MEAN KINETIC ENERGY, EDDY ENERGY, AND KINETIC ENERGY EXCHANGE BETWEEN FLUCTUATIONS AND MEAN FLOW WITHIN THE GULF STREAM SYSTEM

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEANOGRAPHY

DECEMBER 1975

by

James G. Hager

Thesis Committee:
Klaus Wyrtki, Chairman
Brent S. Gallagher
Lorenz Magaard
ABSTRACT

Ship drift data are utilized in studying the velocity field associated with the Gulf Stream System by computing three quantities suggested by the theory of turbulence: the mean kinetic energy, the eddy energy, and the energy exchange between the mean and fluctuating portions of the flow field (called dE/dt). Contours of the mean kinetic energy demonstrate that the mean velocity field is well defined and contains the major accelerations and decelerations described in the literature. Eddy energy contours show a smaller range of variance in comparison to the mean kinetic energy and a minimum situated along the center of the flow axis. The distribution of the dE/dt quantity is somewhat puzzling, although certainly contourable and non-random. It is suggested that downstream, cross-stream, and vertical components may all play important roles in its composition, whereas previous authors have made the assumption that only the cross-stream component is significant.