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fication, but the models differ in this projection.
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Abstract

We use several global coupled atmosphere-ocean-biogeochemistry models from the

Coupled Model Intercomparison Project (CMIP5), to show that the global interannual

variability of the sea-surface pCO2 (calculated as 1) will increase by ~ 64 + 20% by
2040-2090 relative to the beginning of the industrial revolution under the RCP8.5 sce-
nario. All models agree that the increase in variability is a consequence of a larger back-
groimd pCO; and a lower buffering capacity that enhance the response of pCO5 to the
fluctuations of surface temperature (T) and dissolved inorganic carbon (DIC). The most
skillful group of models under present-day conditions shows a future global decrease in
DIC fluctuations that will weaken the pCOs interannual variability (IAV). The remain-

ing uneertainties in the projected evolution of pCQs variability regionally highlight the

need for continuous carbon monitoring programs which will contribute to a better un-
derstanding of the oceanic carbon sink’s response to increased green house emissions.

Plain Language Summary

We used a series of coupled climate/carbon cycle models to show that the year-to-
year variations in the oceanic surface partial pressure of carbon dioxide, will intensify
by the end of the 215 century. The future interannual fluctuations in carbonate chem-
istry will have a stronger impact on surface ocean pCOs,, because anthropogenic carbon
emissions make the ocean less able to buffer these natural changes. Earth system mod-
els also document and overall weakening of the underlying biophysical interannual changes,
which can partly compensate for the enhancement of pCO; in some areas, such as the

eastern equatorial Pacific. Projected changes in the ocean’s carbon dioxide levels will also

impact the flux of carbon between the atmosphere and the ocean, and therefore, play
an important role in the uptake of anthropogenic carbon and the level of future green-
house warming.

1 Introduction

On average, the ocean absorbs 2.4 £ 0.5 Pg of carbon each year (Le Quéré et al.,
2018) but the efficiency of the oceanic carbon sink varies on interannual time-scales. Ef-
forts have been made to estimate the present-day year-to-year variations of CO» uptake
in observations and models (Dong et al., 2017), however there is little agreement. More-
over, mumnerous studies use different variability metrics which makes it difficult to com-
pare the estimates. Values for the interannual variability calculated as 1 ¢ of the CO4
flux anomalies range from £0.14 PgC yr~! for a 1982-2007 diagnostic model (Park et
al.;:2010), +0.29 for the 1985-2017 observations (Le Quéré et al., 2018), £ 0.31 PgC yr !
for a 1992-2009 data-based estimation (Rédenbeck et al., 2015) to £0.40 PgC yr—! for
a 1979-1997 simulation (Le Quéré et al., 2000).

The ocean-atmosphere flux of CO, (FCO,) is determined by the difference between
ocean and atmospheric pCOs, and further modulated by solubility, regional wind speed
and sea ice coverage. Globally, most of the open ocean’s FCO- interannual variability
is driven by the fluctuations in oceanic pCOs (Landschiitzer et al., 2016; Landschiitzer,
llyina, & Lovenduski, 2019; Rédenbeck et al., 2015; Li et al., 2019), however in some re-
gions wind speed variations can also have an important impact (Doney et al., 2009; Wan-
ninkhof & Trifianes, 2017).

The ocean’s pCO, interannual variability (from now on referred as IAV) is gener-
ated by large scale atmosphere-ocean interactions and specific climate modes, such as
the El Nifio Southern Oscillation (ENSO) in the equatorial Pacific, the Pacific Decadal
Oscillation (PDO) in the North Pacific, the Southern Annular Mode (SAM) in the South-
ern Ocean, and the North Atlantic Oscillation (NAO). These climatic phenomena induce
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64 changes in physical parameters (e.g. temperature, salinity, ocean currents, mixing) which

6 in turn influence ocean biology and carbonate chemistry, thereby altering the ocean’s abil-
66 ity to sequester CO> (Doney et al., 2009; Feely et al., 2002; Chatterjee et al., 2017; Sut-

& ton et al., 2017; McKinley et al., 2004; Friedrich et al., 2006: Landschiitzer, Ilyina, & Loven-
58 duski, 2019).

