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Abstract

Reliable studies of the long-term dynamics of planetary systems require numerical integrators that are accurate and
fast. The challenge is often formidable because the chaotic nature of many systems requires relative numerical error
bounds at or close to machine precision (∼10−16, double-precision arithmetic); otherwise, numerical chaos may
dominate over physical chaos. Currently, the speed/accuracy demands are usually only met by symplectic
integrators. For example, the most up-to-date long-term astronomical solutions for the solar system in the past
(widely used in, e.g., astrochronology and high-precision geological dating) have been obtained using symplectic
integrators. However, the source codes of these integrators are unavailable. Here I present the symplectic integrator
orbitN (lean version 1.0) with the primary goal of generating accurate and reproducible long-term orbital
solutions for near-Keplerian planetary systems (here the solar system) with a dominant mass M0. Among other
features, orbitN-1.0 includes M0’s quadrupole moment, a lunar contribution, and post-Newtonian corrections
(1PN) due to M0 (fast symplectic implementation). To reduce numerical round-off errors, Kahan compensated
summation was implemented. I use orbitN to provide insight into the effect of various processes on the long-
term chaos in the solar system. Notably, 1PN corrections have the opposite effect on chaoticity/stability on a
100Myr versus Gyr timescale. For the current application, orbitN is about as fast as or faster (factor 1.15–2.6)
than comparable integrators, depending on hardware.1

Unified Astronomy Thesaurus concepts: N-body simulations (1083); Solar system (1528); Celestial mechanics
(211); Orbital theory (1182)

1. Introduction

Trustworthy long-term dynamical studies of planetary
systems require accurate and fast numerical integrators. The
requirements for accuracy and speed are usually mutually
exclusive because numerical algorithms generally have to
sacrifice accuracy for speed. The chaotic behavior of many N-
body systems presents a particularly daunting challenge and
can produce misleading results if numerical chaos dominates
over physical chaos (e.g., Wisdom & Holman 1992; Rauch &
Holman 1999; Hernandez et al. 2022). As a result, the desired
error tolerance of numerical integrator schemes is at or close to
machine precision, i.e., about 10−16 at double-precision floating-
point arithmetic. The tool of choice to tackle the problem is
usually symplectic integrators, which show favorable perfor-
mance in terms of speed, as well as conservation of energy and
angular momentum (e.g., Wisdom & Holman 1991; Yoshida
1990). One example of highly demanding N-body integrations
are up-to-date long-term solar system integrations that provide
astronomical solutions for the past and are widely used in, for
instance, astrochronology and high-precision geological dating
(Laskar et al. 2011; Zeebe & Lourens 2019, 2022). In addition to
accurate and fast integration of the fundamental dynamical
equations for the main solar system bodies, generating adequate
astronomical solutions requires proper inclusion of (1) the Sun’s

quadrupole moment J2, (2) the effect of the Moon, (3) post-
Newtonian corrections from general relativity (GR) (1PN), and
(4) a contribution from asteroids. Note that while the effects from
J2 and asteroids may appear negligible, their contributions
become critical for astronomical solutions over, e.g., a 50Myr
timescale owing to chaos. The most recent astronomical solutions
have been obtained using a higher-order symplectic integrator
scheme called SABAC4 (Laskar et al. 2011) and a second-order
symplectic scheme available in the integrator package HNBody
(Rauch & Hamilton 2002; Zeebe 2017). The executable and
source code of the SABA integrators have not been made
available for researchers to use (Laskar et al. 2011). Binaries of
the HNBody package are available, while the source code is
unavailable (Rauch & Hamilton 2002).
Alternative symplectic integrator packages with available

source code that could potentially be used to generate accurate
N-body/astronomical solutions include swift/swifter,
mercury6, and REBOUND (Levison & Duncan 1994; Duncan
et al. 1998; Chambers 1999; Kaufmann 2005; Rein &
Tamayo 2015). However, swift/swifter and mercury6
do not provide features such as fast and accurate options to
include 1PN corrections, which are critical for the current
application. While the REBOUND/REBOUNDx package does
provide 1PN options (Rein & Liu 2012; Rein & Tamayo 2015;
Tamayo et al. 2020), their accuracy or performance turned
out to be suboptimal for the current problem (see Section 4.3).
In this contribution, I present the symplectic integrator
orbitN (lean version 1.0) with the primary goal of efficiently
generating accurate and reproducible long-term orbital solu-
tions for near-Keplerian planetary systems dominated by a
central mass. orbitN version 1.0 focuses on hierarchical
systems without close encounters but can be extended to
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1 The orbitN source code (C) is available at http://github.com/rezeebe/
orbitN.
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include additional features in future versions.2 While the
current orbitN application focuses on the solar system,
orbitN can generally be applied to planetary systems with a
dominant mass. The present solar system integrations with
orbitN reveal that 1PN corrections have the opposite effect
on chaoticity/stability on a 100Myr versus Gyr timescale.

2. Hamiltonian Splitting

The core of orbitN’s integrator scheme is based on a
second-order symplectic map, which is described at length
elsewhere and is not repeated here (e.g., Wisdom & Holman
1991; Yoshida 1990; Saha & Tremaine 1994; Mikkola 1997;
Chambers 1999; Murray & Dermott 1999; Rein & Tamayo
2015). (Note that recent studies indicate that higher-order
symplectic schemes are not necessarily advantageous; Hernan-
dez et al. 2022; Abbot et al. 2023.) A few features deserve
attention here, such as the Hamiltonian splitting and mass
factors, which are important, for instance, for the implementa-
tion of 1PN corrections.

The gravitational N-body Hamiltonian may be split into a
Kepler part and Interaction part (e.g., Murray & Dermott 1999;
Rein & Tamayo 2015):
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where J= N− 1 and N is the total number of bodies in the
system, including the dominant mass (index 0); p refers to
momentum, m to mass, r to distance, e.g., rjk= |xk− xj|; and G
is the gravitational constant in appropriate units. Primes
indicate quantities in Jacobi coordinates (for a summary of
coordinate choices and operator splitting, see Hernandez &
Dehnen 2017). The factor μj is given by μj=G · σj, where

ås =
=

( )m . 4j
i

j

i
0

Importantly, the mass factor in the first term of Equation (3)
depends on the Hamiltonian splitting, which differs, for
instance, between Rein & Tamayo (2015) and Saha &
Tremaine (1994, hereafter ST94). While the Hamiltonian
splitting in orbitN follows Rein & Tamayo (2015), the
1PN corrections in orbitN follow ST94. Hence, the μj factors
that enter the equation for 1PN corrections here are μj=G · σj
(see Section 3.7), and not μj=G · σj/σj−1 as in ST94.

