatial variation in stratum-level M. curta size spectra (overall deviance explained, R2 = 57%) 

and varied significantly across strata and islands (Figure 23). Mean accretion rates ranged from 

0.05 (Aunu’u Island shallow-depth stratum on southeast Tutuila) to 0.16 (Rose Atoll forereef 

stratum), PAR ranged from 42.41 (Tutuila northwest mid-depth stratum) to 43.81 E m-2 d-1 

(Swains southeast deep-depth stratum), wave energy ranged from 22.87 (Tutuila northwest deep-

depth stratum) to 128.79 MW hr-1 m-1 (Tutuila southeast deep-depth stratum), and SST ranged 

from 28.75 (Rose Atoll forereef stratum) to 29.3 °C (Swains southeast deep-depth stratum). 

Results from hierarchical partitioning indicated that PAR, mean accretion rate, wave energy, and 

SST explained 29, 15, 7, and 7% of the overall deviance, respectively. These predictors 

explained 57% of the overall variance. PAR and SST had strong effects on size spectra where 

size spectra shape parameters significantly decreased linearly with increasing PAR (analysis of 

deviance type II test, p = 0.004) and SST (analysis of deviance type II test, p = 0.02). Size 

spectra shape parameters also decreased linearly with increasing mean accretion rate (analysis of 

deviance type II test, p = 0.05) and wave energy (analysis of deviance type II test, p = 0.13) 

however the effect was not strong (Figure 23). 

 
 
4. DISCUSSION 
 
4.1 Coral size structure metric 

In general, coral size structure distributions have been shown to be positively skewed 

where populations consist primarily of smaller colonies and relatively few large ones (e.g. Soong 

1993). Additionally, “healthy” coral population size structure distributions typically consist of a 

wide range of size classes, with few missing size classes and overall higher densities (Bak and 
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Meesters 1998, Meesters et al. 2001). The degree of skewness varies among species where some 

populations can be negatively skewed; however, highly negatively skewed distributions may 

indicate a lack of successful recruitment (Guzner et al. 2007, Alvarado- Chacòn and Acosta 

2009) and implies a risk of population decline (Meesters et al. 2001).  

For both Isopora and M. curta, we find that shape parameter estimates scale well with 

skewness and median size estimates, implying that the Weibull shape parameter metric is a 

comprehensive metric that captures other important coral size structure characteristics. 

Additionally, shape parameter estimates can be used to assess the status and health of each coral 

population across space. Based off the assumption that “healthy” populations exhibit 

distributions close to zero skewness (on a log scale) with a higher frequency of smaller colonies 

and fewer large ones, Isopora site-level shape parameters that exhibit an average of 5.53, median 

size of 18.37 cm, and skewness of -0.07 appeared to resemble “healthy” subsets of the 

population. Strata-level estimates had similar results with a “healthy” shape parameter average of 

5.52, median size of 22.02 cm, and skewness of 0.05. Shape parameter site- and strata-level 

estimates that deviated from this pattern had either enhanced positive or negative skewness as 

well as lower or higher median sizes, depending on the direction that the shape parameter 

deviated from the “healthy” estimate (see Figure 26 for example of Isopora spp. size structure 

distributions with low, moderate, and high shape parameter estimates). 

M. curta site-level shape parameters in proximity of an average of 6.37, median size of 

11.39 cm, and skewness of 0.28 appeared to resemble “healthy” subsets of the population. Strata-

level estimates had similar results with a “healthy” shape parameter average of 6.09, median size 

of 12.48 cm, and skewness of 0.41. As with Isopora, M. curta shape parameter site- and strata-

level estimates that deviated from this pattern had either enhanced positive or negative skewness 



 43 

as well as lower or higher median sizes, depending on the direction that the shape parameter 

deviated from the “healthy” estimate. 

Overall shape parameter averages reveal differences between Isopora and M. curta size 

structure distributions. Isopora exhibited a lower average shape parameter (site = 6.23, strata = 

5.76), higher median sizes (site = 18.57, strata = 21.23), and negative skewness (site = -0.06, 

strata = -0.12) versus M. curta (k = 6.64 and 6.61; median size = 11.25 and 13.06; skewness = 

0.30 and 0.40, for site and strata resolution, respectively). These dissimilarities most likely 

reflect differences in their underlying life-history traits (e.g. fecundity, growth, mortality, 

morphology; Meesters et al. 2001, Guzner et al. 2007). These findings highlight variability in 

demographic processes between coral species as well as support the evidence that demographic 

processes are strongly dependent on size in coral populations (Connell 1973, Hughes and 

Jackson 1980, Hall and Hughes 1996). 

 
4.2 Isopora spp. and Montastrea curta spatial variability 

When assessing spatial variability in size structure, Isopora and Montastrea curta size 

structure distributions varied at both the inter- and intra-island scale (see Figure 27a-b and 28a-b 

for spatial overview of site-level and strata-level shape parameter estimates across islands) and 

inter-island shape parameter estimates scaled relative to each other across spatial resolutions. For 

both Isopora spatial resolutions, Tau Island had the highest average shape parameter estimates 

(site, k = 7.59; strata, k = 7.13); however, the lowest Isopora shape parameter averages across 

islands differed for each spatial resolution (site - Ofu and Olosega, k = 5.27; strata – Tutuila, k = 

5.41). At the intra-island scale, each spatial resolution identified the Ofu and Olosega southeast 

reef as having the lowest shape parameter averages (site, k = 4.69; strata, k = 4.59) and the Tau 

northwest reef as having the highest shape parameter averages (site, k = 7.59; strata, k = 7.13). At 
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both the intra-island and inter-island scale, M. curta shape parameters appeared to vary more 

between spatial resolutions (especially at the intra-island scale) but were, in general, similar to 

each other. Across islands, analysis for each spatial resolution indicated that Swains Island had 

the lowest shape parameter averages (site = 3.25, strata = 2.73) but differed with respect to the 

highest shape parameter averages (site - Tau, k = 7.40; strata – Tutuila, k = 7.26). 

The strong differences observed at the intra-island scale between site- and strata-level 

resolutions could be an artifact of the inherent differences in how shape parameter estimates 

were derived for each resolution. For strata, sites are pooled together and abundance estimates 

are weighted using the strata area, thus resulting in weighted size-frequency distributions for 

each stratum. In contrast, shape parameters are generated at the rawest form with minimal 

pooling of sites for site-level analysis. These intrinsic differences may not allow one to 

adequately compare shape parameter estimates between spatial resolutions. For a more accurate 

comparison between spatial resolutions, a testable method may be to pool site-level data prior to 

generating shape parameter estimates (at the same resolution as strata) and, thus, make 

comparisons across strata. 

 
4.3 Isopora spp. and Montastrea curta HUA results 

In survey design theory, biological population metrics (i.e. means, proportions, totals) are 

designed to generate estimates within a finite spatial domain (quantified habitat area; Cochran 

1977, Swanson 2011). HUA analysis incorporates this design and domain mean estimates are 

used to identify habitat areas (to combine or separate adjacent strata) where subsets of the coral 

population have low, moderate, or high densities (i.e. strata densities that are below, at, or above 

the domain mean, respectively). Subsequently, strata abundance values are compared to the 

percent habitat area and resulting strata represent where the population is using habitat space 
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negatively, neutrally, or positively, respectively, assuming homogeneous distribution in space 

(Swanson 2011).  

For Isopora strata, the domain shape parameter was estimated at 5.31 with a median size 

of 21.14 cm and skewness of 0.07.  HUA analysis revealed three positive HUA habitats (Ofu and 

Olosega northwest shallow reef, Tutuila east shallow reef, and Tutuila southwest shallow reef) 

with strata-level shape parameters close to the domain mean (5.08, 5.08, and 6.08, respectively). 

Three areas were identified as negative strata (Tau northwest shallow and moderate-depth reefs, 

and Tutuila Aunu’u island reef) with shape parameter estimates far above the domain mean 

(6.17, 8.09, and 5.98, respectively). All other strata were identified as neutral habitats with an 

average shape parameter (k = 5.48) just above the domain mean (see Figure 24 and Table 5a for 

HUA results). 

For M. curta strata, the domain shape parameter was estimated at 5.23 with a median size 

of 13.06 cm and skewness of 0.40.  HUA analysis revealed six positive, eleven neutral, and nine 

HUA habitats (see Table 5b). While much higher than the domain mean, positive strata shape 

parameter estimates (average k = 6.25) were closest to the domain mean with neutral and 

negative shape parameter estimates (average k = 6.63 and 6.63, respectively) deviating more 

significantly from the domain mean (see Figure 24 and Table 5b for HUA results).  

Overall, shape parameter estimates scaled relative to HUA results, where lower shape 

parameter estimates were correlated with positive strata (i.e. higher density), moderate shape 

parameter estimates were correlated with moderate strata (i.e. moderate density), and high shape 

parameter estimates were correlated with negative strata (i.e. lower density); however this 

relationship was not as strong for M. curta. Shape parameter estimates for each strata were not 

strongly tied to domain level estimates and HUA outcome (positive, neutral, negative). This 
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weak relationship between shape parameter estimates and strata density (expressed as low, 

moderate, and high) may, in part, be due to the fact that the Weibull shape parameter metric does 

not strongly reflect patterns in overall density. 

The Weibull shape parameter serves as a useful metric in characterizing coral size 

structure distributions but does exhibit limitations. For one, this metric does not adequately 

capture missing size classes in the size distribution. Coral size distributions with many missing 

size classes can indicate an “unhealthy” population due to low survivorship at different life 

stages (Bak and Meesters 1998, Meesters et al. 2001). Second, while a general trend is observed 

in shape parameter variability (i.e. higher shape parameters exhibit a higher frequency of larger 

individuals and less small ones versus lower shape parameters exhibit a higher frequency of 

smaller individuals and relatively few large ones), these shape parameter estimates appear to 

deviate from this trend at anomalously high and low estimates. Bailey and Dell (1973) observed 

that as k increases towards infinity above a certain threshold, the distribution approaches a spike 

over a single point. This pattern was observed for each coral species and spatial resolution where 

the relationship between the shape parameter, median size and skewness deviated from the 

observed trend at anomalous values (Figures 17,18, and 19). Caution should thus be taken with 

atypical shape parameter estimates and these distributions potentially should be examined 

separately. 

4.2 Biogeophysical Relationships 

For biological communities across environmental gradients, adult survivorship and 

community composition are often strongly coupled with and reflective of their ambient 

environment (Margalef 1975, Sousa 1984). With respect to coral communities, structure and 

composition are likely to be determined by the interaction of multiple forcing functions operating 
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on a variety of scales (Murdoch and Aronson 1999). Nearshore marine systems are 

biogeochemically and physically dynamic environments characterized by high spatial and 

temporal variability, subsequently resulting in complex and diverse habitats (Alin et al. 2015).  

The onset of ocean acidification (OA) threatens coral reefs and will inevitably affect 

marine organisms especially those dependent on the accretion and accumulation of CaCO3 

(Andersson and Gledhill 2013). As a consequence of increasing atmospheric CO2 concentrations 

and OA, the rate of CaCO3 production on reefs may significantly decrease (e.g. Gattuso et al. 

1999), however ecological consequences of OA on coral reefs are largely unknown due to a lack 

of data available at relevant spatial and temporal resolutions in the natural environment. While 

causality for the biogeophysical spatial patterns and relationships cannot be rectified here, this 

study offers an opportunity to evaluate coral size structure distribution dynamics and relevant 

biogeophysical relationships at finer spatial scales.  

Isopora spp. biogeophysical relationships 

Seawater chemistry dynamics in coral reef ecosystems are driven by co-varying 

processes, including biological activity and physical forcing, over different temporal and spatial 

scales (Price et al. 2012). Small spatial-scale physiochemical differences in microhabitats have 

also been found to strongly influence accretion-erosion patterns on coral reefs in which 

carbonate chemistry dynamics was more significant in explaining spatial patterns of reef 

accretion and erosion when compared to other environmental variables (resource availability, 

temperature, depth, and distance to shore; Silbiger et al. 2014).  

