ATP AND CHLOROPHYLL A AS ESTIMATORS OF PHYTOPLANKTON
METABOLIC ACTIVITY AND CARBON BIOMASS

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN OCEANOGRAPHY
DECEMBER 1979

By
Bonita L. Hunter

Thesis Committee:
Edward A. Laws, Chairman
David M. Karl
Leslie R. Berger
ABSTRACT

Three marine phytoplankton, Thalassiosira fluviatilis, Dunaliella tertiolecta and Amphipora paludosa, were grown in continuous culture at 20°C on a 12:12 light/dark illumination cycle under nutrient and/or light limitation in order to evaluate characteristic physiological changes in ATP/C, Chl a/C, and other cellular constituents.

Under ammonium and light limitation the ATP/C ratio was independent of growth rate with a mean value of 3.2 mg/g and 5.6 mg/g respectively. However, with nitrate and phosphate as the nutrients limiting growth, the ATP/C ratio is highly variable. The variability in the ATP/C ratio is dependent on a number of factors which influence the physiological growth state of the cultures. Major sources of this variation are diel variability due to the light/dark illumination cycle under all nutrient and light conditions, variation due to the type and degree of the nutrient deficiency, and variability due to species differences. The mean ATP/C ratio at a given growth rate under light, nitrate, ammonium, and phosphate limitation ranged from 0.6 mg/g to 9 mg/g, a factor of 15. Changes in the intracellular ATP concentration were neither correlated with respiration nor photosynthetic activity.

The Chl a/C ratio is significantly growth rate dependent; however, the relationship between this ratio and growth rate is species dependent, with the chlorophyte, D. tertiolecta, having a greater Chl a/C ratio than either of the diatoms. At higher growth rates, the ratio varies significantly due to the light/dark illumination. The Chl a/C ratio is not affected by differences in the source of the limiting nutrient. The mean Chl a/C ratio at a given growth rate under light and nutrient limitation
ranged from 5 to 50 mg/g, a factor of 10.

In nutrient limited systems dark respiration losses (mgC/m³/hr) can be accurately estimated by multiplying the chlorophyll a concentration (mgChl a/m³) by a factor of about 0.8. The average light saturated production rates (mgC/m³/hr) can be approximated to within ± 50% by multiplying the chlorophyll a concentrations (mg/m³) by a factor of 4 in nutrient limited systems and in upwelling areas by a factor of 6. Such estimates are not possible in light-limited systems due to the strong dependence of productivity indices on growth rates.

A comparison of the variability in ATP/C and Chl a/C ratios was made. The major disadvantages with the ATP and Chl a methods of estimating phytoplankton carbon are that both the ATP/C and Chl a/C ratios are species dependent. In addition, the ATP/C ratio is growth rate dependent under both phosphate and nitrate limitation, whereas the Chl a/C ratio is growth rate dependent under all nutrient and light limiting conditions. The advantage of the ATP method is that under ammonium and light limitation the ATP/C ratio is independent of growth rate. The advantage of the chlorophyll a method is that, at least in diatoms, there is a fairly unique relationship between Chl a/C ratios and growth rate which is independent of the type of nutrient limitation.

Based on my results, growth conditions in the oceanic system determine which method is a better estimator of phytoplankton carbon. In systems limited by ammonium or light, the ATP method would probably provide a more reasonable estimation of phytoplankton carbon, whereas in phosphate limited systems the chlorophyll a method should be used.