3. Architecture

orbitN’s structure consists of basic function sequences,
including input (masses mj, initial positions xj

0, and velocities

vj
0), integration (operator application such as Drift and Kick;
see below), and output as requested. orbitN is written in C
(C99 standard) and intentionally uses standard function calls
with (usually) explicitly stated arguments such as f (xj, vj,K) to
highlight the function’s input and output/updated variables.
Large data structures (struct in C/C++), which by design
often hide the input and output/updated variables, are avoided.
Different integration sequences are available in orbitN,
including slow, fast, and fast_pn, as explained below.
The core of orbitN’s integrator scheme is based on a

second-order symplectic map, frequently referred to as a
Wisdom–Holman (WH) map (Wisdom & Holman 1991). The
time evolution under the Hamiltonian split (a Kepler part and
an Interaction part; see Equation (1)) is realized by Drift and
Kick operators,  t( ) and  t( ) (generally functions of xj, vj,
K), where the operator time step argument τ is usually a
simple function of the fixed integration time step Δt.
orbitN’s second-order integrator is based on a Drift-Kick-
Drift operator sequence, advancing the state variables xj and vj
(e.g., Appendix A, Equation (A3)). The operator code sequence
slow reads (time step counter i= 1,K,nstep)

  
  

D D D ¼
D D D

( ) ◦ ( ) ◦ ( ) ◦
◦ ( ) ◦ ( ) ◦ ( ) ( )

t t t
t t t

2 2
2 2 . 5

Except for the first and final steps, and when output is
requested, the interior Δt/2-Drift steps can be combined into a
single step:

  
  

D D D ¼
D D D

( ) ◦ ( ) ◦ ( ) ◦
◦ ( ) ◦ ( ) ◦ ( ) ( )

t t t
t t t

2
2 , 6

representing the operator code sequence fast. When includ-
ing 1PN corrections, additional operators are applied (option
fast_pn, see Section 3.7). Ignoring initial and final steps, and
including Kahan compensated summation (operator  ), the
fast_pn core sequence, for example, reads

    G G t G G t¼ D ¼◦ ( ) ◦ ◦ ( ) ◦ ◦ ( ) ◦ ( )t , 7

where

   G G t G G= D D D( ) ( ) ◦ ◦ ( ) ◦ ◦ ( ) ( )t t t2 2 8

and  = ¼( )x v, ,j j (for different Kahan summation options,
see Section 3.3), and Γ(τ) represents the γ-term of the 1PN
Hamiltonian (see Section 3.7).
orbitN version 1.0 uses Gaussian units, i.e., length, time,

and mass are expressed in units of au, days, and fractions of
M0, respectively, although this feature can be extended to other
sets of units in future versions. Orbital coordinates in orbitN
can be output as state vectors xj, vj or Keplerian elements.
However, for accuracy and archiving of results, state vectors
are recommended (see Section 3.1). orbitN’s source code is
provided to the user and compiled on the local machine.
orbitN has been tested on Linux and Mac platforms. For
example, a full solar system integration over 100Myr,
comprising the planets, Pluto, and 10 asteroids and including
M0’s quadrupole moment, a lunar contribution, and 1PN
corrections, requires about 16 hr wall-clock time on a 64-bit
Linux machine (gcc optimization level 3, Intel i5-10600
@3.30 GHz; see also Section 4.3).

2 The orbitN source code (C) is available at github.com/rezeebe/orbitN
(correspondence to orbitN.code@gmail.com).
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3.1. Trigonometric Functions

Trigonometric functions are frequently employed in numerical
integrators, including the WH map. For example, the Drift
operator may use Gauss’s classic f and g functions to advance (xj,
vj) (see Section 3.3), which includes numerical sine and cosine
evaluations of the eccentric anomaly (e.g., Danby 1988). The
problem with numerical evaluations of trigonometric functions is
that different compilers and architectures may produce different
results for the same operation. The 2019 IEEE-754 Standard for
Floating-Point Arithmetic handles trigonometric functions under
“Recommended Operations,” which are not mandatory require-
ments (IEEE 2019). As a result, even if floating-point operations
on a given platform adhere to the IEEE-754 standard, there is no
guarantee that the results of trigonometric operations are identical
between different platforms. For example, I tested evaluation of
Gauss’s f and g functions on various Linux machines (including
the same binary) with the same operating system but different
hardware, which yielded different results. Although initially close
to machine precision, the differences can grow very quickly, e.g.,
for chaotic systems, which renders the results of such integrations
practically irreproducible (Zeebe 2015a, 2015b, 2022). The
problem extends to different architectures, compilers, optimization
levels, etc.

Ito & Kojima (2005) discussed the unsatisfactory status of
trigonometric functions in computer mathematical libraries and
reported their communications with computer manufacturers
about the issue. As a work-around, Ito & Kojima (2005)
suggested optimizing and porting certain mathematical
libraries. I unsuccessfully tested several alternative methods,
including compiling sine and cosine functions directly from
source code and a discretization/Taylor expansion approach
using lookup tables of trigonometric functions (Fukushima
1997). Most methods turned out to be cumbersome to implement
and showed poor performance. A satisfactory alternative that
also showed good performance is based on Stumpff functions
(Stumpff 1959), which avoids evaluation of trigonometric
functions altogether (see Section 3.2).

Note in this context that because the conversion of orbital
coordinates from state vectors xj, vj to Keplerian elements
involves trigonometric functions, state vectors are recom-
mended for output in orbitN, for instance, when accuracy is
required and for archiving of results (see above). If needed, a
separate routine is provided for post-run conversion of state
vectors to Keplerian elements. In that case, and if the selected
conversion involves the masses of individual bodies, the user is
required to provide the original mass/coordinate input file of
the run.