In this study, ambient variability in both mean net carbonate accretion rates and net 

carbonate accretion rate variability was substantial between American Samoa islands and also 

within islands. Variability in Isopora spp. coral size structure distributions at the site-level spatial 
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resolution was positively correlated with both net carbonate accretion rate variability and mean 

net carbonate accretion rates despite a number of other biological (e.g. benthic cover), physical 

oceanographic (e.g. irradiance, SST, chl-a, wave energy), and anthropogenic (e.g. human 

population density) drivers.  For strata-level patterns, mean net carbonate accretion rates were 

also positively related to Isopora spp. size structure variability. 

Mean net carbonate accretion rate and accretion rate variability 

Within the Isopora spp. spatial distribution range (Tutuila and the Manu’as islands), sites 

along the eastern section of the island of Ofu and Olosega (OFU-694, OFU-722, OFU-751) 

experienced both the highest net carbonate accretion rate variability (average of 0.50 g CaCO3 m-

2 yr-1) as well as some of the highest mean net carbonate accretion rates (average of 0.08 g 

CaCO3 m-2 yr-1) observed across sites and islands (Figure 25a-e). These sites collectively also 

had the lowest shape parameter estimates (average of 4.42) compared to all other sites across all 

islands and also had the lowest median size averages (average of 11 cm) and exhibited positive 

skewness (average of 0.60).  

This pattern of dominance by smaller-sized Isopora individuals at locations experiencing 

high accretion rate variability (i.e. accretion rate coefficient of variation) and high mean 

accretion rates may be correlated with positive Isopora settlement and post-settlement survival 

and may be indicative of co-varying biological and physical processes as well as size-selective 

environmental suitability. Sites experiencing these gradients in carbonate accretion rates are 

located on the windward shores of Ofu and Olosega with high wave energy exposure, averaged 

at 96.85 MW hr-1 m-1. Changes in community structure have been explained by hydrodynamic 

variability in which enhancement of carbonate production (due to the transport of nutrients and 

removal of biologic metabolic waste) has been associated with lower wave energy (Hearn et al. 
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2001; Veron 2011). At higher wave energy levels, community composition transitions to one that 

favors more stress-tolerant species, such as encrusting and massive corals, and calcifying algae, 

due to mechanical forcing (Massel 2005), and overall community carbonate production decreases 

due to stress-tolerant organisms calcifying at lower rates (Hamylton et al. 2013). Additionally, 

seawater carbonate chemistry can locally vary depending on community composition, due to 

variations in metabolic rates and ratios of net community calcification (NCC) to net community 

organic carbon production (NCP) between reef benthic functional groups (Anthony et al. 2013, 

Page et al. 2016), which has implications for the biology exposed to these highly dynamic 

habitats. 

Consequences to coral size structure distributions exposed to gradients in both carbonate 

production and hydrodynamic forcings may be two-fold: high wave energy environments may be 

unfavorable to larger colonies due to co-varying mechanical forcing and small-scale carbonate 

chemistry dynamics and these environments may also be favorable habitats for both the growth 

and survival of smaller colonies as well as for facilitating recruitment. As both accretion rate 

variability and mean accretion rates were highly correlated with Isopora size structure 

distributions (shape parameter decreased with increasing covariates), these variables may have 

collectively created a favorable environment for smaller Isopora colonies and, at the same time, 

created a less favorable environment for larger sized individuals which may have created space 

for smaller individuals to grow. In this study, accretion rates were measured at fine spatial scales 

(tens of meters) where microhabitats exhibit an additional layer of biogeochemical complexity, 

owing to metabolic processes and remineralization that contribute to varying rates of 

precipitation and dissolution of CaCO3 (Andersson and Gledhill 2013). Coral populations 

exposed to co-varying extreme wave energy and highly variable net carbonate accretion rate 
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regimes, such as Isopora sub-populations on eastern shores of Ofu and Olosega, can have 

energetic costs on corals, affecting both photosynthesis and respiration (Porter et al. 1999), 

ultimately leading to reduced growth and/or survivorship to larger-sized size colonies (Jokiel et 

al. 2014). Results from strata-level analysis of Isopora indicated that wave energy was, in fact, 

the strongest predictor in explaining spatial variation in size structure where the shape parameter 

decreased with increasing wave energy, supporting the claim that Isopora sub-populations 

exposed to high wave energy shift size structure distributions towards dominance by smaller size 

classes. 

Additionally, these sites also exhibited high mean net carbonate accretion rates. The 

additive effects of both high mean net accretion rates and high accretion rate variability may 

have enabled these sites to be dominated by crustose coralline algae (CCA), a pattern that has 

been observed elsewhere. For example, Price et al. 2012 found that spatial variability in net 

carbonate accretion was positively correlated to the temporal magnitude and duration of pH 

above background climatological lows which was also linked to a dominance of organisms 

precipitating high Mg calcite (e.g. CCA and bryozoans). CCA is a key settlement substrate that 

enables coral recruitment (Hoegh-Guldberg et al. 2007) and is both strongly positively associated 

with accretion rates (Vargas-Ángel et al. 2015) and higher wave energy regimes (Massel 2005). 

These sites located on the windward shores of Ofu and Olosega also exhibited some of the 

highest CCA coverage across the Isopora spatial range, which may have acted as both a 

facilitator for recruitment and enabled the growth and survival of smaller Isopora colonies as 

well as led to competitive inhibition of larger corals (Babcock and Mundy 1996, Ruiz-Zarate et 

al. 2000). 
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In contrast, sites on the far southwest corner of Tutuila  (TUT-2106, TUT-2116), the 

north side of Tau Island (TAU-637, TAU-692, TAU-668), the northwest side of Ofu and 

Olosega (OFU-710, OFU-765, OFU-789), and the southern end of Tutuila by Pago Pago Harbor 

(TUT-1878, TUT-1936, TUT-2095) had the lowest net carbonate accretion rate variability (total 

average of 0.15 g CaCO3 m-2 yr-1) with high mean net carbonate accretion rates (total average of 

0.07 g CaCO3 m-2 yr-1; Figure 25a-e). These sites also had some of the highest shape parameter 

estimates (Tutuila south sites - average of 7.49; Tutuila southwest sites - average of 7.20; Tau 

sites – average of 7.59; Ofu/Olosega sites – average of 6.90) and high median size averages 

(Tutuila south sites - average of 39 cm; Tutuila southwest sites - average of 31.08 cm; Tau sites – 

average of 20 cm; Ofu/Olosega sites – average of 14.33 cm) with varying skewness (total 

average of -0.05). 

This pattern of dominance by larger-sized Isopora individuals at locations experiencing 

low accretion rate variability and high mean accretion rates most likely reflect the same co-

varying processes as those influencing distributions with a preponderance of small-sized 

individuals. These are located on the leeward shores of each with low wave energy exposure 

(averaged at 82.78 MW hr-1 m-1), which is associated with the enhancement of carbonate 

production and community composition representative of low wave energy environments (Hearn 

et al. 2001; Veron 2011). These sites exhibited communities with relatively low CCA cover 

(average of 24.74%) in comparison to high coral cover (40.16%). A reduction in accretion rates 

of CCA has been associated with a shift towards communities dominated by competitive calcitic 

(i.e. scleractinian corals), aragonitic, and non-calcifying species (Price et al. 2012). High mean 

accretion rates and low accretion rate variability (possible in conjunction with low wave energy 

environments) may reflect a shift in reef community composition, where the community begins 
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to consist of more adult corals of varying species, which may have ultimately set the stage for 

both competitive inhibition of Isopora recruitment/settlement (Vermeij and Sandin 2008) as well 

as for Isopora sub-population size distributions to be dominant in larger-sized classes. 

Slope and slope variability 

Spatial variability in both seabed slope and slope variability (slope coefficient of 

variation; proxy for topographic habitat complexity), with respect to Isopora size structure 

distributions, was substantial across sites and islands with no distinct homogenous spatial 

patterns observed. Overall, the trend observed and verified by generalized linear models revealed 

that lower shape parameters (k < 5) were associated with habitats that had shallower slopes 

(average = 5.12 degrees) and higher measures of complexity (average of 0.58). In contrast, 

higher shape parameters (k > 6) were associated with habitats that had steep slopes (average = 

10.02 degrees) and lower measures of complexity (average of 0.44). As would be expected, 

moderate shape parameters (5 ≤ k ≥ 6) fell in the middle and were associated with habitats that 

had both moderate slopes (average = 7.07 degrees) and moderate measures of complexity 

(average = 0.42). 

Habitat heterogeneity has been shown to be important in medium to large coral reef areas 

as these areas typically comprise several habitat types as well as transition zones between 

habitats, overall contributing to reef complexity (Cornell and Karlson 2000), which likely 

contributed to the spatial variability observed in Isopora size distributions. Seabed slope and 

seafloor rugosity have been responsible for marine benthic community spatial distribution and 

composition (e.g. Tempera et al. 2011) and are considered direct variables (i.e. aspects of the 

environment that are sought out by species) in explaining the occurrence of biological 

populations in specific locations (Harris 2011). Habitat-specific substratum preferences for coral 



 53 

larvae have been widely reported for various species (e.g. Baird, Babcock, and Mundy 2003) and 

coral settlement spatial patterns have, in part, been attributed to the structural makeup of a reef 

(Lillis et al. 2016). The data presented here identify habitats with high topographic complexity, 

especially along steeper slopes, as an important control on Isopora distributions dominated by 

smaller size classes. Overall, lower shape parameters (k < 5) were associated with habitats that 

had shallower slopes (average = 5.12 degrees) and higher measures of complexity (average of 

0.58). Sessile intertidal invertebrates have been shown to employ tactile cues to find rugose 

surfaces during settlement stages to reduce exposure to predation (Petraitis 1990; Raimondi 

1990); and spatial differences in settlement have been found to reflect differences in habitat type 

where settlement density was highest on substrate with higher complexity (Raimondi 1990). If 

the assumption is that competition, mortality, resources, etc. vary at the same spatial scale as 

habitat preference, then selectivity of high complexity habitat by small Isopora individuals may 

enhance individual performance (Price 2010) and specific habitats may act as a refuge for 

smaller individuals. 

Variability in slope was also a significant predictor for Isopora size structure, in which 

higher shape parameters (k > 6) were associated with habitats that had steep slopes (average = 

10.02 degrees) and lower measures of complexity (average of 0.44). Coral reef studies have 

shown that dramatic changes in environmental variability can occur over short distances due to 

dynamic shorelines and geomorphic features along with steep physical and chemical gradients 

across different depths (Guadayol et al. 2014, Silbiger et al. 2014). For instance, Guadayol et al. 

2014 examined the high frequency temporal variability and spatial distribution of ambient 

carbonate chemistry from sites distributed along a 32- meter transect at different depths (reef flat 

to reef slope) on a coral reef. Results revealed extreme variation in the temporal fluctuation 
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spectrum (i.e. diurnal versus weekly frequencies) of each environmental parameter over a scale 

of meters. In other words, ecological communities on the reef flat experienced a highly variable 

environment whereas those further down on the reef slope experienced a relatively stable one, 

highlighting the importance of environmental variance at small scales. Just as high complexity 

habitats may have acted as a refuge for small Isopora individuals, habitats with steeper slopes 

may have acted as a refuge for large Isopora individuals, sheltering them from environmental 

extremes on and near the reef flats. 

Montastrea curta biogeophysical relationships 

PAR 

Variability in Montastrea curta coral size structure distributions at both the site-level and 

strata-level spatial resolution were primarily explained by the covariate PAR (i.e. irradiance). 

While the gradient in PAR levels was not significant across islands (minimum = 42.41 E m-2 d-1; 

maximum = 44.00 E m-2 d-1), the spatial distribution of Montastrea curta coral size structure 

distributions varied greatly with gradients in PAR estimates. Across islands, PAR long-term 

mean estimates were highest along the northern reefs of Ofu and Olosega (average = 43.91 E m-2 

d-1), Rose Atoll forereef (average = 43.91 E m-2 d-1), Swains forereef (average = 43.81 E m-2 d-1), 

and northwestern reef of Tau (average = 43.74 E m-2 d-1). In contrast, northwest-west Tutuila, 

west Tau, and southeast Ofu and Olosega, had the lowest PAR long-term mean estimates 

(average = 42.47, 42.64, and 43.00 E m-2 d-1, respectively). Across islands, M. curta size 

structure distributions scaled negatively with PAR where reefs with highest PAR estimates had 

lower shape parameters (average = 6.21) and reefs with the lowest PAR estimates had higher 

shape parameters (average = 8.63). This pattern held at the intra-island scale except for Rose 

Atoll where shape parameters did not vary with gradients in PAR. 