5 The oceanic pCO, is completely determined by dissolved inorganic carbon (DIC),
7 total alkalinity (TA), temperature (T) and salinity (S). The interannual climate modes
n of variability alter the DIC, TA, T and S, but the impact of these anomalies on the pCOs
7 depends on the sensitivity of the seawater’s carbonate chemistry. In the ocean, approx-
7 imately 89% of the dissolved inorganie carbon oceurs in the form of bicarbonate (HCO; )

7 and a2 10.5% as carbonate (CO; ?); the CO, concentration ([CO-]) only comprises a ~0.5%
7s (Zeebe & Wolf-Gladrow, 2001). The carbonate chemistry dynamics and the sensitivity
7 of pCO» to changes in DIC. TA, T and S are strongly controlled by ambient COs. As

7 the ocean captures COy, its ability to convert it into HCO; and CO5? decreases, and

78 the pCOs sensitivity to any change in DIC increases. In the same way, a larger back-

7 ground aqueous [CO2] enhances the effect of temperature on pCOz’s solubility.

80 The on-going decline on the ocean’s buffering capacity due to increasing atmospheric
81 CO5 concentrations is well documented in the literature (Bates et al., 2014; Fassbender

82 et al., 2017; Sabine et al., 2004; Egleston et al., 2010), and recently, the corresponding

81 implieations for the seasonal cycle amplitude of pCO» have been elucidated. To deter-

84 mine the effect of anthropogenic COs on the seasonal cycle of the ocean’s pCO; it is nec-
Bs essary to distinguish the influences of carbonate chemistry dynamics from those directly

8 related to biophysical mechanisms. This can been done using a Taylor series expansion

a7 of pCOs in terms of the physical and chemical main drivers (McNeil & Sasse, 2016; Land-
a8 schittzer et al., 2018; Gallego et al., 2018; Fassbender et al., 2018) and through idealized

8 simulations (Hauck & Vélker, 2015; Gorgues et al., 2010). These studies concluded that
90 the trends in carbonate chemistry are responsible for the increased seasonal amplitude

0 of pCO- and hydrogen ion concentrations (Kwiatkowski & Orr, 2018). Yet, the impact

0 of the decreasing ocean’s buffering capacity on the interannual variability of pCO- has

P not been documented.

0 The large interannual variability induced by ocean-atmosphere interactions makes
05 it difficult to detect long-term trends in the ocean’s carbon sink (McKinley et al., 2017;
96 Li et al., 2019; Chatterjee et al., 2017; Sutton et al., 2017), in particular on regional scales.
a7 However, some studies have shown that it is possible to use models and data-assimilation
o techniques to predict the carbon sink up to some extent (Séférian et al., 2018; Li et al.,

o 2019). To further improve these predictions, we need to use carbon monitoring programs
100 as well as mechanistic studies to understand the vulnerability of pCO5 interannual vari-

101 ability to increasing greenhouse gas emissions (McKinley et al., 2017; Gruber et al., 2019).

102 Our aim in this study is to quantify how well CMIP5 models capture the mech-
103 anisms of present-day sea surface pCOs TAV when compared to data-based estimates,
104 and {rom there, elucidate the causes of future changes in the variability of the carbon
105 cyele in response to anthropogenic emissions of COs.

106 2 Methodology

107 Models

108 For our analysis, the surface pCOs, DIC, TA, T and S monthly-mean output vari-
109 ables covering the period 1861-2005 were obtained from historical simulations, and the
10 period 2006-2100 from climate change simulations forced with the Representative Con-
1 centration Pathway 8.5 (RCP8.5) greenhouse gas emission scenarios (IPCC, 2013). We
12 selected 16 fully coupled earth system models that participated in the Coupled Model
13 Intercomparison Project, Phase 5 (CMIP5) to analyze the standard deviation of pCOs.
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14 However, we removed from the analysis the models CMCC-CESM and GISS-E2-H-CC

115 based on Dong et al. (2016) and the large difference between their patterns of pCOs stan-
116 dard deviation (STD) from those of other models and observations (see Supplement ma-
1 terial S2, and the observation-based estimate of Figure 2). Out of the sixtteen, we se-

18 lected six models for a more comprehensive analysis of the causes driving pCQO, variabil-

18 ity: these models were selected based on data availability: CanESM2, CESM1-BGC, GFDL-
120 ESM2G, MPI-ESM-LR, HadGEM2-ES and HadGEM2-CC (See supplementary mate-