3.2. Stumpff and f and g Functions

The Drift operator (also often called Kepler solver) can be
formulated using universal variables and Stumpff functions, the
particulars of which have been described elsewhere and are not
repeated here (Stumpff 1959; Stiefel & Scheifele 1975;
Danby 1987, 1988; Mikkola 1997; Mikkola & Aarseth 1998;
Mikkola & Innanen 1999; Rein & Tamayo 2015). In the
following, a few details are noted that pertain to the
implementation of Stumpff functions in orbitN, which
follows Rein & Tamayo (2015). The f and g functions used
with universal variables and Stumpff functions to advance the
Kepler drift from time t to t+ τ may be written as

m t m= - = - ( )f G r g G1 ; 92 3

 m m= - = -t t( · ) ( )f G r r g G r; 1 , 101 2

where μ= μj (see Section 2), rτ= r(t+ τ)= r+ χG1+ ζG2,
χ= x · v, ζ= μ− βr, and β= 2μ/r− v2. The so-called G-
functions are given by

b b= =( ) · ( ) ( )G s s c x x s, ; , 11n
n

n
2

where s is the variable solved for in Kepler’s equation in
universal variables (Danby 1987, 1988) and the cn(x) are
Stumpff functions, or c-functions (Stumpff 1959, Equation (V;
43)),
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Note that Gauss’s f and g functions and those given in
Equations (9) and (10) have different individual terms, but the
overall structure is the same (see Section 3.3). For the problems
studied here, an initial guess s0 for s based on Equation (18) in
Danby (1987) worked well in orbitN:

t
c

t= - ( )s
r r

1

2
. 130 3
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Because the Stumpff functions are based on a series
expansion, the series may be truncated at lower n for small x,
given a required accuracy (say, machine precision). For
planetary systems with a large range in x, the integrator
performance can thus be improved by reducing n depending on
x; a simple option to do so is available in orbitN. The
primary choice to solve Kepler’s equation is usually based on
the Newton–Raphson method (fast and generally accurate),
which is also the case in orbitN. As a secondary choice (in
case Newton–Raphson fails), the secant method (e.g.,
Danby 1988) was implemented in orbitN. As a third and
final choice, the bisection method is used (Rein &
Tamayo 2015).

3.3. Kahan Compensated Summation

To reduce numerical round-off errors, Kahan compensated
summation (operator  , see Section 3) was implemented in
orbitN (Kahan 1965). At least two different implementation
options are possible: (1)  is applied after each operation that
updates the state variables, say, = + D Dt+[ ] [ ] [ ]x v x v x vj j t j j t j j ,
i.e., multiple times per time stepΔt. (2)  is applied only once per
time step, and the incremental updates from different operators
during Δt are accumulated into a separate set of variables (δxj,
δvj), representing changes in state variables, to which  is applied.
The advantage of option 1 is that carrying (δxj, δvj) through the
integration is avoided; its disadvantage is that  has to be applied
multiple times per time step. The advantage of option 2 is that 
has to be applied only once per time step; its disadvantage is that
(δxj, δvj) has to be carried through the integration. Furthermore,
internally, the updated sum (xj+ δxj) and/or (vj+ δvj) have to be
evaluated during the time step regardless because its value is
required as input to a subsequent operator. I tested both options
and found no significant differences in results or performance.
Option (1) was implemented in orbitN-1.0, which adds a
computational overhead of about 3% for a full solar system
integration.
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Kahan compensated summation generally uses increments,
say, (Δx, Δv), and hence is straightforward to apply following
the Kick operator because accelerations, a, and Δv= a× τ are
explicitly calculated in the Kick routine. However, the Drift
operator uses f and g functions (Equations (9) and (10)) to
advance (x, v) for each body from time t to t+ τ, which is not
expressed in terms of increments:

t+ = +( ) · ( ) · ( ) ( )x x vt f t g t 14

 t+ = +( ) · ( ) · ( ) ( )v x vt f t g t . 15

As mentioned above, the f and g functions in orbitN are
adjusted for use with universal variables and Stumpff functions
and differ from Gauss’s f and g functions, although they have
the same structure (see Section 3.2). Inserting Equations (9)
and (10) into Equations (14) and (15), the last two equations
may be rewritten in terms of Δx and Δv:

D = +· ( ) · ( ) ( )x x vf t g t 16

 D = +· ( ) · ( ) ( )v x vf t g t , 17

where  = -f f 1 and   = -g g 1 (see also Wisdom 2018, who
used an analogous procedure with Gauss’s f and g functions).

3.4. Symplectic Correctors

Symplectic correctors remove fluctuations in energy and
were implemented up to stage 6= seventh order, following
Wisdom (2006). Stages 2, 4, and 6 are available in orbitN-
1.0 and are applied only at the beginning and end of an
integration and when output is requested—hence adding
essentially no computational overhead. Plots of relative
maximum energy changes indeed suggest reductions by up to
two orders of magnitude when including the corrector (stage 6).
Interestingly, however, for practical applications over, say, the
past 60Myr or so, symplectic correctors make little difference,
as the actual dynamics in terms of orbital eccentricity, mean
longitude, etc., are hardly affected over that timescale (see
Section 4.1).

3.5. M0’s Quadrupole Moment

The gravitational quadrupole potential due to the dominant/
central mass M0 may be written as

qF = -( ) ( ) ( )GM

r
J R r
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2
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2 0
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2 and q=z r cos (see below for zʼs

reference frame), where J2 isM0’s quadrupole moment, R0 is its
effective radius (related to oblateness), and θ is the colatitude
angle. Applying the gradient −∇ΦJ2, the accelerations are
given by
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as implemented in orbitN (macro option J2). Importantly, in
case of the solar system, the solar quadrupole moment is

directed along the solar rotation/symmetry axis, which is about
6° and 7° offset from the invariable plane and ECLIPJ2000,
respectively. By default, the quadrupole axis in integration
coordinates is directed along the z-axis. Thus, if the initial
(Cartesian) coordinates (say, obtained from ephemerides) are
specified in a different frame, then the coordinates need to be
rotated to account for the offset between that frame and the
solar rotation axis (Zeebe 2017).