 55 

Coral communities have minimum light requirements in which light attenuation 

influences calcification physiology, metabolism, and overall survivorship, affecting the overall 

growth and survival of corals (Falkowski et al. 1984). Over large spatial scales, light relevant to 

marine biological communities is heavily influenced by latitude and depth and, at local scales, is 

attenuated by particulate matter and dissolved organics in the water column (Marubini et al. 

2001). Interestingly, when PAR and chl-a were examined at the island-scale, using Pearson 

correlations, Tutuila, the Manuas (Ofu and Olosega, Tau), and Rose Atoll all exhibited high 

negative correlations (R2 = 56, 88, and 63 %, respectively) where PAR decreased with increasing 

chl-a. As chl-a is a proxy for ocean photosynthetic productivity (Gove et al. 2013), spatial 

variability in chl-a is typically indicative of eutrophic conditions, with elevated levels of 

dissolved organics and nutrients in the water column, which can influence post-settlement 

processes (Tremblay 2014). In low light environments, adult coral populations can acclimate by 

reducing energetic requirements through decreasing respiration rates, tissue biomass and 

skeleton thickness, as well as growth (Anthony and Hoegh-Guldberg 2003), resulting in the 

hindrance of precipitation of CaCO3 skeletons in corals (Falkowski et al. 1990). Thus a reduction 

in light attenuation due to eutrophic conditions likely impacted coral physiological processes in 

smaller individuals, hindering post-settlement survivorship (Tremblay 2014), which ultimately 

resulted in a shift towards M. curta size distributions dominated by smaller colonies with 

increasing levels of irradiance. 

Mean net carbonate accretion rates 

In addition to PAR, mean net carbonate accretion rates explained a significant amount of 

variability observed in M. curta coral size structure distributions at the strata-level spatial 

resolution, in which higher accretion rates were associated with distributions with smaller size 
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individuals. Mean accretion rates were highest along the forereef of Rose Atoll (average = 0.17 g 

CaCO3 m-2 yr-1; maximum = 0.26 g CaCO3 m-2 yr-1) followed by the south-southwest forereef of 

Ofu and Olosega (average = 0.11 g CaCO3 m-2 yr-1; maximum = 0.12 g CaCO3 m-2 yr-1), which 

was correlated with lower shape parameters (average = 5.81). Mean accretion rates were lowest 

along northeast-east and northwest Tutuila (average = 0.05 g CaCO3 m-2 yr-1; minimum = 0.04 g 

CaCO3 m-2 yr-1) northwest Tau (average = 0.04 g CaCO3 m-2 yr-1; minimum = 0.04 g CaCO3 m-2 

yr-1), which was correlated with higher shape parameters (average = 6.79). Across islands, mean 

accretion rate spatial patterns corresponded well with spatial patterns in PAR and chl-a where 

higher accretion rates were spatially correlated with higher levels of PAR and lower levels of 

chl-a, although the relationships were not highly correlated (R2 ≤ 35%; except for Ofu and 

Olosega, mean accretion rates and PAR, R2 = 56%, and chl-a, R2 = 58%; for Rose Atoll, mean 

accretion rates and PAR, R2 = 42%). We also find a positive correlation with percent turf algae 

cover and lower accretion rates and PAR and higher chl-a, suggesting a shift in community 

composition in these environmental conditions, which can reduce the settlement and survivorship 

success of coral recruits (Vermeij et al. 2008). Research on various reefs in the Pacific, including 

American Samoa, found a statistically significant negative correlation between net carbonate 

accretion rates and chl-a, attributing a reduction in accretion rates to artifacts of elevated chl-a 

such as human-induced degraded water quality, increased runoff, and overgrowth of competitors 

such as turf algae (Vargas-Ángel et al. 2015). Here, the results provide additional evidence that 

covarying light attenuation and eutrophic conditions can either dampen or enhance coral 

calcification, altering physiological and growth processes in corals (Falkowski et al. 1990, 

Anthony and Hoegh-Guldberg 2003), as well as hinder coral settlement and survivorship 

(Vermeij et al. 2008). Reduced calcification and competitive overgrowth of turf algae, as a result 
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of low light and eutrophic conditions, likely negatively impacted recruitment and post-settlement 

survivorship processes in M. curta, which contributed to a lack of smaller sized individuals in 

these environments around American Samoa. 

Coral cover and wave energy 

For site-level resolution data, percent coral cover was secondary in explaining the most 

deviance in M. curta coral size structure distributions, in which higher percent coral cover was 

associated with higher shape parameters (i.e. distributions dominated by higher size classes). 

Across islands, coral cover estimates were highest along leeward shores of each island (average 

= 50.04 %) with highest coverage (> 50 %) along Tutuila northeast and northwest reefs, Ofu and 

Olosega northeast reefs, and Tau northeast reefs. In contrast, windward shores of each island had 

the lowest estimates (average = 7.87 %) with lowest coverage (< 5%) on Tutuila’s exposed 

south-southeast reefs and on Tau’s exposed southern reefs. M. curta size structure distributions 

scaled positively with coral cover where reefs with highest coral cover estimates had higher 

shape parameters (average = 8.00) and reefs with the lowest coral cover estimates had lower 

shape parameters (average = 5.45). Incidentally, wave energy was also found to be a significant 

covariate in explaining the spatial variation in M. curta size structure, where we see a shift to 

distributions with smaller size classes with increasing wave energy. As would be expected, both 

higher percent coral cover and higher shape parameters were correlated with low wave energy 

(average = 78.16 MW hr-1 m-1) and lower percent coral cover and lower shape parameters were 

correlated with high wave energy (average = 111.05 MW hr-1 m-1). Water motion, wave energy, 

and exposure are significant contributors to coral reef community spatial distribution and 

structure (Dollar 1982, Done 1982, van Woesik and Done 1997, Franklin et al. 2013) and storm 

severity can alter coral size structure distributions, increasing probability for dislodgement in 
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larger size classes (Done and Potts 1992). Higher proportions of small coral colonies at 

shallower depths have been attributed to decreasing hydrodynamic pressure with increasing 

depth, which inhibits development of large colonies due to strong water motion (Adjeroud et al. 

2015). The data presented here reveals the same pattern where higher wave energy may put a 

limit on larger M. curta colonies, which is reflected in the gradients observed in spatial coral 

cover patterns. 

Just as we see a shift in size structure towards distributions with higher size classes and, 

thus higher coral cover, in response to low wave energy, we also see the opposing effect in 

distributions dominated by smaller size classes; in response to high wave energy, we see a shift 

in size structure towards distributions with lower size classes, which is also reflected in lower 

estimates of coral cover. Settlement rates and post-settlement survivorship have been shown to 

decrease with increasing adult coral cover (with settlement rates saturating at a maximum of 10% 

adult coral cover), which indicates structuring density-dependent effects in coral settlement and 

survival (Vermeij and Sandin 2008). These density-dependent effects are artifacts of the local 

environment including amassing predators (Anderson 2001) and resource competition such as 

competition for space (Roughgarden et al. 1985, Carlon 2001). The data presented here identify 

high wave energy as an important control on larger M. curta size classes and density dependent 

effects could act to limit settlement of recruits and survivorship of smaller colonies at high 

densities of larger individuals (Vermeij and Sandin 2008). 

SST 

While SST was found to partially explain the variability observed in M. curta coral size 

structure distributions for both site- and strata-level resolution, this relationship was primarily 

driven by gradients in SST across islands as opposed to variability at the intra-island scale. 
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Swains, the northern-most location (latitude approximately 11° S), exhibited the highest 

temperatures at 29.30 °C and Rose Atoll, the southern-most location (latitude approximately 

14.5° S), exhibited the lowest temperatures at 28.73 °C. Shape parameters scaled negatively with 

SST where highest shape parameters (Tau, average = 8.74) were correlated with lower SST 

estimates (average = 28.84 °C) and higher shape parameters (Swains, average = 3.25) were 

correlated with higher SST estimates (average = 29.30 °C). This relationship did not hold true for 

Rose Atoll, which had the lowest SST estimates and had the second lowest island-scale shape 

parameter estimates (average = 5.31). Higher sea surface temperatures have been linked to 

slower coral growth rates (Bauman 2013b) and have been shown to have a positive effect on 

coral larval settlement (Nozawa and Harrison 2007), which could have contributed to the size 

structure distribution patterns observed along SST gradients. 

Depth 

Depth additionally explained a portion of the total deviance observed (R2 = 5%) in M. 

curta coral size structure distributions at the site-level resolution. With increasing depth, 

distributions exhibited a shift towards ones with a prevalence of larger colonies and relatively 

fewer small ones. Shape parameter gradients were observed across depth zones with an average 

shape of 6.03 in shallower depths (average = 6.38 m), 6.64 in moderate depths (average = 12.97 

m), and 7.04 in deeper depths (average = 19.93 m). While this pattern can’t be assigned to a 

particular covariate(s) due to a lack of high spatio-temporal resolution data, this pattern can most 

likely be attributed to gradients in exposure to environmental extremes as a result of multiple 

interacting variables (Cornell and Karlson 2000). As exemplified in this study, wave energy 

plays a role in the spatial distribution of population size structure. In American Samoa, shallower 

forereef areas typically experience higher levels of tidal flux and wave energy generated from the 
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predominant southeast tradewinds and backreefs are characterized by high thermal and 

biogeochemical variability controlled by tidal modulation of wave-driven flow (Birkeland et al. 

2007, Koweek et al. 2015). These extreme environmental gradients experienced by shallower 

reef areas may be tolerated by smaller M. curta colonies but may act as stress-inducing 

environments for larger M. curta colonies, in which habitat along deeper slopes may be more 

stable regimes (Guadayol et al. 2014) and act as refuge from these predominant conditions. 

Juvenile abundance 

Because sampling effort for juveniles was not consistent across sites, results regarding 

juvenile abundance as an explanatory covariate should be interpreted with caution. In this study, 

M. curta juvenile abundance explained an insignificant portion of the total deviance observed (R2 

= 2%) in M. curta coral size structure distributions at the site-level resolution; however, the 

effect of this predictor on the response was significant. With increasing juvenile abundance, 

distributions exhibited a shift towards ones with a prevalence of smaller colonies and relatively 

fewer small ones. While most sites had zero or very few juveniles (≤ 1), the highest juvenile 

abundances (total = 34) were found on Tutuila’s southern-southeastern reefs, which collectively 

had the lowest average shape parameter, 5.60. Reefs along the Tau northwestern and southern 

coast, Tutuila Aunu’u island MPAs, and Ofu and Olosega northwest coast also exhibited 

relatively high juvenile abundances (17, 16, and 15, respectively) and also had lower shape 

parameters (6.45, 6.04, and 6.09 respectively). A coral population’s resilience can, in part, 

consist of good connectivity to larval sources as well as essential habitat that promotes larval 

settlement and survivorship (Crabbe 2009). While the mechanisms (i.e. recruitment rate and/or 

juvenile mortality rate variability, competitive inhibition, etc.) underlying M. curta juvenile 

abundance spatial variability patterns can’t be assigned, it is clear that larval supply and 
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successful settlement as well as recruit and juvenile survivorship can contribute to the success 

and health of a coral population (Hughes et al. 2000, Meesters et al. 2001). 

Ultimately there are many other causal factors, in addition to the ones mentioned in this 

section that contribute to coral community structure and distribution. These may be 

environmental in nature (e.g. hydrodynamic processes such as currents and storm frequency) 

and/or biological (e.g. coral-recruit settlement patterns and post-settlement survival, Done 1982;, 

disease, competition, e.g. Connell et al. 2004). Additional data, however, is either currently 

unavailable or unavailable at the necessary resolution and/or scale to explore these mechanisms. 

