THE EFFECTS OF CORAL-ROUGHNESS ON MASS TRANSFER

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

OCEANOGRAPHY

MAY 1996

By

Mark E. Baird

Thesis Committee:

Marlin J. Atkinson, Chairperson Francis J. Sansone Michael J. Mottl

Abstract

The uptake of nutrients (nitrogen and phosphorus compounds) into coral reef communities is proposed to be limited by diffusion through a depleted boundary layer between the water and the organisms, or what is termed "mass transfer limitation". Theory from the engineering literature indicates that increased surface roughness should increase mass transfer; thus in this project the effects of coral-roughness on mass transfer were investigated experimentally using the dissolution of gypsum (plaster-of-paris) in fresh water from coral-shaped surfaces. The dissolution rate was measured as an increasing concentration of calcium ions over time in a flume of constant volume. The technique was first applied to a flat, smooth surface of gypsum over a wide range of temperatures and ionic strength. Stanton numbers (St_m, a dimensionless number giving the ratio of uptake rate per unit area to the rate of advection of the substance past the uptake surface) of experimental smooth surfaces ranged from 2.6-3.5 $\times 10^{-5}$ and were within 15% of engineering literature values. Stanton numbers for coral-shaped surfaces ranged from 70 x 10^{-5} at 0.03 m s⁻¹ to 17 x 10^{-5} at velocities up to 0.50 m s⁻¹, and were in general 9 ± 1 times that of smooth surfaces. The results are compared (using St_m) with flume studies on experimental coral communities, and engineering literature. The relationship between mass transfer, friction and roughness of coral-shaped gypsum surfaces can be predicted from correlations of heat transfer from sand-roughened pipes. Results presented provide confirmation of Bilger and Atkinson's (1992) model of nutrient uptake being mass-transfer limited and can be used to predict nutrient-uptake into living coral reef communities.

iv