3.6. Lunar Contribution

For solar system integrations, the Moon may be included as
a separate object. Alternatively, the Earth–Moon system may
be modeled as a point mass at the Earth–Moon barycenter
(EMB), plus an additional effect from the Moon’s influence on
the net EMB motion via a mean quadrupole potential (orbitN
macro option LUNAR). The quadrupole acceleration term may
be written as (Quinn et al. 1991)

= -
+( )

· · ( )a
rGM m m R

m m r
f

3

4
, 21Q

E L

E L
L

0
2

2 5

where indices “E” and “L” signify Earth and lunar, respec-
tively, R is an effective parameter for the Earth–Moon distance,
and r is the EMB–Sun distance. The factor fL is a correction
factor that deserves a few comments. Quinn et al. (1991)
introduced fL to account for differences between the actual
lunar orbit and their simplified model and set fL = 0.9473.
Varadi et al. (2003) revisited the issue and suggested fL
= 0.8525, based on a comparison to integrations that resolved
the Moon as a separate object. Using fL = 0.8525, Zeebe
(2017) showed that integrations with a separate Moon
(Bulirsch–Stoer algorithm) and Quinn et al.ʼs lunar model
(symplectic map) virtually agreed to ∼63Myr in the past (i.e.,
divergence time t 63 MyrD ; see Section 4). This timescale is
beyond the solar system’s intrinsic predictability limit of
∼50Myr owing to dynamical chaos, and hence the lunar model
is likely sufficient for most applications that do not need to
resolve the Moon. The LUNAR option was implemented in
orbitN following Quinn et al. (1991) and Rauch &
Hamilton (2002).

3.7. Post-Newtonian Corrections from General Relativity

orbitN-1.0 includes post-Newtonian corrections from
GR due to M0 (to 1PN order), implemented following ST94.
The 1PN Hamiltonian may be written as (Landau &
Lifshitz 1971; Saha & Tremaine 1994; Will 2014)
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where c is the speed of light, μj=G · σj (see Section 2), m
refers to mass, r refers to distance, and p refers to momentum.
Primes indicate quantities in Jacobi coordinates.
Note that at the present level of approximation (1PN), the

difference between, e.g., Jacobi and bodycentric distances and
masses can be ignored. Consider the magnitude of the primary
Newtonian potential in Gaussian units at 1 au,
GM0/r= k2M0/r; 10−4 au2 day−2, versus the first term of
the 1PN potential (Equation (22)),  -( )k M c r2 104

0
2 2 2 12

au2 day−2, i.e., a relative 1PN magnitude of about 10−8
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(factor k2M0/(2c
2r)). The relative differences between Jacobi

and bodycentric distances, Δr/r (and masses Δm/m), for
example, for Mercury and Earth are 0 and ∼10−7 (∼10−7 and
∼10−6). Such differences would introduce a relative error of
10−14 with respect to the primary Newtonian potential, far
beyond the level of accuracy provided by the 1PN
approximation.

The 1PN Hamiltonian (Equation (22)) includes cross-terms
between positions and momenta and, as written, does not split
conveniently into terms similar to Equation (1). However, ST94
devised a method to accommodate PN in a symplectic scheme,
which also shows favorable performance in terms of energy,
angular momentum, and speed (see Section 4.3). Equation (22)
may be rewritten as

 å a b g= + ¢ + ¢
=

( ) ( )r p , 23
j

J

j j j j j jPN
1

Kep,
2 2 4

where a = ¢( )m c3 2j j
2 , b m= - ¢m cj j j

2 2, and g = - ¢( )m c1 2j j
3 2 .

The α-term merely leads to a scaling of the time step argument
of the Drift operator (see Appendix A), the β-term can be easily
accommodated in the Kick operator, and the γ-term can be
included as leapfrog operators before and after the Drift step.
For the current solar system integrations, the 1PN option as
implemented in orbitN adds less than ∼10% computational
overhead.

4. Solar System Chaos

In the following, I present solar system integrations with
orbitN and other integrator packages to provide insight into
the integrator algorithms and solar system chaos. As a chaos
indicator, the difference between two orbital solutions i and j
may be tracked using the divergence time tD (see Zeebe 2017),
i.e., the time interval (t > 0D ) after which the maximum
absolute difference in Earth’s orbital eccentricity ( -∣ ∣e emax i j )
irreversibly crosses ∼10% of mean e (∼0.028× 0.1; Figure 1).
The divergence time tD as employed here should not be
confused with the Lyapunov time, which is the timescale of
exponential divergence of trajectories and is only ∼5 Myr for
the inner planets. For the solutions discussed here, the
divergence of trajectories is ultimately dominated by exponen-
tial growth, which is indicative of chaotic behavior (t 40Myr
for standard solar system integrations; see Section 4.1). Thus,
tD is largely controlled by the Lyapunov time, although the two
are different quantities. Integration errors usually grow
polynomially and typically dominate for t  40Myr (see, e.g.,
Figure 1 and Varadi et al. 2003).

4.1. Standard Test: Past 100 Myr

For the present standard solar system integrations, initial
conditions for the positions and velocities of the planets and
Pluto were generated from the JPL DE431 ephemeris (Folkner
et al. 2014),3 using the SPICE toolkit for Matlab.4 We have
recently also tested the latest JPL ephemeris DE441 (Park et al.
2021), which makes little difference for practical applications
because the divergence time relative to the astronomical
solution ZB18a (based on DE431) is ∼66Ma (see
Section 4.2) and hence beyond ZB18a’s reliability limit of