 
 
5. CONCLUSION 
 

In this study, size structure distributions for both Isopora and M. curta varied both 

between species and across space. While the Weibull shape parameter metric has some 

limitations in describing coral size structure distributions, overall, this metric adequately 

characterized distributions as well as effectively captured spatial heterogeneity observed for each 

coral species. Additionally, this study exemplifies the utility of a single size distribution metric to 

quantify coral size distributions versus previous coral size structure studies which use multiple 

descriptive statistics of the distribution shape to explain spatial variability observed in 

populations. While these studies have laid the groundwork in effectively characterizing coral size 

spectra and examining spatio-temporal variability, the use of multiple size metrics inhibits 

adequate assessment of coral size structure in relation to biogeophysical factors. Additionally, 

our findings emphasize coral size as an important characteristic for scleractinian corals, which 

accurately reflects population dynamics processes. Risk assessments and protection efforts have 

typically been predicated on measures of a species’ abundance, which may be inappropriate for 
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some sessile marine invertebrates, such as corals, where abundance does not accurately describe 

population dynamics and processes (Birkeland et al. 2013). A given species may be abundant 

and dominant but this may not protect a species from huge declines or extinction due to disease 

(Vollmer and Palumbi 2007) or threats from increasing CO2 (Birkeland et al. 2013).  

While direct mechanisms regarding biogeophysical relationships and size structure 

distributions cannot be assigned, it is clear that both Isopora and M. curta coral populations 

experienced highly dynamic oceanographic, biological, and geomorphological regimes, which 

corresponded to key spatial differences in coral size structure distributions. Dominant 

biogeophysical relationships with size also differed between coral species where oceanographic, 

biological, and geomorphological variables were significant influential drivers in explaining M. 

curta size structure. In contrast, ocean carbonate chemistry, wave energy and geomorphological 

variables were significant influential drivers in explaining Isopora size structure, which 

emphasizes the species-specific differences in environmental factors driving observed spatial 

patterns. Finally, model results show carbonate accretion rates and variability as important 

controls on Isopora size structure, suggesting that the onset of ocean acidification will likely 

compromise Isopora demographic processes. These findings can inform managers of the threats 

and status of coral populations and greatly assist managers in monitoring efforts, especially with 

ESA-listed species. 

Given the spatial heterogeneity observed in coral size structure distributions between 

spatial resolutions examined here (i.e. site versus strata), future studies should consider spatial 

resolution in examining coral size structure, especially in relation to biogeophysical 

relationships. Site-level analysis has the ability to capture size structure variability at a higher 

spatial resolution (especially with larger sample sizes), which, in turn, captures the highly 
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dynamic biogeophysical processes at finer spatial scales. However, at small sample sizes, site-

level analysis has its limitations and can lead to higher variance. Strata-level assessments yield 

higher sample sizes, thus improving statistical power; however, assessing biogeophysical 

relationships at a coarser spatial scale may mask highly dynamic and potentially important 

environmental processes. Both site- and strata-level assessments are valuable and future coral 

size structure studies incorporating biogeophysical relationships should take into consideration 

the environmental variable spatial scales. Additionally, while remote sensing data has proven to 

be valuable in assessing biogeophysical relationships in the absence of site-level data, higher 

resolution data should be used to assess patterns at small spatial scales when available. Future 

work on the coral size spectra and biogeophysical relationships should also examine various 

climatological metrics (i.e. anomalous highs and lows, minimums, maximums, etc.) for 

oceanographic variables. Because biological communities, including coral populations, respond 

to variation in environmental regime, dynamic variability should be considered when assessing 

the status and trends of populations and communities, especially in a changing climate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 64 

RESEARCH CITED 
 

1. Achituv Y and Dubinsky Z. 1990. Evolution and zoogeography of coral reefs. In: Z. 
Dubinsky (ed.), Ecosystems of the world 25. Coral Reefs, Chapter 1, pp. 1-9. Elsevier, 
Amsterdam. 

2. Adjeroud M, Mauguit Q, Penin L. 2015. The size-structure of corals with contrasting life-
histories: A multi- scale analysis across environmental conditions. Marine Environmental 
Research 112: 131-139. 

3. Aeby GS, Kenyon JC, Maragos JE and Potts DC. 2003. First Record of Mass Coral 
Bleaching in the Northwestern Hawaiian Islands Coral Reefs. 22:3, p256. 

4. Alvarado-Chacon, E.M., Acosta, A., 2009. Population size-structure of the reef-coral 
Montastraea annularis in two contrasting reefs of a marine protected area in the Southern 
Caribbean Sea. Bull. Mar. Sci. 85, 61-76. 

5. Anderson TW. 2001. Predator responses, prey refuges, and density-dependent mortality 
of a marine fish. Ecology 82: 245–257. 

6. Anderson KD, Pratchett MS. 2014. Variation in size-frequency distribution of branching 
corals between a tropical versus sub-tropical reef. Mar. Ecol. Prog. Ser. 502, 117-128. 

7. Andersson AJ and Mackenzie FT. 2012. Revisiting four scientific debates in ocean 
acidification research. Biogeosciences 9, 893–905. doi: 10.5194/bg-9-893-2012 

8. Andersson A and Gledhill D. 2013. Ocean acidification and coral reefs: Effects on 
breakdown, dissolution, and net ecosystem calcification. Annual Review of Marine 
Science, 5: 321-48.  

9. Anthony KRN and Hoegh-Guldberg O. 2003. Variation in coral photosynthesis, 
respiration and growth characteristics in contrasting light microhabitats: an analogue to 
plants in forest gaps and understoreys? Funct. Ecol. 17, 246–259. doi: 10.2307/3599181 

10. Anthony KRN, Diaz-Pulido G, Verlinden N, Tilbrook B, and Andersson AJ. 2013. 
Benthic buffers and boosters of ocean acidification on coral reefs, Biogeosciences, 10, 
4897-4909, https://doi.org/10.5194/bg-10-4897-2013. 

11. Anthony KRN, Larcombe P. 2002. Coral reefs in turbid waters: sediment- induced 
stresses in corals and likely mechanisms of adaptation. Proceedings of the Ninth 
International Coral Reef Symposium Bali 1, 239-244 

12. Anthony KRN, Ridd PV, Orpin AR, Larcombe P, Lough J. 2004. Temporal variation of 
light availability in coastal benthic habitats: effects of clouds, turbidity and tides. 
Limnology and Oceanography 49: 2201–2211. 

13. Babcock R and Mundy C. 1996. Coral recruitment: consequences of settlement choice for 
early growth and survivorship in two scleractinians. Journal of Experimental Marine 
Biology and Ecology. 206: 179-201. 

14. Bahr KD, Jokiel PL, Rodgers KS. 2016. Relative sensitivity of five Hawaiian coral 
species to high temperature under high-pCO2 conditions. Coral Reefs. 35, 729–738. doi: 
10.1007/s00338-016-1405-4 

15. Bailey RL and Dell TR. 1973. Quantifying diameter distributions with the Weibull 
function. Forest Sci. 19:97-104. 

16. Baird A, Babcock R, Mundy C. 2003. Habitat selection by larvae influences the depth 
distribution of six common coral species. Marine Ecology Progress Series 252:289–293 
DOI 10.3354/meps252289. 

17. Baird AH, Marshall PA. 2002. Mortality, growth and reproduction in scleractinian corals 



 65 

following bleaching on the Great Barrier Reef. Marine Ecology progress Series 237: 
133–141. 

18. Bak RPM. 1975. Ecological aspects of the distribution of reef corals in the Netherlands 
Antilles. Contr Zool 45:181–190 

19. Bak RPM, Meesters EH. 1997. Coral diversity, populations and ecosystem functioning. 
In: Den Hartog JC (ed) Proceedings 6th International Conference Coelentarate Biology. 
National Museum Natural History, Leiden, p 27–38 

20. Bak RPM, Meesters EH. 1998. Coral population structure: the hidden information of 
colony size-frequency distributions. Mar Ecol Prog Ser 162:301–306  

21. Bak RPM, Meesters EH. 1999. Population structure as a response of coral communities 
to global change. Am Zool 39:56–65 

22. Baker AC, Glynn PW, Riegl B. 2008. Climate change and coral reef bleaching: an 
ecological assessment of long-term impacts, recovery trends and future outlook. 
Estuarine, Coastal and Shelf Science 80, 435-471 

23. Bartoń K. 2016. MuMIn: Multi-Model Inference. R package version 1.15.6. 
https://CRAN.R-project.org/package=MuMIn 

24. Bauman AG, Feary DA, Heron SF, Pratchett MS, Burt JA. 2013a. Multiple 
environmental factors influence the spatial distribution and structure of reef communities 
in the northeastern Arabian Peninsula. Marine Pollution Bulletin, 72(2), 302–312. 
doi:10.1016/j.marpolbul.2012.10.013 

25. Bauman AG, Pratchett MS, Baird AH, Riegl B, Heron SF, Feary DA. 2013b. Variation in 
the size structure of corals is related to environmental extremes in the Persian Gulf. 
Marine Environmental Research, 84, 43–50. doi:10.1016/j.marenvres.2012.11.007 

26. Birkeland C, Craig P, Fenner D, Smith L, Kiene W, Riegl B. 2007. Geologic setting and 
ecological functioning of coral reefs in American Samoa. Chap. 20. In: Riegl B., R. 
Dodge, (Eds). Coral reefs of the USA. Springer Publishers. 

27. Birkeland C, Miller MW, Piniak GA, Eakin CM, Weijerman M, Elhany PM, Dunlap M, 
Brainard RE. 2013. Safety in Numbers? Abundance May Not Safeguard Corals from 
Increasing Carbon Dioxide: GCU Library Resources - Sciences, 63(12), 967–974. 
doi:10.1525/bio.2013.63.12.9 

28. Boss E and Zaneveld JR. 2003. The effect of bottom substrate on inherent optical 
properties: Evidence of biogeochemical processes. - Limnol. Oceanogr. 48: 346–354. 

29. Brainard RE, Birkeland C, Eakin CM, McElhany P, Miller MW, Patterson M, Piniak GA. 
2011. Status review report of 82 candidate coral species petitioned under the U.S. 
Endangered Species Act, (September), 530. Retrieved from: 
http://www.pifsc.noaa.gov/library/pubs/tech/NOAA_Tech_Memo_PIFSC_27.pdf 

30. Brooks JL, Dodson SI. 1965. Predation, body size, and composition of plankton. Science 
150:28-35. 

31. Brown BR. 1997. Adaptations of reef corals to physical environmental stress. Adv. Mar. 
Biol. 31, 221–299. 

32. Brown BE, Dunne RP, Goodson MS, Douglas AE. 2002. Experience shapes the 
susceptibility of a reef coral to bleaching. Coral Reefs 21: 119–126. 

33. Bryant D, Burke L, McManus J, Spalding M. 1998. Reefs at risk: a map-based indicator 
of threats to the world’s coral reefs. World Resources Institute, Washington, D.C. 

34. Buddemeier RW. 1994. Symbiosis, calcification, and environmental interactions. Bulletin 
de l’Institut océanographique, Monaco, n° special 13:119-131. 



 66 

35. Burke L, Reytar K, Spalding M, Perry A. 2011. Reefs at Risk Revisited. World 
Resources Institute. 

36. Carlon DB. 2001. Depth-related patterns of coral recruitment and cryptic suspension-
feeding invertebrates on Guana Island, British Virgin Islands. Bulletin of Marine Science 
68:525–541. 

37. Carpenter KE, Abrar M, Aeby G, Aronson RB and others. 2008. One-third of reef-
building corals face elevated extinction risk from climate change and local impacts. 
Science 321: 560−563 

38. Carreiro-Silva M, McClanahan TR, Kiene WE. 2009. Effects of inorganic nutrients and 
organic matter on microbial euendolithic community composition and microbioerosion 
rates. Marine Ecology Progress Series 392: 1–15. 

39. Cleary DFR, Suharsono, Hoeksema BW. 2006. Coral diversity across a disturbance 
gradient in the Pulau Seribu reef complex off Jakarta, Indonesia. Biodiversity and 
Conservation 15:3653-3674. 

40. Cochran WG. 1977. Sampling techniques, 3rd ed. Wiley, New York Connell 
41. Connell JH. 1973. Population ecology of reef-building corals. In: Jones, O.A., Endean, R. 