121 rial of Hauri et al. (2015)). The ocean’s surface data sets were regrided onto a 1°x1° grid
n uging Climate Data Operators (CDO). The Arctic Ocean and the region poleward of 70°S
123 are removed from the analyses, because observational data for model validation are scarce.
124 Analysis

125 Commonly, the interannual anomalies are defined as deviations of monthly mean

126 values from a long-term mean monthly climatology, or by using a running 12 month fil-

127 ter on detrended monthly values, (Landschiitzer, Ilyina, & Lovenduski, 2019; Rodenbeck
128 et al., 2015). However, for CMIP5 models, the future seasonal eycle of pCO» is expected
120 to increase (Gallego et al., 2018), therefore removing a mean climatology for the 1861-

130 2100 period would result in an overestimation of IAV amplification (IAVA). On the other
131 hand, a 12 month running filter would remove important sub-annual information asso-

132 ciated with the coupling between the seasonal and interannual time-scales, such as Com-
133 bination modes which play a key role for ENSO dynamics, (Stuecker et al., 2015). Fi-

134 nally, removing a linear trend from a 200-year-long time series poses its own difficulties,
135 To avoid these issues, we calculate the monthly anomalies for each vear as the monthly

136 deviation from a 11-year running climatology centered on that year. For example, for

137 the year 1935 we desasonalize the monthly values by subtracting the mean climatology

138 from 1930 to 1940; for the year 1936 we use the climatology from 1931-1941 and so on.

139 From now on, the monthly deviations (or anomalies) are denoted by pCO) and the run-
10 ning climatology as pCO,. Supplement Figure S1 shows the time series of pCO, and pCOY
i obtained with this method. The size of the running window is arbitrary but is chosen

122 to minimize the loss of data points at the end of the time series. We compared windows
143 of 11, 21 and 31 years and the values for the mean pCO, and the STD of pCO) are sim-
124 ilar (see Supplement Figure 52).

145 To elucidate the underlying physical and chemical processes controlling the pCO-

126 interannual anomalies (from now pCO%) we calculated a first-order Taylor series expan-

107 sion of pCO% in terms of its four controlling factors, DIC, TA, T and 8, following the
148 method of Takahashi et al. (1993); Lovenduski et al. (2007); Doney et al. (2009).

149 To remove the fresh water concentration/dilution effect we use salinity-normalized
150 DIC and TA using a mean salinity of 35 psu, referred as DIC; and TA;, (Lovenduski et
151 al., 2007).. The freshwater effect is now included in the Sg, term. For the Taylor series
152 expansion, each variable (X = DIC, , TA, . T and Sg, ) is decomposed as X = X 4 X',
153 The term X represents the mean climatology calculated for an 11-year running window
154 at each grid point. The term X’ are the monthly anomalies, calculated as the deviation
155 from the mean climatology. The full first-order series expansion is given by:
’ 4l : S’ ' P OpCO: ~f
pCOy ~ %f 1% . %,Pm('; dg;gz rapreT s apg j?p?r + ‘)pgSOE 7307051
' (1)

156
157 ‘where the derivatives are evaluated on the running climatologies. The analytical
158 derivation of Eq. (1) is given in the Supplementary material. Equation (1) can be rewrit-
159 ten as:
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pc"OZI 2 mg * (79!03 d DIC‘RI + DA TA.*;! + - T! + s - Sfur!) (2)

where, for notation purposes, each derivative is re-defined as: yx = pC—-IO . Q%C;(ﬂ,
and we will refer to them as the pCOs sensitivity to X. It is important to make the dis-
tinction between different quantities that measure the oceanic buffering capacity. The
DIC sensitivity (ypic) is a similar concept to the Revelle factor (RF), and they are re-
lated by RF = -[% Our definition of 4prc is the inverse of the one given by Egleston
et al. (2010). The three different quantities RF, ypic and 1/9p1e characterize how much
the pCO, ehanges by a given change in DIC, but they differ in their spatial distribution
in the oceans.