∼58Ma (based on geologic data; see below). The standard
integration includes 10 asteroids5 (for a list of asteroids, see
Zeebe 2017). Coordinates were obtained at JD 2,451,545.0 in
the ECLIPJ2000 reference frame and subsequently rotated to
account for the solar quadrupole moment (J2) alignment with
the solar rotation axis (Zeebe 2017). Our astronomical solutions
are provided over the time interval from 100 to 0Ma. However,
as only the interval 58–0Ma is constrained by geologic data
(Zeebe & Lourens 2019), we caution that the interval prior to
58Ma is unconstrained owing to solar system chaos. The
standard integration includes the solar quadrupole moment
J2= 1.305× 10−7, the lunar contribution, and 1PN corrections.
Unless stated otherwise, the integration time step is Δt= 2
days, as previously used in our astronomical solution ZB18a
(see Section 4.2), which also properly resolves Mercury’s
pericenter (at eccentricity 0.2), hence avoiding numerical
chaos (see Wisdom 2015; Hernandez et al. 2022).
As a first test, the long-term behavior of changes in energy

(ΔE/E= (E−E0)/E0), angular momentum (ΔLz/L), and the
implementation of Kahan compensated summation and symplec-
tic correctors in orbitN is examined (Figure 1). As should be
expected from a symplectic algorithm, |ΔE/E| remains small
( |ΔLz/L| as well) and does not exhibit any significant trends over
100Myr. Omitting Kahan summation, maximum |ΔE/E| and
|ΔLz/L| increase by up to a factor of ∼10. Omitting the
symplectic corrector (stage 6 = seventh order; see Wisdom 2006),
the energy fluctuations that are removed by the corrector become
apparent; the corrector has little effect on |ΔLz/L|. Omitting both
Kahan summation and the corrector yields similar results to
omitting just the corrector. The consequences for the dynamics
of the system may be illustrated by examining the differences
in the EMB’s orbital eccentricity (Δe) and mean longitude
(Δλ), relative to the standard run (Figures 1(c) and (d)). The
effects of Kahan summation and the corrector on Δe are
similar to those of a small perturbation or a small difference in
initial conditions, which grows over time (see below and
Zeebe 2015a, 2015b, 2017). Notably, for practical applications
in astrochronology over, say, the past 60Myr or so, Kahan
summation and symplectic correctors would actually make little
difference because the divergence time to the standard solution is
70Ma (Figure 1(c)), i.e., significantly beyond its reliability limit
of ∼58Ma (see above).

4.2. Astronomical Solution ZB18a

The astronomical solution ZB18a was originally obtained
with the integrator package HNBody (Rauch & Hamilton 2002;
v1.0.10) using the same setup as described above and the
symplectic integrator (second-order WH map) with Jacobi
coordinates (Zeebe & Lourens 2019, 2022).6 In order to lend
confidence to the accuracy and reproducibility of long-term
orbital solutions for the solar system, it is imperative to
compare the new standard solution obtained with orbitN
(Section 4.1) to the original solution ZB18a (Figure 2). The
changes in |ΔE/E| and |ΔLz/L| across the 100Myr integration
with orbitN and HNBody remain below ∼1× 10−11 and
∼3× 10−12 throughout the integrations.
The divergence time tD for Earth’s orbital eccentricity is

∼77Ma (Figure 2(c)), again far beyond the reliability limit of

3 naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets
4 naif.jpl.nasa.gov/naif/toolkit.html

5 Initial conditions generated at ssd.jpl.nasa.gov/x/spk.html.
6 Earth’s orbital eccentricity for the ZB18a solution is available at www2.
hawaii.edu/~zeebe/Astro.html and www.ncdc.noaa.gov/paleo/study/35174.
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∼58Ma. t 77D Ma even exceeds the ∼72Ma calculated for
including and excluding Kahan summation and symplectic
correctors in a single integrator (orbitN, Figure 1), suggest-
ing that, within the limits of the current physical model of the
solar system, the performances of the integrators orbitN and
HNBody are very similar.

4.3. Implementation of General Relativity

As mentioned above, orbitN includes post-Newtonian
corrections from GR due to M0 (to 1PN order), implemented
following ST94 (see Section 3.7), which also applies to

HNBody. However, other methods of implementing 1PN
corrections are possible. For example, the integrator package
REBOUNDx provides 1PN implementation options such as
“gr_potential” (Nobili & Roxburgh 1986) and “gr“
based on a first-order splitting (Tamayo et al. 2020). The option
gr_potential represents a simplified 1/r2 perturbing
potential, supposed to mimic the secular advance of perihelia
from GR, as proposed by Nobili & Roxburgh (1986), who
considered one out of three GR terms and ignored the other two
GR terms that are small for the outer planets. The 1/r2 potential
is known to incorrectly predict, for instance, the instantaneous

Figure 1. Solar system integrations over the past 100 Myr with orbitN. The standard setup (Std.) includes the planets, Pluto, 10 asteroids, J2, a lunar contribution,
and 1PN corrections implemented following Saha & Tremaine (1994). KHN = Kahan compensated summation (Kahan 1965). Corr = symplectic corrector
(stage 6 = seventh order; see Wisdom 2006). The time step is Δt = 2 days. ΔE/E = (E − E0)/E0 and ΔLz/L indicate relative changes in energy and angular
momentum, respectively. Differences in orbital eccentricity (Δe) and mean longitude (Δλ) are for the Earth–Moon barycenter, relative to the standard run. tD is the
divergence time (see text).
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elements. The option gr is more accurate but computationally
expensive (see below). It turned out that ST94ʼs method is
either more accurate or significantly faster than the REBOUNDx
GR options. This is not a criticism of the REBOUNDx package,
or the WH map as implemented in the REBOUND package
(Rein & Tamayo 2015). Indeed, both packages and their source
code availability are very useful, including for developing and
testing orbitN-1.0. The first-order split 1PN implementa-
tion in REBOUNDx had a specific intention (for details, see
Tamayo et al. 2020) and is likely appropriate for many
applications. However, when gr is combined with the WH

map, for instance, auxiliary computations are required to
integrate across the GR step, which results in a significant
performance hit. For the user with a specific problem at hand, it
seems important to be aware of the differences between various
options available in different integrator packages and their
characteristics, which may otherwise take a significant effort to
figure out.
Regarding performance, it is noteworthy that the 1PN option

(ST94) in orbitN and HNBody adds less than ∼10%
computational overhead for the current application, while the
gr_potential and gr (+RK2) options add ∼4% and

Figure 2. Comparison of solar system integrations with orbitN and HNBody for the setup of the astronomical solution ZB18a (Zeebe & Lourens 2019; see text for
details). ΔE/E = (E − E0)/E0 and ΔLz/L indicate relative changes in energy and angular momentum, respectively. Differences in orbital eccentricity (Δe) and mean
longitude (Δλ) are for the Earth–Moon barycenter. tD is the divergence time (see text).
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∼190% overhead, respectively. Overall, for the 1PN runs
displayed in Figure 3, orbitN was faster than the gr (+RK2)
option by a factor of ∼2.6. Furthermore, orbitN was about as
fast as (Intel i9-12900 @2.40GHz) or ∼15% faster than (Intel
i5-10600 @3.30GHz) HNBody v1.0.10, hence depending
on hardware. All tests were performed on 64-bit Linux
machines and gcc optimization level 3 for orbitN and
REBOUND.