(Eds.), Biology and Geology of Coral Reefs. Academic Press, London, pp. 271-324. 
42. Connell JH, Hughes TP, Wallace CC. 1997. A 30-year study of coral abundance, 

recruitment, and disturbance at several scales in space and time. Ecol. Monogr.67:461-
488. 

43. Connell JH, Hughes TP, Wallace CC, Tanner JE, Harms KE, Kerr AM. 2004. A long-
term study of competition and diversity of corals. Ecological Monographs, 74(2) pp. 179-
210.  

44. Connor EF, McCoy ED. 1979. The statistics and biology of the species-area relationship. 
Am Nat 113:791-833. 

45. Cornell HV, Karlson RH. 1996. Species richness of reef-building corals determined by 
local and regional processes. J Anim Ecol 65:233-241. 

46. Cornell HV, Karlson RH. 2000. Coral species richness: ecological versus 
biogeographical influences. Coral Reefs 19:37–49  

47. Costanza R. et al. 1997. The value of the world’s ecosystem services and natural capital. 
Nature 387:253–260. 

48. Crabbe MJC. 2009. Scleractinian coral population size structures and growth rates 
indicate coral resilience on the fringing reefs of North Jamaica. Marine Environmental 
Research, 67(4-5), 189–198. doi:10.1016/j.marenvres.2009.01.003 

49. Curran LM et al. 2004. Lowland forest loss in protected areas of Indonesian Borneo. – 
Science 303: 1000–1003. 

50. D’Agostino RB, Stephens MA (1986). Goodness-of-Fit Techniques. 1st edition. Dekker. 
51. De’ath G and Fabricius KE. 2000. Classification and Regression Trees: a powerful yet 

simple technique for ecological data analysis. Ecology 81:3178-3192. 
52. Delignette-Muller ML, Dutang C. 2015. fitdistrplus: An R Package for Fitting 

Distributions. Journal of Statistical Software, 64(4), 1-34. 
URLhttp://www.jstatsoft.org/v64/i04/. 

53. Dollar SJ. 1982. Wave stress and coral community structure in Hawaii. Coral Reefs 1:71-
81. 

54. Done TJ. 1982. Patterns in the distribution of coral communities across the Central Great 
Barrier Reef. Coral Reefs 1:95-107. 



 67 

55. Done TJ, Potts DC. 1992. Influences of habitat and natural disturbances on contributions 
of massive Porites corals to reef communities. Mar. Biol. 114, 479-493. 

56. Done TJ. 1999. Coral community adaptability to environmental change at the scales of 
regions, reefs and reef zones. American Zoologist 39: 66-79. 

57. Done T. 2011. Corals: environmental controls on growth. In: Hopley, D. (Ed.), 
Encyclopedia of Modern Coral Reefs: Structure, Form and Process, Encyclopedia of 
Earth Science Series. Springer-Verlag, London, pp. 281–282. 

58. Dunne RP, Brown BE. 1996. Penetration of solar UVB radiation in shallow tropical 
waters and its potential biological effects on coral reefs; results from the central Indian 
Ocean and Andaman Sea. Marine Ecology progress Series 144: 109–118. 

59. Eakin CM, Lough JM, Heron SF. 2009. Climate variability and change: Monitoring data 
and evidence for increased coral bleaching stress. Ecological Studies 205: 41–67. 

60. Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees. 
Journal of Animal Ecology, 77, 802-813. 

61. Engels MS, Fletcher CH, Field ME, Storlazzi CD and others. 2004. Holocene reef 
accretion: southwest Molokai, Hawaii, USA. J Sed Res 74:255−269. 

62. Fabricius KE. 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: 
review and synthesis. Marine Pollution Bulletin 50: 125–146. 

63. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW. 1984. Light and the bioenergetics of 
a symbiotic coral. Bioscience 34, 705–709. 

64. Falkowski PG, Jokiel PL, Kinzie RA. 1990. Irradiance and corals. In: Dubinsky Z (ed) 
Ecosystems of the world 25: coral reefs. Elsevier, Amsterdam, p 89–107 

65. Fenner D, Speicher M, Gulick S. Contributing authors: Aeby G, Cooper Aletto S, 
Anderson P, Carroll B, DiDonato E, DiDonato G, Farmer V, Fenner D, Gove J, Gulick S, 
Houk P, Lundblad E, Nadon M, Riolo F, Sabater M, Schroeder R, Smith E, Speicher M, 
Tuitele C, Tagarino A, Vaitautolu S, Vaoli E, Vargas-Angel B, Vroom P. 2008. The State 
of Coral Reef Ecosystems of American Samoa. pp. 307-352. In: J.E. Waddell and A.M. 
Clarke (eds.), The State of Coral Reef Ecosystems of the United States and Pacific Freely 
Associated States: 2008. NOAA Technical Memorandum NOS NCCOS 73. 
NOAA/NCCOS Center for Coastal Monitoring and Assessment’s Biogeography Team. 
Silver Spring, MD. 569 pp. 

66. Folke C et al. 2011. Reconnecting to the biosphere. – Ambio 40: 719–738. 
67. Fox J, 2002. An R and S-Plus companion to applied Regression. Sage publications, 

Thousand Oaks, CA 
68. Franklin EC, Jokiel PL, Donahue MJ. 2013. Predictive modeling of coral distributions 

and abundance in the Hawaiian Islands. Mar Ecol Prog Ser. Vol. 481: 121-132. 
69. Glynn PW. 1976. Some physical and biological determinants of coral community 

structure in the  eastern Pacific. Ecological Monographs 46:431-456. 
70. Glynn PW. 1993. Coral reef bleaching: ecological perspectives. Coral Reefs. Vol. 12, 

issue 1, pp 1-17. 
71. Gove JM, Williams GJ, McManus MA, Heron SF, Sandin SA, Vetter OJ, Foley DG. 

2013. Quantifying climatological ranges and anomalies for Pacific coral reef 
ecosystems.    PLoS ONE 8(4): e61974. DOI: 10.1371/journal.pone.0061974. 

72. Grigg RW. 1982. Darwin point: A threshold for atoll formation. Coral Reefs 1:29- 34. 
73. Grigg RW. 1983. Community structure, succession, and development of coral reefs in 

Hawaii. Mar Ecol Prog Ser 11:1−14. 



 68 

74. Grigg RW. 2006. Depth limit for reef building corals in the Au'au Channel, S.E. Hawaii. 
Coral Reefs 25:77–84 

75. Guadayol O`, Silbiger NJ, Donahue MJ, Thomas FIM. 2014. Patterns in Temporal 
Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral 
Reef. PLoS ONE 9(1): e85213. doi:10.1371/journal.pone.0085213.  

76. Gutierrez AP. 1996. Applied population ecology: a supply-demand approach. 300p 
Wiley, New York 

77. Guzner B, Novoplansky A, Chadwick NE. 2007. Population dynamics of the reef- 
building coral Acropora hemprichii as an indicator of reef condition. Mar. Ecol. Prog. 
Ser. 333, 143-150. 

78. Haedrich RL and Barnes SM. 1997. Changes over time of the size structure in an 
exploited shelf fish community. Fisheries Research. 31:229-239. 

79. Hall DJ, Threlkland ST, Burns CW, Crowley PH. 1976. The size-efficiency hypothesis 
and the size-structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7:177-208. 

80. Hall VR, Hughes TP. 1996. Reproductive strategies of modular organisms: comparative 
studies of reef-building corals. Ecology 77, 950-963. 

81. Harris PT. 2011. Surrogacy, in: Harris PT and Baker EK (Eds.), Seafloor 
Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and 
Benthic Habitats, Elsevier, Amsterdam, 2011 (Chp. 5). 

82. Hartigan, JA and Wong, MA. 1979. A K-means clustering algorithm. Applied Statistics 
28, 100–108. 

83. Hearn CJ, Atkinson MJ, Falter JL. 2001. A physical derivation of nutrient-uptake rates in 
coral reefs: effects of roughness and waves. Coral Reefs 20:347–356 

84. Highsmith RC, Riggs AC, D’Antonio CM. 1980. Survival of hurricane-generated coral 
fragments and a disturbance model of reef calcification/growth rates. Oecologia 46: 322–
329 

85. Hoegh-Guldberg O. 1999. Mar. Freshw. Res. 50, 839. 
86. Hoeke RK, Gove JM, Wong KB, Brainard RE, Smith E, Fisher-Pool P, Lammers M, 

Merritt D, Vetter OJ, Young CW. 2009.    Coral reef ecosystem integrated observing 
system: In-situ oceanographic observations at the US Pacific islands and atolls. Journal of 
Operational Oceanography 2(2): 3-14. 
http://www.imarest.org/Publications/TechnicalProceedings/JOO. 

87. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F et al. 2011. High-
frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6:e28983. 
doi: 10.1371/journal.pone.0028983 

88. Hughes TP, Jackson JBC. 1980. Do corals lie about their age? Some demographic 
consequences of partial mortality, fission and fusion. Science 209, 713-714. 

89. Hughes TP, Jackson JBC. 1985. Population dynamics and life histories of foliaceous 
corals. Ecol Monogr 55:141–166 

90. Hughes TP, Connell JH. 1987. Population dynamics based on size or age? A reef coral 
analysis. Am Nat 129:818–829 

91. Hughes TP, Tanner JE. 2000. Recruitment failure, life histories, and long-term decline of 
Caribbean corals. Ecology, 81:2250−2263 

92. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, 
Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, 
Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. 2003. Climate change, human 



 69 

impacts, and the resilience of coral reefs. Science 301, 929-933 
93. Huston MA. 1985. Patterns of species diversity on coral reefs. Annu Rev Ecol Syst 

16:149-177 
94. Jiang R, Murthy DNP. 2011. A study of Weibull shape parameter: Properties and 

significance. Reliability Engineering and System Safety. 96, 1619-1626. 
95. Jokiel et al. 2014. Coral-algae metabolism and diurnal changes in the CO2-carbonate 

system of bulk sea water. PeerJ 2:e378; DOI 10.7717/peerj.378 
96. Jokiel PL and Coles SL. 1990. Response of Hawaiian and other Indo-Pacific reef corals 

to elevated temperature. Coral Reefs. 8, 155–162. doi: 10.1007/BF00265006 
97. Jokiel PL, Brown EK, Friedlander A, Rodgers SK, Smith WR. 2004. Hawai‘i coral reef 

assessment and monitoring pro- gram: spatial patterns and temporal dynamics in reef 
coral communities. Pac Sci 58:159−174. 

98. Jolliffe IT. 2002. Principal component analysis. 2nd edn. Springer, New York. 
99. Kaihatu JM, Handler RA, Marmorino GO, Shay LK. 1998. Empirical Orthogonal 

Function analysis of ocean surface currents using complex and real-vector methods. 
Journal of Atmospheric and Oceanic Technology. Vol. 15. doi:10.1175/1520-
0426(1998)015<0927:EOFAOO>2.0.CO;2 

100. Kenyon JC, Aeby GS, Brainard RE, Chojnacki JD, Dunlap M and Wilkinson CB. 2004. 
Mass Coral Bleaching on High-Latitude Reefs in the Hawaiian Archipelago. 10th Int 
Coral Reef Symp, Okinawa. 

101. Kenyon J and Brainard R. 2006. Second Recorded Episode of Mass Coral Bleaching in 
the Northwestern Hawaiian Islands. Atoll Research Bulletin. 543, pp505-523. 

102. Kleypas JA, McManus JW, Meñez LAB. 1999. Environmental limits to coral reef 
development: where do we draw the line? Am. Zool. 39, 146–159. 

103. Kohler KE, Gill SM. 2006. Coral Point Count with Excel extensions (CPCe): A Visual 
Basic program for the determination of coral and substrate coverage using random point 
count methodology. Comput Geosci 32: 1259−1269 

104. Koweek DA, Dunbar RB, Monismith SG et al. 2015. High-resolution physical and 
biogeochemical variability from a shallow back reef on Ofu, American Samoa: an end-
member perspective. Coral Reefs (2015) 34: 979. https://doi.org/10.1007/s00338-015-
1308-9 

105. Leichter JJ and Genovese SJ. 2006. Intermittent upwelling and subsidized growth of the 
scleractinian coral Madracis mirabilis on the deep fore-reef slope of Discovery Bay, 
Jamaica. Marine Ecology Progress Series 316: 95-103. 

