STRUCTURE AND VARIABILITY OF INTERNAL TIDES IN MAMALA BAY, O'AHU, HAWAI'I

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

OCEANOGRAPHY

MAY 2003

By
Michelle Lori Eich

Thesis Committee:

Mark A. Merrifield, Chairperson
Roger Lukas
Douglas S. Luther
Abstract

This thesis demonstrates, from current and temperature observations, that approximately 60% of the observed semidiurnal internal tide variance in Mamala Bay, located off the southern shore of O'ahu, Hawai'i, is phase-locked to the surface tide. It is further demonstrated, using a three-dimensional numerical model, that the observed internal tide is non-locally generated in contrast to the converging barotropic tidal flow hypothesis of Hamilton [1995]. The coherent semidiurnal internal tide is observed primarily at 240 m depth in the central regions of the Bay and is partially described by a standing wave. The observations and model results support the conclusion that coherent internal wave energy generated in the deep (500-1000 m) waters of the Kaua'i and Kaiwi Channels, as well as offshore, gets focused and amplified at the head of Mamala Bay. A westward net flux of baroclinic energy suggests the primary internal tide energy source emanates from the east side of the Bay in the Kaiwi Channel.