In what follows, we use the method of Doney et al. (2009) to determine how much
each term (from DIC, TA, T and S) contributes to the variability of pCO» (measured
as the root-mean-square (RMS) of pCO%). First, Equation (2) is multiplied by pCO-',
and then averaged, obtaining the following equation:

<(pC0."Y > ~ pCO,-vprc, < DIC, - pCOL > + pCO,-yra, < TAS -pCOY> (3)
+ pCO,-yr <T'-pCO3> + pCO,-7s < S’ -pCO; >,

where < ... > represents a temporal averaging operator. Introducing the follow-

ing notation:

. < pCOy - vx - X'pCOs' > )
bx = < (pCOL? > ‘ ()

Then, we can divide Eq. (3) by < (pCO%)? > to give the relationship Z Bx =1,

where X = {DIC, TA, T, S}, as introduced by Doney et al. (2009). Thus, if w‘e\ multiply
Eq:(4) by the RMS of the anomalies (defined as /< (pC0,")? > ), then the 8x coel-
ficients can be interpreted as the fraction of the total RMS of the pCOj that each vari-
able contributes. In our numerical calculations the sum of the 5’s differs slightly from
one due the approximation used for the Taylor expansion, and the anomalies averaged
being slightly different from zero.

3 Results

The increase in IAV of surface pCO,’ is illustrated with the running standard de-
viation of the monthly anomalies from 1871 to 2090 (Figure 1). The ensemble mean (14
CMIP5 models) of the globally averaged STD of pCOs; increases from 74+ 1.2patm to
11.8+2.8 patm by the end of the 215 century. Detailed global maps for the periods 1866-
1917 and 2045-2095 STD are found in Supplement material S2 and S3. For the pCOs,

a present day comparison shows that the 1987-2012 ensemble STD is 8.6 patm and is
larger than the observation-based estimates of ~ 4.4 patm (Landschiitzer, Bushinsky,
& Gray, 2019) (excluding the Arctic region).

The disagreement between models and the data-based results of Landschiitzer, Bushin-
sky, and Gray (2019) may be due to several reasons. First, the data-based estimations
are an interpolation of the Surface Ocean COs Atlas (SOCAT) dataset (Bakker et al.,
2016; Sabine et al., 2013) which may be biased due to under-sampling, and interpola-
tion methods may cause a lower RMS in higher latitudes with limited observational cov-
erage (Landschiitzer, Ilyina, & Lovenduski, 2019; Rédenbeck et al., 2015; Sutton et al.,

©202Q American Geophysical Union. All rights reserved.
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Figure 1. Increase in IAV of the sea surface pCQ." as a function of time. The TAV is
expressed as the running standard deviation (STD) of the monthly anomalies simulated for the
historical and the high-emissions Representative Concentration Pathway 8.5 from 1861 to 2100.
The STD is calculated using a 10 year moving window for each grid point and then globally av-

eraged. The monthly anomalies for each year were calculated by removing a 11-year climatology

centered around that year, in order to remove the positive trend and the increasing seasonal cycle

amplitude. The final STD time series comprises the 1871-2090 period. Solid black line indicates
the ensemble mean of the individual STDs; the grey area, +1o. The figure also shows the en-
semble mean STD for the 1987-2012 period; for the unfiltered anomalies (black star), for the

anomalies filtered with a 12-month running average (blue star) and for the unfiltered anomalies’

of Landschiitzer, Bushinsky, and Gray (2019) dataset (red circle). The models CMCC-CESM and

GISS-E2-H-CC were removed (see Methodology section).

2017, 2014). In another example of under-sampling related bias, it was found that the
observed 1970-2011 pCO4 anomalies show a larger standard deviation than the CIMP5
maodels, but they were of equal magnitude when the models were subsampled to the mea-
surements, (Tjiputra et al.. 2014). Secondly. it is important to notice that we use fully-
coupled ocean-atmosphere models, therefore they generate their own internally driven
climate variability and the amplitude and timing may not match with observational records.
This is further analyzed in the next section. Third, the neural-network-based reconstruc-
tion approach used for the observations may smooth away important sub-annual vari-
ations (Gruber et al., 2019). To test this hypothesis, we apply a 12-month running mean
to filter out sub-annual variability in the models’ anomalies. When we apply the filter,
we find a global mean STD of = 4.5 patm, very similar to the unfiltered anomalies of
Landschiitzer, Bushinsky, and Gray (2019) (see Figure 1 and Supplement Material Fig-
ure 82 (b)). However, the sub-annual variations captured in the models are specially im-
portant in regions with high variability. In the Southern Ocean, the pCO; interanmual
variability is highly coupled to the seasonal cycle. Gregor et al. (2018) found that win-
ter wind stress explains decadal variability and summer drivers explains interannual vari-
ability in this region. Moreover, Stuecker et al. (2015) suggests that ENSO should not

be studied only on interannual time-scales, since is strongly coupled to the seasonal cy-
cle which lead to the generation of variability on timescales of 9 and 15-18 months. Given
on these considerations, we decided to conduct our study with unfiltered anomalies, rec-
ognizing that the background level of natural variability from this approach may differ
from the observation-based reconstructions of Landschiitzer, Bushinsky, and Gray (2019).