106. Lirman D, Orlando B, Maciá S, Manzello D, Kaufman L, Biber P, Jones T. 2003. Coral 
 communities of Biscayne Bay, Florida and adjacent offshore areas: diversity, 
abundance, distribution, and environmental correlates. Aquatic Conservation: Marine 
and Freshwater Ecosystems 13:121-135.  

107. Littler MM and Littler DS. 1984. Models of tropical reef biogenesis. – Phycol. Res. 3: 
324–364. 

108. Loya Y. 1976. Effects of water turbidity and sedimentation on community structure 
Puerto Rican corals. Bulletin of Marine Science 26: 450–466. 

109. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R. 2001. Coral 
bleaching: the winners and the losers. Ecol Lett 4:122–131 

110. Lyzenga DR. 1985. Shallow-water bathymetry using combined lidar and passive 
multispectral scanner data. Int J Remote Sens 6:115–125. 



 70 

111. Maina J, McClanahan TR, Venus V, Ateweberhan M, Madin J. 2011. Global Gradients 
of Coral Exposure to Environmental Stresses and Implications for Local Management. 
Plos One 6. 

112. Manly BFJ, McDonald LL, Thomas LL. 1993. Resource selection by animals. Chapman 
and Hall, London 

113. Margalef R. 1975. Diversity, stability and maturity in natural eco- systems. – In: 
Dobben, W. H. and Lowe-McConnell, R. H. (eds), Unifying concepts in ecology. 
Springer, pp. 151–160. 

114. Marubini F, Barnett H, Langdon C, Atkinson MJ. 2001. Dependence of calcification on 
light and carbonate ion concentration for the hermatypic coral Porites compressa. 
Marine Ecology Progress Series. 220: 153-162. 

115. Massel SR. 2005. Ocean surface waves: their physics and prediction. Advanced Series 
on Ocean Engineering, World Scientific 

116. MATLAB 2014a, 8.3.0.532. The MathWorks, Inc. 2014. 
117. McClanahan TR, Ateweberhan M, Omukoto J. 2008. Long-term changes in coral colony 

size distribution on Kenyan reefs under different management regimes and across the 
1998 bleaching event. Mar. Biol. 153, 755-768. 

118. McCook LJ, Jompa J, Diaz-Pulido G. 2001. Competition between corals and algae on 
coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417 

119. Meesters EH, Wesseling I, Bak RPM. 1996. Partial mortality in three species of reef-
building corals (Scleractinia) and the relation with colony morphology. Bull Mar Sci 
58:838–852  

120. Meesters EH, Wesseling I, Bak RPM. 1997. Coral colony tis- sue damage in six species 
of reef-building corals: partial mortality in relation with depth and surface area. J Sea 
Res 37:131–144 

121. Meesters E, Hilterman M, Kardinaal E, Keetman M, de Vries M, Bak R. 2001. Colony 
size-frequency distributions of scleractinian coral populations: spatial and interspecific 
variation. Marine Ecology Progress Series, 209, 43–54. doi:10.3354/meps209043 

122. Möllmann C et al. 2009. Reorganization of a large marine ecosystem due to atmospheric 
and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. – 
Global Change Biol. 15: 1377–1393. 

123. Morris DW. 2003. Toward an ecological synthesis: a case for habitat selection. 
Oecologia 136: 1-13 

124. Mudholkar GS, Srivastava DK, Kollia GD. 1996. A generalization of the Weibull 
distribution with application to the analysis of survival data. Journal of the American 
Statistical Association, Vol. 91, No. 436, pp. 1575-1583. 

125. Muller-Landau HC et al. 2006. Comparing tropical forest tree size distributions with the 
predictions of metabolic ecology and equilibrium models. Ecology Letters 9: 589-602. 
doi: 10.1111/j.1461-0248.2006.00915.x 

126. Mumby PJ. 1999. Bleaching and hurricane disturbances to popula- tions of coral recruits 
in Belize. Mar Ecol Prog Ser 190:27–35 

127. Murdoch TJT and Aronson RB. 1999. Scale-dependent spatial variability of coral 
assemblages along the Florida Reef Tract. Coral Reefs 18:341-351. 

128. NOAA Coastal Digital Elevation Model for Tutuila. National Geophysical Data Center 
(NGDC) and National Centers for Environmental Information (NESDIS), NOAA, U.S. 
Department of Commerce. URL:    



 71 

https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/i
so/xml/4610.xml&view=getDataView&header=none 

129. Nozawa Y and Harrison PL. 2007. Effects of elevated temperature on larval settlement 
and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites 
chinensis. Mar Biol (2007) 152:1181–1185. DOI 10.1007/s00227-007-0765-2 

130. Odum EP. 1969. The strategy of ecosystem development. – Science 164: 262–270. 
131. Oigman-Pszczol SS, Creed JC. 2004. Size-structure and spatial distribution of the corals 

Mussismilia hispida and Siderastrea stellata (Scleractinia) at Armaçao Dos Buzios, 
Brazil. Bull. Mar. Sci. 74, 433-448. 

132. Page HN, Andersson AJ, Jokiel PL, Rodgers KS, Lebrato M, Yeakel K et al. 2016. 
Differential modification of seawater carbonate chemistry by major coral reef benthic 
communities. Coral Reefs. 35, 1311–1325. doi: 10.1007/s00338-016-1490-4 

133. Petraitis PS. 1990. Direct and indirect effects of predation, herbivory and surface 
rugosity on mussel recruitment. Oecologia 83:405–413 

134. Pinder III JE, Wiener JG, Smith MH. 1978. The Weibull distribution: A new method of 
summarizing survivorship data. Ecology, 59 (1), pp. 175-179. 

135. Porter JW, Lewis SK, Porter KG. 1999. The effect of multiple stressors on the Florida 
Keys coral reef ecosystem: a landscape hypothesis and a physiological test. Limnology 
and Oceanography 44, 941-949. 

136. Price NN, Martz TR, Brainard RE, Smith JE. 2012. Diel Variability in Seawater pH 
Relates to Calcification and Benthic Community Structure on Coral Reefs. PLoS ONE 
7(8): e43843. doi:10.1371/journal.pone.0043843  

137. R Core Team (2015). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL - https://www.R-
project.org/. 

138. Raimondi PT. 1990. Patterns, mechanisms, consequences of variability in settlement and 
recruitment of an intertidal barnacle. Ecol Monogr 60:283–309 

139. Ray CG. 1988. Ecological diversity in coastal zones and oceans. Pages 36–50 in E. O. 
Wilson, editor. Biodiversity. National Academy Press, Washington, D.C. 

140. Reaser JK, Pomerance R, Thomas PO. 2000. Coral bleaching and global climate change: 
scientific findings and policy recommendations. Conservation Biology 14:1500–1511. 

141. Roughgarden J, Iwasa Y, and Baxter C. 1985. Demographic theory for an open marine 
population with space-limited recruitment. Ecology 66:54–57. 

142. Ruiz-Zarate MJ, Fragosa JED, and Carricart-Ganivet JP. 2000. Relationships between 
Maicina areloata (Cnidaria: Scleractinia), Thalassia testudinum (Anthophyta) and 
Neogoniolithon sp. (Rhodophyta). Marine Ecology Progress Series. 206: 135-146. 

143. Salm RV and Coles SL. 2001. Coral bleaching and marine protected areas. Proceedings 
of the workshop on mitigating coral bleaching impact through MPA design. Asia Pacific 
Coastal Marine Program Report 0102. The Nature Conservancy, Honolulu. Also 
available from http://www.conserveonline.org (accessed 18 May 2003). 

144. Schoener TW. 1974. Resource partitioning in ecological communities. Science 185:27-
39. 

145. Sebens KP, Vandersall KS, Savina LA, Graham KR. 1996. Zooplankton capture by two 
scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. 
Mar Biol 127:303–317 

146. Shenkar N, Fine M, Loya Y. 2005. Size matters: bleaching dynamics of the coral 



 72 

Oculina patagonica. Mar Ecol Prog Ser 294:181– 188 
147. Silbiger NJ, Guadayol Ó, Thomas FIM, Donahue MJ. 2014. Reefs shift from net 

accretion to net erosion along a natural environmental gradient. Mar Ecol Prog Ser, Vol. 
515: 33–44. doi: 10.3354/meps10999  

148. Smith SG, Swanson DW, Chiappone M, Miller SL, Ault JS. 2011. Probability sampling 
of stony coral populations in the Florida Keys. Environ Monit Assess. 183:121-138. 

149. Soong K. 1993. Colony size as a species character in massive reef corals. Coral Reefs 
12:77–83 

150. Sousa WP. 1984. The role of disturbance in natural communities. – Annu. Rev. Ecol. 
Syst. 15: 353–391. 

151. Storlazzi CD, Field ME, Dykes JD, Jokiel PL, Brown E. 2002. Wave control on reef 
morphology and coral distribution: Moloka'i, Hawai'i. Pages 784-793 in Proceedings, 
4th International Symposium on Waves. American Society of Civil Engineers, Reston, 
Virginia. 

152. Storlazzi CD, Brown EK, Field ME, Rodgers K, Jokiel PL. 2005. A model for wave 
control on coral breakage and species distribution in the Hawaiian Islands. Coral Reefs 
24:43−55 

153. Swanson DW and Ault J. 2011. Spatial dynamics of coral populations in the Florida 
Keys. Marine Biology and Fisheries, Ph.D., 323pgs. 

154. Szmant A. 1991. Sexual reproduction by the Caribbean reef corals Montastrea annularis 
and M. cavernosa. Mar Ecol Prog Ser 74:13–25 

155. Tempera F, McKenzie M, Bashmachnikov I, Puotinen M, Santos RS, Bates R. 2011. 
Predictive modeling of dominant macroalgae abundance on temperate island shelves 
(Azores, northeast Atlantic), in: Harris PT and Baker EK (Eds.), Seafloor 
Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features 
and Benthic Habitats, Elsevier, Amsterdam, 2011 (Chp. 8). 

156. Tempera F and Bates RC. 2009. Benthic habitats of the extended Faial Island shelf and 
their relationship to geologic, oceanographic and infralittoral biologic features. School 
of Geography and Geosciences, University of St. Andrews, Ph.D., 341pgs.  

157. Tremblay P, Grover R, Maguer JF, Hoogenboom M, Ferrier-Pagés C. 2014. Carbon 
transloction from symbiont to host depends on irradiance and food availability in the 
tropical coral Stylophora pistillata. Coral Reefs 33 (1), 1–13. 

158. Van Hooidonk R, Maynard JA, Planes S. 2013. Temporary refugia for coral reefs in a 
warming world. Nature Climate Change 3: 508–511. 

159. Van Woesik R and Done TJ. 1997. Coral communities and reef growth in the southern 
Great Barrier Reef. Coral Reefs 16:103-115. 

160. Vargas-Ángel B, Richards CL, Vroom PS, Price NN, Schils T, Young CW, et al. 2015. 
Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs. 
PLoS ONE 10(12): e0142196. doi:10.1371/journal.pone.0142196 

161. Vermeij MJA, Smith JE, Smith CM et al. 2009. Survival and settlement success of coral 
planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 
159: 325. https://doi.org/10.1007/s00442-008-1223-7 

162. Vermeij MJA and Sandin SA. 2008. Density-dependent settlement and mortality 
structure: the earliest life phases of a coral population. Ecology, 89(7), pp. 1994-2004. 

163. Vermeij MJA, Bak RPM. 2002. Inferring demographic processes from population size 
structure in corals. In: Proceedings of the 9th International Coral Reef Symposium 5, pp. 



 73 

593-598 
164. Veron JEN. 2011. Corals: biology, skeletal deposition, and reef- building. In: Hopley D 

(ed) Encyclopedia of modern coral reefs: Structure form and process. Springer, Berlin, 
pp 275–281 

165. Vollmer SV, Palumbi SR. 2007. Restricted gene flow in the Caribbean staghorn coral 
Acropora cervicornis: Implications for the recovery of endangered reefs. Journal of 
Heredity 98: 40–50. 