To facilitate a basic comparison, the standard solar system
integration setup (Section 4.1) with a few modifications was

run in orbitN, HNBody, and REBOUNDx (Figure 3). In all
packages, 1PN corrections were turned on, while J2, the lunar
contribution (where available), and symplectic correctors were
turned off. In orbitN the 1PN energy contribution was
calculated according to Equation (22), while in REBOUNDx
the functions rebx_gr_potential_potential() and
rebx_gr_hamiltonian() were used. In orbitN, the
1PN angular momentum was calculated following Poisson &
Will (2014), while in REBOUNDx no equivalent function seems
available. In HNBody, routines for 1PN energy and angular

Figure 3. Comparison of solar system integrations with orbitN, HNBody, and REBOUND and different 1PN implementations (see text). The standard setup
(Section 4.1) is used, except that in all packages J2, the lunar contribution (where available), and symplectic correctors are turned off. ΔE/E = (E − E0)/E0 and ΔLz/
L indicate relative changes in energy and angular momentum, respectively. Differences in orbital eccentricity (Δe) and mean longitude (Δλ) are for the Earth–Moon
barycenter. tD are divergence times (see text).
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momentum have apparently been coded (likely similar to those
in orbitN, as can be inferred from the output), but the details
are unavailable because the source code is inaccessible.

The results for |ΔE/E| and |ΔLz/L| computed with orbitN
and HNBody (both follow ST94ʼs 1PN implementation) are
virtually identical, while |ΔE/E| and |ΔLz/L| (for t− 5
Myr) increase linearly for the gr option (see Figure 3; note
logarithmic ordinate). The differences in the 1PN implementa-
tions also affect the orbital dynamics, showing significant
differences in the EMB’s orbital eccentricity and mean
longitude for gr_potential, while the gr results are closer
to those of orbitN (Figures 3(c) and (d)). The divergence
time t 44 MyrD 1 for the difference in the EMB’s orbital
eccentricity (Δe) between orbitN and HNBody (Figure 3(c))
is typical for runs with 1PN corrections enabled but J2 and the
lunar contribution disabled (see Section 4.4). However, the
corresponding t 37 MyrD 2 between orbitN and gr_po-
tential is distinctly shorter. Thus, it appears that the
numerical 1PN implementation can enhance the apparent chaos
in the system.

Then, how can one distinguish between numerical and
physical effects on the system’s dynamics and apparent
chaoticity? In other words, how can one tell whether one
solution is more accurate than another? In the present case, the
known limitations of gr_potential suggest that ST94ʼs
method is more accurate, as illustrated by differences in the
EMB’s orbital eccentricity and mean longitude (see
Figures 3(c) and (d)). However, |ΔE/E| and |ΔLz/L| do not
hint at problems with the gr_potential method, as long as
|ΔE/E| is calculated within the framework of the 1/r2

perturbing potential (see Figures 3(a) and (b)). Conversely,
|ΔE/E| and |ΔLz/L| for the gr option may raise a red flag, yet
the calculated EMB’s orbital eccentricity and mean longitude
are closer to those of ST94ʼs method. Testing divergence times
of integrators for the same perturbation can also provide some
insight to distinguish between methods (see Section 4.4).
Further indications may be obtained by applying a different
integrator algorithm to the same problem. For example, Zeebe
(2017) showed that solar system integrations with HNBody but
fundamentally different algorithms (nonsymplectic Bulirsch–
Stoer method vs. the symplectic WH map, both 1PN enabled)
virtually agree to ∼63 Myr in the past, although this
observation says more about the basic algorithms than the
1PN implementation. Thus, in summary, inspection of |ΔE/E|
and |ΔLz/L|, as well as prior knowledge and additional tests,
can assist in finding suitable criteria to distinguish between
numerical and physical effects on the system’s apparent
chaoticity. However, identifying such criteria is not straightfor-
ward in the present case and can be even trickier in other cases.

4.4. J2, Lunar, and PN Effects on Chaos

In the following, I use orbitN to provide insight into the
effect of various physical processes on the long-term chaos in
the solar system, including GR (PN), J2 (J2), and the lunar
contribution (LUN). For the standard setup ZB18a (see
Section 4.2), the different physical effects were turned on and
off in various combinations, and for each combination
ensemble runs were performed (K = 16), with Earth’s initial
x-coordinate perturbed by D = ´ -x k 10k

0
12 au (k= 0,K,

K− 1). Note that Δx0= 10−12 au is much smaller than the
difference in x0, say, between different ephemerides such as
DE431 and INPOP13c (Δx0; 10−9 au; Zeebe 2017). Next, tD

was determined for each ensemble member relative to the
respective reference run (k = 0). The purpose of the above
procedure is to examine the evolution of a small perturbation
under the solar system’s chaotic dynamics and measure the
exponential divergence of trajectories (using tD) for different
physical effects. Tendentially, the smaller tD, the stronger the
chaos. The ensembles provide some insight into the system’s
multitude of solutions for a set of initial conditions and allow
identifying exceptional runs (see below).
Turning on only PN gives the smallest tD of about 40Myr

(+PN−J2−LUN; green diamonds in Figure 4). Adding J2
stabilizes somewhat (green triangles), yet removing PN has an
even more stabilizing effect (blue diamonds), increasing tD to
∼60–70Myr (−PN−J2−LUN; Figure 4). Note that the run
with t 100 MyrD (k = 9; blue diamond, arrow) is not an
error or “outlier” that can therefore be excluded (the run was
carefully examined). The run is a proper solution of the system,
illustrating the inherent unpredictability of chaotic systems and
their unaccountability in terms of conventional statistics. The
effect of adding the lunar contribution (−PN−J2+LUN; blue
triangles in Figure 4) increases tD from 60–70 Myr to
70Myr. The possible causes behind these effects, as well
as the different PN implementations (Section 4.3) in relation to
the chaos in the system, are discussed below considering the
system’s fundamental frequencies (Section 4.5).

