CHANGES IN THE MOLECULAR AND STABLE CARBON ISOTOPIC
COMPOSITIONS OF MARINE PHYTOPLANKTON DURING
PROLONGED IN SITU IRON FERTILIZATION

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY
OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

MASTER OF SCIENCE

IN

OCEANOGRAPHY

MAY 1997

By

Kristi L. Hanson

Thesis Committee:

Robert Bidigare, Chairperson
Brian Popp
Edward Laws
ABSTRACT

Photosynthetic isotopic fractionation (ε_p) models were tested in the context of a mesoscale open-ocean iron fertilization experiment conducted in the eastern equatorial Pacific Ocean. The addition of Fe (in the form of FeSO$_4$) produced large changes in phytoplankton growth rate (μ; 3-fold increase), chlorophyll a concentration (> 10-fold increase), and aqueous carbon dioxide concentration (C_e; 17% decrease). These changes were associated primarily with increased pennate diatom biomass. Comparison of lipid and pigment biomarkers with carbon biomass estimates for specific algal taxa showed that two sterols, cholesta-5,22E-dien-3β-ol and 24-methylcholesta-5,22E-dien-3β-ol, were associated predominantly with diatoms throughout the experiment. Compound specific stable carbon isotopic analysis showed that ε_p values for the total phytoplankton community and for diatoms were similar to those expected based on an established ε_p - μ/C_e relationship for a diatom (*Phaeodactylum tricornutum*) grown in chemostat culture (Laws et al., 1995), implying that average surface area to cell carbon ratios (SA:C) were similar in field and laboratory conditions. Isotopically-based growth rate estimates for alkenone producing algae (*Emiliania huxleyi* and *Gephyrocapsa oceanica*) based on a laboratory ε_p - μ/C_e relationship were consistent with those expected for these species, but in situ growth rate data are not available for verification. These results strengthen the foundation for isotopically based reconstructions of P_{CO_2} and phytoplankton growth rates in ancient oceans.