166. Walsh C and MacNally R. 2013. hier.part: Hierarchical Partitioning. R package version 
1.0-4. https://CRAN.R-project.org/package=hier.part 

167. Wells S, West J, Westmacott S, Teleki K. 2001. Management of bleached and severely 
damaged coral reefs. Pages 73–80 in H. Z. Schuttenberg, editor. Coral bleaching: causes, 
consequences, and response. Coastal management report 2230. Coastal Resources 
Center, Narragansett, Rhode Island. Also available from http:// 
www.crc.uri.edu/comm/asia_pubs.html (accessed 18 May 2003). 

168. Werner EE, Gilliam JF. 1984. The ontogenetic niche and species interactions in size-
structured populations. Ann Rev Ecol Syst. 15:393-425. 

169. Wilkinson C. 2000. Status of coral reefs of the world: 2000. Australian Institute of 
Marine Science, Cape Ferguson, Queensland. 

170. Williams GJ, Gove JM, Eynaud Y, Zgliczynski B, Sandin SA. 2015a. Local human 
impacts decouple natural biophysical relationships on Pacific coral reefs. Ecography 
doi:10.1111/ecog.01353 

171. Williams ID, Baum JK, Heenan A, Hanson KM, Nadon MO, Brainard RE. 2015b. 
Human, Oceanographic and Habitat Drivers of Central and Western Pacific Coral Reef 
Fish Assemblages. PLoS ONE 10(4): e0120516. doi:10.1371/journal. pone.0120516 

172. Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood 
estimation of semiparametric generalized linear models. Journal of the Royal Statistical 
Society (B) 73(1):3-36. https://cran.r-project.org/package=mgcv 

173. Wooldridge SA. 2009. Water quality and coral bleaching thresholds: Formalising the 
linkage for the inshore reefs of the Great Barrier Reef, Australia. Marine Pollution 
Bulletin 58: 745–751. 

174. Zhang L, Packard KC, Liu C. 2003. A comparison of estimation methods for fitting 
Weibull and Johnson’s SB distributions to mixed spruce-fir stands in northeastern North 
America. Can. J. For. Res. 33: 1340–1347. doi: 10.1139/X03-054 

175. Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common 
statistical problems. Methods in Ecology and Evolution. 1, 3-14. 

 
 
 
 
 
 
 
 

 



 74 

7. TABLES 
 

 

 

 

 

Coral species N Spatial resolution n 
 
Isopora spp. 

 
813 

Site 24 sites 
Strata 13 strata 

 
Montastrea curta 

 
1526 

Site 85 sites 
Strata 25 strata 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Coral species and number of individuals, N, modeled at 2 intra-island 
spatial resolutions, 1) Site-level (Figure 4.1), and 2) Strata-level (Figure 4.2) 
resolution. Site-level and strata sample size, n, is the final sample size resulting 
from post-pooling and excluding of insufficient sample sizes, N, for each site 
and excluding of insufficient sample sizes, N, for each strata. See section 2.2 
Coral size structure characterization, ‘Coral size structure spatial resolution’ 
for details. 
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Predictor Units Description Source 

Depth Meters Average depth from each benthic REA 
site 

NOAA ESD 
2015 RAMP data 

PAR Einstein m-2 d-1 
Climatological long term mean 
derived from 5km, weekly data 

(gradient and nearest neighbor metric) 
See methods 

SST °C 
Climatological long term mean 
derived from 5km, weekly data 

(gradient and nearest neighbor metric) 
See methods 

Chl-a mg m-3 
Climatological long term mean 
derived from 5km, weekly data 

(gradient and nearest neighbor metric) 
See methods 

Wave energy MW hr-1 m-1 
Climatological long term mean 

derived from 1km, annual integrated 
mean data 

See methods 

Mean net 
carbonate 

accretion rates 
g CaCO3 m-2 yr-1 

Mean calcium carbonate deposition 
rate for each site (derived from 3-year 

deployment) 

NOAA ESD 
2015 RAMP data 

Net carbonate 
accretion rate 

variability 
(dimensionless) 

Amount of variation around the mean 
calcium carbonate deposition rate for 

each site (derived from 3-year 
deployment) 

NOAA ESD 
2015 RAMP data 

Coral cover Percent Benthic functional group cover 
derived from image analysis 

NOAA ESD 
2015 RAMP data 

CCA cover Percent Benthic functional group cover 
derived from image analysis 

NOAA ESD 
2015 RAMP data 

Turf algae cover Percent Benthic functional group cover 
derived from image analysis 

NOAA ESD 
2015 RAMP data 

Juvenile coral 
abundance Count Juvenile abundance per site and strata NOAA ESD 

2015 RAMP data 
Slope Degrees Maximum change in elevation See methods 

Slope range Degrees Difference between min. and max. 
slope See methods 

Slope variability (dimensionless) Amount of variation around the mean 
slope See methods 

Total area 
surveyed m2 Area surveyed at each site NOAA ESD 

2015 RAMP data 

Human population 
density # / land area 

Population resident on island within 
10-km and 20-km radius divided by 

land area 

sensu Williams et 
al. 2011 

 

Table 2: Biogeophysical and anthropogenic predictor covariates examined as drivers of coral 
size structure distributions around American Samoa. Listed covariates are final predictors 
after being tested for multi-collinearity. Covariates are predictors used in final models for 
Isopora and/or Montastrea curta at the site-level and/or strata-level resolution.  
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Resolution Predictors Log 

Likelihood 
AICc ΔAICc R2 

Isopora 
site-level 

Mean net carbonate accretion rates + 
Net carbonate accretion rate 
variability + Slope + Slope 
variability + Slope:Slope variability 

-39.020 99.0 0.00 0.58 

Isopora 
strata-level 

Mean net carbonate accretion rates + 
Wave energy 

-13.978 41 1.97 0.46 

M. curta 
site-level 

Depth + PAR + SST + Wave energy 
+ Juvenile abundance + Coral cover 
+ SST:Juvenile abundance 

-149.519 319.5 0.76 0.45 

M. curta 
strata-level 

Mean net carbonate accretion rates + 
PAR + SST + Wave energy 

-42.117 100.9 0.69 0.57 

 
 
 
 

Isopora spp. 
Strata Strata details 
OFU_NW_M Ofu and Olosega: Northwest, moderate depth 
OFU_NW_S Ofu and Olosega: Northwest, shallow depth 

OFU_SE_S/M Ofu and Olosega: Southeast, shallow/moderate depth 
TAU_NW_M Tau: Northwest, moderate depth 
TAU_NW_S Tau: Northwest, shallow depth 

TUT_AASU_ALL Tutuila: Aunu’u – A, all depths 
TUT_ABSU_D Tutuila: Aunu’u – B, deep depth 
TUT_ABSU_M Tutuila: Aunu’u – B, moderate depth 

TUT_EAST_M Tutuila: East, moderate depth 
TUT_EAST_S Tutuila: East, shallow depth 
TUT_SW_D Tutuila: Southwest, deep depth 

TUT_SW_M Tutuila: Southwest, moderate depth 
TUT_SW_S Tutuila: Southwest, shallow depth 

Table 3: Summary of final model results for each coral species and spatial resolution. Best-fit 
models were selected based off of ΔAICc ≤ 2 criteria initially amongst main effects models 
and subsequently for models with both main effects and all two-way interactions. All model 
assumptions and spatial autocorrelations were tested in best-fit models  (see Results section 
for detailed approach in determining best-fit models). 

Table 4a: Isopora spp. strata names and details 
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Montrastrea curta 
Strata Strata details 
OFU_NW_ALL Ofu and Olosega: Northwest, all depths 
OFU_SE_D Ofu and Olosega: Southeast, deep depths 
OFU_SE_S_M Ofu and Olosega: Southeast, shallow/moderate depths 

ROS_FRF_ALL Rose Atoll: All forereef, all depths 
SWA_SE_D Swains: Southeast, deep depth 
TAU_OPEN_D Tau: All forereef, deep depth 

TAU_OPEN_M Tau: All forereef, moderate depth 
TAU_OPEN_S Tau: All forereef, shallow depth 
TAU_TMPA_D Tau: MPA, deep depth 

TAU_TMPA_S_M Tau: MPA, shallow/moderate depth 
TUT_AASU_ABSU_M_D Tutuila: Aunu’u – A and B, moderate/deep depth 
TUT_AASU_ABSU_S Tutuila: Aunu’u – A and B, shallow depth 

TUT_FBSU_D Tutuila: Fagatele Bay, deep depth 
TUT_FBSU_S_M Tutuila: Fagatele Bay, shallow/moderate depth 
TUT_FFSU_M_D Tutuila: Fagalua Bay, moderate/deep depth 

TUT_FFSU_S Tutuila: Fagalua Bay, shallow depth 
TUT_NE_D Tutuila: Northeast, deep depth 
TUT_NE_S_M Tutuila: Northeast, shallow/moderate depth 

TUT_NW_D Tutuila: Northwest, deep depth 
TUT_NW_M Tutuila: Northwest, moderate depth 
TUT_SE_D Tutuila: Southeast, deep depth 

TUT_SE_M Tutuila: Southeast, moderate depth 
TUT_SE_S Tutuila: Southeast, shallow depth 
TUT_SW_D Tutuila: Southwest, deep depth 

TUT_SW_S_M Tutuila: Southwest, shallow/moderate depth 
 
 
 
 
 
 
 
 
 
 

Table 4b: Montastrea curta strata names and details 
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Strata HUA outcome Shape parameter, k 

OFU_NW_S positive 5.08 

TUT_EAST_S positive 5.08 

TUT_SW_S positive 6.08 

OFU_NW_M neutral 7.65 

OFU_SE_S/M neutral 4.60 

TUT_ABSU_D neutral 4.94 

TUT_ABSU_M neutral 5.67 

TUT_SW_D neutral 5.48 

TUT_SW_M neutral 4.77 

TAU_NW_M negative 8.09 

TAU_NW_S negative 6.17 

TUT_AASU_ALL negative 5.98 

TUT_EAST_M negative 5.25 

DOMAIN DOMAIN 5.31 
 
 
 

 

 

 

 

 

 

Table 5a: Isopora spp. strata results and associated shape 
parameters. Refer to Table 4a for strata details. 
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Strata HUA outcome Shape parameter, k 

TUT_SE_M positive 5.81 

TUT_FFSU_M_D positive 6.97 

TUT_SW_D positive 8.46 

ROS_FRF_ALL positive 4.79 

TUT_AASU_ABSU_M_D positive 5.72 

TAU_TMPA_S_M positive 5.73 

OFU_SE_D neutral 4.39 

TUT_SE_D neutral 4.46 

OFU_NW_ALL neutral 4.68 

TUT_NE_S_M neutral 5.68 

TAU_OPEN_M neutral 5.94 

TAU_OPEN_S neutral 6.38 

OFU_SE_S_M neutral 6.80 

TAU_TMPA_D neutral 7.34 

TAU_OPEN_D neutral 7.64 

TUT_FBSU_D neutral 8.62 

TUT_NW_M neutral 11.05 

SWA_SE_D negative 2.73 

TUT_FBSU_S_M negative 4.72 

ROS_ROSU_BRF_ALL negative 4.80 

TUT_NW_D negative 5.69 

TUT_NE_D negative 6.12 

TUT_SE_S negative 6.28 

TUT_FFSU_S negative 7.19 

TUT_AASU_ABSU_S negative 9.38 

TUT_SW_S_M negative 12.74 

DOMAIN DOMAIN 5.23 
 

Table 5b: Montastrea curta strata results and associated shape 
parameters. Refer to Table 4b for strata details. 
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8. FIGURES 

 

 

 

 

 

 

 

Figure 1: Detailed map of American Samoa island/atoll complex 
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Figure 3: Montastrea curta 

Figure 2: Isopora crateriformis 
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Figure 4.2: Example of strata-level spatial resolution for Ofu and Olosega 
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Figure 4.1: Example of site –level spatial resolution for Ofu and Olosega 
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Figure 5: Tutuila map displaying strata with respective positive, neutral, and negative habitat use 
areas for Montastrea curta. A: Example of M. curta size structure histograms yielding positive 
habitat use (red line: Weibull fit). B: Example of M. curta density size structure histograms yielding 
neutral habitat use (red line: Weibull fit). C: Example of M. curta density size structure histogram 
yielding negative habitat use (red line: Weibull fit).  
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Step	3:	Cluster	analysis		
•  				Conduct	cluster	analysis	on	Mode	1	values	from	EOF	analysis	

•  Generate	sectors	around	each	island	based	off	results	from	cluster	analysis	

•  So=ware	used:	R	

Step	4:	IdenBfy	nearshore-offshore	gradients	for	each	sector	(sensu	Tempera	and	

Bates	2009)		

•  Run	linear	regression	using	distance	to	shore	versus	the	climatological	temporal	

means	for	each	sector	

•  In	sectors	with	staBsBcally	significant	gradients,	predicted	values	are	used	instead	

of	nearest	neighbor	values	

•  In	sectors	where	gradients	were	not	idenBfied,	nearest	neighbor	values	are	used.	