4.5. Changes in Fundamental Frequencies

Several resonances and their overlap have been proposed
and investigated as the cause of the chaos in the solar system,
including the 2(g4− g3)− (s4− s3) resonance and the interac-
tion between g5 (largely Jupiter’s forcing frequency) and g1 as
part of the (g1− g5)− (s1− s2) resonance (Laskar 1990;
Sussman & Wisdom 1992; Ito & Tanikawa 2002; Morbi-
delli 2002; Lithwick & Wu 2011; Batygin et al. 2015;
Zeebe 2017; Mogavero & Laskar 2022; Zeebe 2022; Brown
& Rein 2023). The g and s frequencies (aka fundamental, or
secular frequencies, eigenmodes, etc.) are constant in quasi-
periodic systems but vary over time in chaotic systems,
although some combinations, such as (g2− g5), are more stable
than others (for discussion, see, e.g., Spalding et al. 2018). It is
critical to recall that there is no simple 1-to-1 relationship
between planet and eigenmode, particularly for the inner
planets. The system’s motion is a superposition of all
eigenmodes, although some modes represent the single
dominant term for some (mostly outer) planets. The g1− g5
interaction, “(g1− g5)” for short, can force Mercury’s eccen-
tricity to high values and plays a critical role in the long-term
stability of the solar system on a Gyr timescale (e.g.,
Laskar 1990; Batygin & Laughlin 2008; Lithwick &
Wu 2011; Zeebe 2015a; Abbot et al. 2023; Brown &
Rein 2023). Importantly, (g1− g5) is affected by GR, as PN
corrections move g1 up (by ∼0 43 yr−1 at present) and away
from g5 (for illustration, see Figure 4 in Zeebe 2015a), thus
reducing the tendency for instability on a Gyr timescale.
On the contrary, PN corrections increase chaoticity (decrease

the divergence time) in the current 100Myr simulations
(compare blue and green diamonds in Figure 4), suggesting
that other mechanisms, for example, the 2(g4− g3)− (s4− s3)
resonance, may be more important on a 100Myr timescale.
Indeed, spectral analysis of, for instance, the present integra-
tions comparing the first-order split and the symplectic 1PN
implementation (cf. Figure 3) reveal differences in g3 and g4
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(see Figure 5), as well as small differences in s3 and s4 (not
shown), consistent with a recent analysis of variations in
Earth’s and Mars’s orbital inclination and obliquity across the
same timescale (Zeebe 2022). Presuming that different
resonances dominate on different timescales suggests a
potential mechanism for GR corrections having opposite
effects on a Gyr versus 100Myr timescale, say, through
(g1− g5) versus (g4− g3). As mentioned above, GR moves up
g1 and away from g5 (the shift is much larger for g1 than for g5
and g1> g5). GR also moves up g3 and g4, and the shift is also
(somewhat) larger for g3 than for g4—however, in this case
g3< g4. In this oversimplification, GR would hence increase
(g1− g5) but decrease (g4− g3). While this notion appears
consistent with the results of the integrations performed here
(summarized in Figure 4), spectral analysis of selected runs
suggests a much more complex pattern, as detailed in the
following. Below, spectra are presented based on the fast
Fourier transform (FFT), which was used to extract the
fundamental frequencies (g and s) from the classic variables:

v v= =( ) ( ) ( )h e k esin ; cos 24

= W = W( ) ( ) ( )p I q Isin 2 sin ; sin 2 cos , 25

where e, I, ϖ, and Ω are eccentricity, inclination, longitude of
perihelion, and longitude of ascending node, respectively.

For the two-body problem, the change in the argument of
perihelion, ω, due to GR may be written as (Einstein 1916)

w p=
-

-

( )
· ( )a

c T e
T24

1
, 263

2

2 2 2
1

where a, e, and T are the semimajor axis, eccentricity, and
orbital period, respectively; c is the speed of light; and the
factor T−1 yields w per unit time (instead of per orbit).
Equation (26) gives  w 0. 43, 0 038, and 0 014 yr−1 for the
orbits of Mercury, Earth, and Mars, respectively, at present.
Spectral analysis (−25 to 0Myr) of runs with and without PN
(blue/green diamonds in Figure 4) give a shift of
Δg1= 0 36 yr−1 (Figure 6(a)), indicating that g1 reflects
Mercury’s orbit but not in a simple manner, in which case
one would expect Δg1= 0 43 yr−1. For the same runs, FFT
yields Δg3= 0 073 yr−1 and Δg4= 0 055 yr−1 (Figure 6(a)),
showing large differences to Equation (26) (which predicts w in
a two-body system). Thus, while the FFT analysis shows
similar tendencies to Equation (26), the full interacting system
is much more complex, as expected. As mentioned above, in
general there is no simple 1-to-1 relationship between a single
planet and a single eigenmode. Note also the large shift in s2
(Figure 6(b)).
The stabilizing effect of the lunar contribution (compare blue

diamonds and blue triangles in Figure 4) appears similarly
convoluted. The change in the argument of perihelion of the
Earth–Moon barycenter due to the lunar contribution may be
written as (see Equation (21) and Appendix B)

w =
-

=
+( ) ( )

· ( )nB

a e
B

m m R

m m
f

1
;

3

4
, 27E L

E L
L2 2 2

2

2

where n is the mean motion. Equation (27) gives  w 0. 066
yr−1 for the EMB’s orbit at present. Spectral analysis (−25 to

