A Method for Determining the Growth Rate of Alkenone-producing Microalgae in Oceanic Waters

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

OCEANOGRAPHY

DECEMBER 2004

By Bryan R. Deschenes

Thesis Committee

Edward Laws, Chairperson Brian Popp Robert Bidigare

Abstract

Extension of atmospheric CO_2 records to more ancient times through the development of a geological proxy for CO_2 is a major objective of paleoclimate studies. A promising CO_2 proxy has been carbon isotopic analysis of marine organic matter (Rau et al., 1992; Hayes et al., 1990). However, recent studies have demonstrated that microalgal growth rates and cell geometry in addition to CO_2 concentration affect carbon isotopic fractionation in marine microalgae. Results of modelling (Rau et al., 1996, 1997) and laboratory chemostat experiments (Laws et al., 1995, 1997; Bidigare et al., 1997; Popp et al., 1998) have begun to clarify these effects.

Isotopic analysis of alkenones provides a way to constrain the size and shape of the source organism because these compounds are only produced by a few select microalgae (Marlowe et al., 1990). Although laboratory and field studies suggest that isotopic analysis of alkenones shows great potential as a CO₂ proxy, the relationship between specific growth rate and carbon isotopic fractionation in natural samples is not well defined. This research establishes in the laboratory an alkenone ¹³C-labeling method that can be used to evaluate the effect of growth rate on carbon isotopic fractionation in natural populations of the open ocean, alkenone-producing microalgae, *Emiliana huxleyi* and a major coastal variant, *Isochrysis galbana*. Our approach is analogous to the method for determining phytoplankton growth rates using ¹⁴C-labeling of pigments (Goericke and Welschmeyer, 1992, 1993) but uses irmGCMS to determine the rate of ¹³C incorporation into alkenones.