PRODUCT	
1)  SST:	nearest	neighbor	+	gradient	temporal	mean	

2)  Chl-a:	nearest	neighbor	+	gradient	temporal	mean	

3)  PAR:	nearest	neighbor	+	gradient	temporal	mean	

•  IdenBfy	&	filter	out	contaminated	nearshore	pixels	(sensu	Gove	et	al.	2013)	

•  Generate	climatological	temporal	mean	metrics	for	each	pixel	

SST,	Chl-a,	PAR	

Nearest	neighbor	+	Nearshore-offshore	gradient	Nearest	neighbor	

Extrapolate	temporal	mean	values	

to	blank	nearshore	pixels	via	

nearest	neighbor	spaBal	join	

(Figure	7)	

Step	1:	Generate	climatological	seasonal	(3-month)	mean	metrics	for	each	pixel		

•  Seasonal	means	used	to	illustrate	spaBal	paXerns	around	each	island	as	this	

metric	is	subject	to	lower	levels	of	high-frequency	noise	(versus	monthly	means)	

(Tempera	and	Bates	2009).	

Step	2:	Empirical	Orthogonal	FuncBon	(EOF)	analysis	on	seasonal	mean	(Figure	11)	
•  Used	to	study	spaBal	paXerns	of	variability	and	how	they	change	with	Bme	

•  Mode	1	is	used	for	spaBal	paXern	diagnosis	around	each	island	

•  So=ware	used:	Matlab	

PRODUCT	
1)  SST:	nearest	neighbor	temporal	mean	

2)  Chl-a:	nearest	neighbor	temporal	mean	

3)  PAR:	nearest	neighbor	temporal	mean	

Relate	coral	REA	data	and	remote	sensing	products	
using	a	GIS	spa7al	joining	technique		

(Figure	7-10,	12-14)	

Figure 6: Dataflow scheme to extrapolate climatological values to nearshore blank pixels (sensu 
Tempera and Bates 2009). Extrapolation via: A) nearest neighbor spatial joining or B) 
combination of statistically significant nearshore-offshore gradients and nearest neighbor spatial 
joining in sectors of each island.  

A B 
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Figure 7: Chl-a remote sensing pixels and associated temporal mean values for each pixel 
around Tutuila. A) Filtered chl-a remote sensing data with contaminated nearshore pixels 
(white) with no data. B) Extrapolated temporal mean values to blank nearshore pixels via 
nearest neighbor spatial join. C) End product showing coral REA sites with spatially 
joined chl-a temporal mean nearest neighbor values. 
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Figure 8a: End product showing coral REA sites with spatially 
joined chl-a temporal mean nearest neighbor values. Ofu and Olosega 
(top) and Tau Island (bottom) 
 



 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
¯

CHL - A

Long term mean (mg m^-3)

0.044 - 0.045

0.045 - 0.055

0.055 - 0.062

0.062 - 0.074

0.074 - 0.111

0 0.6 1.20.3

km

¯

CHL - A

Long term mean (mg m^-3)

0.044 - 0.045

0.045 - 0.055

0.055 - 0.062

0.062 - 0.074

0.074 - 0.111

0 0.75 1.50.375

km

Figure 8b: End product showing coral REA sites with spatially joined 
chl-a temporal mean nearest neighbor values. Rose Atoll (top) and 
Swains Island (bottom) 
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Figure 9a: End product showing coral REA sites with spatially joined PAR temporal 
mean nearest neighbor values on Tutuila. 
 



 89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 PAR
Long term mean (E m^-2  d^-1)

41.957 - 42.741

42.741 - 43.303

43.303 - 43.609

43.609 - 43.848

43.848 - 44.101

0 1.5 30.75
km

¯

 PAR
Long term mean (E m^-2  d^-1)

41.957 - 42.741

42.741 - 43.303

43.303 - 43.609

43.609 - 43.848

43.848 - 44.101

0 1 20.5
km

Figure 9b: End product showing coral REA sites with spatially 
joined PAR temporal mean nearest neighbor values. Ofu and Olosega 
(top) and Tau Island (bottom) 
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Figure 9c: End product showing coral REA sites with spatially joined 
PAR temporal mean nearest neighbor values. Rose Atoll (top) and 
Swains Island (bottom) 
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Figure 10a: End product showing coral REA sites with spatially joined SST temporal mean 
nearest neighbor values for Tutuila. 
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Figure 10b: End product showing coral REA sites with spatially joined 
SST temporal mean nearest neighbor values. Ofu and Olosega (top) and 
Tau (bottom). 
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Figure 10c: End product showing coral REA sites with spatially joined 
SST temporal mean nearest neighbor values. Rose Atoll (top) and 
Swains (bottom). 
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Figure 11: EOF analysis on chl-a seasonal means for each pixel around Tutuila. 
Eigenvectors of Mode 1 (variance explained by Mode 1 of original time series = 86%) 
shows how the amplitude of variations varies A) across space and B) across time. 
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Figure 12a: End product showing coral REA sites with spatially joined chl-a temporal mean 
nearest neighbor plus corrected nearshore-offshore gradient predicted values for Tutuila. 
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Figure 12b: End product showing coral REA sites with spatially joined 
chl-a temporal mean nearest neighbor plus corrected nearshore-offshore 
gradient predicted values for Ofu and Olosega (top) and Tau (bottom). 
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Figure 12c: End product showing coral REA sites with spatially 
joined chl-a temporal mean nearest neighbor plus corrected 
nearshore-offshore gradient predicted values for Rose Atoll (top) 
and Swains (bottom). 
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Figure 13a: End product showing coral REA sites with spatially joined PAR temporal mean 
nearest neighbor plus corrected nearshore-offshore gradient predicted values for Tutuila. 
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Figure 13b: End product showing coral REA sites with spatially 
joined PAR temporal mean nearest neighbor plus corrected 
nearshore-offshore gradient predicted values for Ofu and 
Olosega (top) and Tau (bottom). 
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Figure 13c: End product showing coral REA sites with spatially 
joined PAR temporal mean nearest neighbor plus corrected 
nearshore-offshore gradient predicted values for Rose Atoll (top) 
and Swains (bottom). 
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Figure 14a: End product showing coral REA sites with spatially joined SST temporal mean 
nearest neighbor plus corrected nearshore-offshore gradient predicted values for Tutuila. 
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Figure 14b: End product showing coral REA sites with spatially 
joined SST temporal mean nearest neighbor plus corrected 
nearshore-offshore gradient predicted values for Ofu and 
Olosega (top) and Tau (bottom). 
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Figure 14c: End product showing coral REA sites with spatially 
joined SST temporal mean nearest neighbor plus corrected 
nearshore-offshore gradient predicted values for Rose Atoll 
(top) and Swains (bottom). 
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Figure 15a: End product showing coral REA sites with spatially joined long-term mean 
wave energy estimates for Tutuila. 
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Figure 15b: End product showing coral REA sites with spatially 
joined long-term mean wave energy estimates. Ofu and Olosega 
(top) and Tau (bottom). 
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Figure 15c: End product showing coral REA sites with spatially 
joined long-term mean wave energy estimates. Rose Atoll (top) 
and Swains (bottom). 
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Figure 16a: End product showing coral REA sites with spatially joined bathymetric slope (top) 
and slope variability (bottom) estimates for Tutuila. 
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Figure 16b: End product showing coral REA sites with spatially joined 
bathymetric slope (top) and slope variability (bottom) estimates for Ofu 
and Olosega. 
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Figure 16c: End product showing coral REA sites with spatially joined 
bathymetric slope (top) and slope variability (bottom) estimates for Tau. 
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Figure 17: Visualization of relationship between size spectrum shape parameters and median coral 
colony size modeled at resolutions, (a) Isopora spp. site-level and stratum-level, and (b) 
Montastrea curta site-level and stratum-level. The left plot in (a) displays shape parameters < 10 
and the right plot in (a) displays outliers (shape parameter > 10). The left plot in (b) displays shape 
parameters < 13 and the right plot in (b) displays outliers (shape parameter > 13). Linear 
regression lines and confidence intervals (shaded areas) were fit to data with outliers removed. 
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Figure 18: Visualization of relationship between size spectrum shape parameters and skewness 
modeled at resolutions, (a) Isopora spp. site-level and stratum-level, and (b) Montastrea curta site-
level and stratum-level. The left plot in (a) displays shape parameters < 10 and the right plot in (a) 
displays outliers (shape parameter > 10). Linear regression lines and confidence intervals (shaded 
areas) in (a) were fit to data points with outliers removed. 
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Figure 19: Visualization of relationship between median coral colony size and skewness 
modeled at resolutions, (a) Isopora spp. site-level and stratum-level, and (b) Montastrea 
curta site-level and stratum-level. Isopora spp. outliers in (a) are identified as shape 
parameters > 10. Linear regression lines and confidence intervals (shaded areas) in (a) were 
fit to data with outliers removed. 
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Figure 20: Predictor variables in relation to the response variable, shape parameter k, for the 
Isopora spp. site-specific best-fit model. Shaded areas show 95% confidence intervals. 
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Figure 21: Predictor variables in relation to the response variable, shape parameter k, for the 
Montastrea curta site-specific best-fit model. Shaded areas show 95% confidence intervals. 
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Figure 22: Predictor variables in relation to the response variable, 
shape parameter k, for the Isopora spp. stratum-level best-fit model. 
Shaded areas show 95% confidence intervals. 
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Figure 23: Predictor variables in relation to the response variable, shape parameter k, for the 
Montastrea curta stratum-level best-fit model. Shaded areas show 95% confidence intervals. 
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Figure 24: Strata outcome results with respective shape parameter estimates for 
Isopora spp. (top) and M. curta (bottom). Black dotted lines indicate Domain level 
shape parameter estimates. 
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Figure 25a: Mean carbonate accretion rate (top) and carbonate accretion 
variability (bottom) plotted for all benthic REA sites on Tutuila. 
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Figure 25b: Mean carbonate accretion rate (top) and carbonate 
accretion variability (bottom) plotted for all benthic REA sites on Ofu 
and Olosega. 
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Figure 25c: Mean carbonate accretion rate (top) and carbonate 
accretion variability (bottom) plotted for all benthic REA sites on 
Tau. 
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Figure 25d: Mean carbonate accretion rate (top) and carbonate 
accretion variability (bottom) plotted for all benthic REA sites on 
Rose Atoll. 
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Figure 25e: Mean carbonate accretion rate (top) and carbonate 
accretion variability (bottom) plotted for all benthic REA sites on 
Swains. 
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Figure 26: Isopora spp. site-level size structure histograms displaying logged coral size 
data (left plots) and unlogged coral size data (right plots) for A) a low shape parameter 
estimate, B) moderate shape parameter estimate, and C) high shape parameter estimate. Red 
lines: Weibull fits. 
 

(A) (A) 

(B) (B) 

(C) (C) 



 124 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 27a: Isopora spp. site-level shape parameter estimates across Isopora spp. spatial 
range (Ofu and Olosega, Tau, and Tutuila). 
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Figure 27b: Isopora spp. strata-level shape parameter estimates across Isopora spp. 
spatial range (Ofu and Olosega, Tau, and Tutuila). 
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Figure 28a: Montastrea curta site-level shape parameter estimates across Montastrea 
curta spatial range (Ofu and Olosega, Tau, Rose Atoll, Swains, and Tutuila). 
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 Figure 28b: Montastrea curta strata-level shape parameter estimates across 
Montastrea curta spatial range (Ofu and Olosega, Tau, Rose Atoll, Swains, and 
Tutuila). 
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