Figure 4. Ensemble integrations with orbitN turning on/off (+/ − ) GR (PN), J2 (J2), and the lunar contribution (LUN) in different combinations. Earth’s initial x-
coordinate is perturbed by Δx0, relative to the corresponding reference run (Δx0 = 0 au). tD is the divergence time (see text).
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0Myr) of runs with and without LUN give a smaller g3 shift
and, in addition, significant shifts in g1, g2, and g4 (Figure 6(c)),
as well as sizable shifts in s1 and s2 (Figure 6(d)). Note also that
the results for Δgi and Δsi as presented in Figure 6 depend on
the time interval selected for spectral analysis. For example,
across the interval −10 to 0Myr, Δg2 is actually larger than
Δg3 for the LUN on/off case. The numerical values of
2(g4− g3)− (s4− s3) and (g1− g5)− (s1− s2) are close to zero
for the runs analyzed. In summary, it is clear that while
simplified views based on the two-body problem (e.g.,
Equations (26) and (27)) can be helpful as a starting point,
they of course fail to capture the complexity of the long-term
dynamics of the full system. Further in-depth analysis of the
link between changes in fundamental frequencies, resonances,
and chaos may require a detailed eigenmode analysis and
signal reconstruction (e.g., Zeebe 2017, 2022), which is beyond
the goal of the current paper (that is, to introduce orbitN) and
is hence left for future work.

5. Summary and Conclusions

I have introduced the symplectic integrator orbitN (ver.
1.0) with the primary goal of efficiently generating accurate and
reproducible long-term orbital solutions for near-Keplerian
planetary systems dominated by a central mass. orbitN-1.0

is suitable for hierarchical systems without close encounters but
can be extended to include additional features in future
versions. While the current orbitN application focuses on
the solar system, orbitN can generally be applied to planetary
systems with a dominant mass M0. Among other features,
orbitN-1.0 includes M0’s quadrupole moment, a lunar
contribution, and post-Newtonian corrections (1PN) due to M0

based on a fast symplectic implementation. I have used
orbitN to provide insight into the effect of various physical
processes on the long-term chaos in the solar system. The
integrations performed here reveal that 1PN corrections have
the opposite effect on chaoticity/stability on a 100Myr
timescale, as compared to a Gyr timescale. Finally, time series
analysis was performed to examine the influence of different
physical processes on fundamental frequencies, which affect
secular resonances and, in turn, the long-term dynamics of the
solar system.

I thank David Hernandez and Ilja Kocken for discussions
and comments on an earlier version of the manuscript. I also
thank the anonymous reviewer for suggestions, which have
improved the manuscript. Daniel Tamayo helped clarify 1PN
options in REBOUNDx. This research was supported by
Heising-Simons Foundation grant No. 2021-2800 and U.S.
NSF grants OCE20-01022 and OCE20-34660 to R.E.Z.

Figure 5. Time series analysis of Earth’s v= ( )k e cos (see text) across the intervals −60 to −50 Myr and −10 to 0 Myr to extract solar system g-modes from runs
with orbitN and REBOUND gr (+RK2) for different 1PN implementations (see Figure 3).  = FFT. Vertical dashed lines indicate frequencies of g-modes (see
Zeebe 2017). Note differences in g3 and g4 in [−60, −50]Myr (circles in panels (a) and (c)).
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Software: orbitN-1.0 (github.com/rezeebe/orbitN; cor-
respondence to orbitN.code@gmail.com; on Zenodo:
Zeebe 2023), HNBody v1.0.10 (Rauch & Hamilton 2002),
REBOUND v3.19.10 (Rein & Liu 2012; Rein &
Tamayo 2015), REBOUNDx v3.7.1 (Tamayo et al. 2020).

Appendix A
PN: α-term

The term aj jKep,
2 in Equation (23) leads to a scaling of the

time step argument of the Drift operator (Saha & Tremaine
1994) as detailed in the following. Consider a single body first,
i.e., drop index j for the time being. Using Poisson brackets,

=
¶
¶

¶
¶

-
¶
¶

¶
¶

{ } ( )
x p p x
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Hamilton’s equations can be written as (z= [x p])
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If  º{ }z, is considered an operator acting on z, then

 = ( )z z, A3

with the formal solution
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Now let   a= +Kep Kep
2 (only affecting the Drift

operator); then,
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Kep yields the two-body energy m- ¢m a2 , where a is the
semimajor axis. Using a = ¢( )m c3 2 2 , it follows
a m= - ( )c a2 3 2Kep

2 . Finally, we can write

  = =t a t+ ¢ ( )( )z z ze e , A80 0
1 2

with t t m¢ = -[ ( )]c a1 3 2 2 . Comparing Equations (A4)
and (A8) shows that inclusion of the α-term only changes the
time step argument of the Drift operator. Reintroducing the
body index j, it follows t m¢ = -[ ( )]c a1 3 2j j j

2 , i.e., τ is scaled
for each body individually, depending on mass factor μj and
semimajor axis aj.

Appendix B
Lunar Effect on w of EMB’s Orbit

The quadrupole acceleration term due to the lunar contrib-
ution may be written as (Equation (21))

m= - ( )a
r

B
r

, B1Q 0 5

where μ0=GM0 and

=
+( )

· ( )B
m m R

m m
f

3

4
, B2E L

E L
L

2

2

Figure 6. Shifts in fundamental frequencies (Δgi and Δsi) from FFT analyses of runs shown in Figure 4 (Δx0 = 10−12 au) across the interval −25 to 0 Myr. Shifts are
calculated between two runs each with PN on/off = +/− (green) and LUN on/off = +/− (blue).
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which can be derived from a potential (aQ=−∇ΦQ)

mF = - ( )B
r

1

3
. B3Q 0 3

Upon averaging, r3 may be replaced by -( )a e13 2 3 2. Hence,
taking as the disturbing function

R
m

=
-( )

( )
B

a e3 1
, B40

3 2 3 2

w is given by (Danby 1988; Murray & Dermott 1999)

R
w

m
=

- ¶
¶

( )na e

e e

1
, B5

2

0

where n is the mean motion and R¶ ¶ =i 0 was used
(i= inclination). Finally,

w =
-( )

( )nB

a e1
. B6

2 2 2
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