©202Q American Geophysical Union. All rights reserved.
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Drivers of present-day sea surface pCO- interannual variability

The drivers of the present-day (1987-2010) pCOs' interannual variability are an-
alyzed in Figure 2. We compare the root mean square (RMS) of simulated pCO," and
the respective contributions of T, DIC,TA and S for the 1987-2010 period with the re-
construction of Landschiitzer, Bushinsky, and Gray (2019). For the observation-based
dataset. we only calculate the thermal and non-thermal components using observed sea-
surface temperatures (TA and DIC are not available). The non-thermal component com-
prises the combined contribution of DIC, TA and S, (Takahashi et al., 2002). The ther-
mal and non-thermal contributions calenlated for the CMIP5 models can be found in Sup-
plement material (Figure S4); these follow the DIC and T patterns respectively.

The spatiotemporal-patterns and drivers of the present-day pCO»'s TAV have been
largely documented in the literature and are well captured in the estimate of Landschiitzer,
Bushinsky, and Gray (2019) shown in Figure (2) and further analyzed in Landschiitzer,
Ilyina, and Lovenduski (2019) . Studies agree that most of the global pCO5 [AV is gen-
erated in the equatorial Pacific (Doney et al., 2009; Rédenbeck et al., 2015; McKinley
et al., 2017) and the equatorial belt may account for 40% of the total temporal standard
deviation of the global Ocean, (Rodenbeck et al., 2014). Previous studies also agree that
the pCO,'s TAV is controlled by non-thermal changes in the high latitudes (Resplandy
et al., 2015; Verdy et al., 2007) and in the equatorial Pacific, where during El Nino years
the reorganization of oceanie currents reduce the upwelling or DIC-rich waters causing
negative pCO» anomalies (Feely et al., 2006; Valsala et al., 2014; Sutton et al., 2014; Cosca
et al.. 2003: Long et al.. 2013; Feely et al., 1999). In contrast, in the subtropical gyres
the variability is controlled by thermal changes (Doney et al., 2009; Landschiitzer, Ily-
ina, & Lovenduski, 2019; Rodenbeck et al., 2015).

Thus, for analysis purposes, we separate the models into two groups according to
the following characteristics: 1) the location of the maximum pCQs variability and 2)
the pattern of thermal and non-thermal dominance of the pCQO5 TAV. The models CanESM2,
CESM1-BGC and GFDL-ESM2G (from now on referred to as Group I) show the largest
pCOy variability in the equatorial Pacific and a DIC-dominance in the equatorial belt
and the high latitudes. These models are in good agreement with the observational es-
timates (Figure 2, second row). The models HadGEM2-CC/ES and MPIESM-MR (from
now on referred to as Group II) have an overall poorer performance compared to Group
I. For Group II, the strongest fluctuations occur in the high latitudes, especially in the
Southern Ocean and North Atlantic, and the pCO5 TAV is dominated by temperature
in the equatorial Pacific. However, this group agrees with observations on the DIC-dominance
in the high latitudes (Figure 2, third row).

The low equatorial variability in the Group II models may be a consequence of the
COs flux variability that exhibits a much shorter period variation than ENSO time-scales,
thus ENSO does not play a dominant role on the IAV (Dong et al., 2016). Jin et al. (2019)
performed a similar analysis of the IAV drivers in the equatorial Pacific region. The au-
thors found that for CanESM2, CESM1-BGC and GFDL-ESM2G (Group I) the pCO,
anomalies caused by El Nino are negative due to a redistribution of oceanic currents and
reduced upwelling of DIC-rich waters; while for MPI-ESM-IR and HadGEM-ES/CC (Group
IT) the pCO, anomalies are positive as a consequence of the anomalous eastward advee-
tion of warmer waters. Group II fails to represent the DIC dominance because of a un-
derestimated reduction in upwelling during El Nifio years and weak mean vertical gra-
dients of DIC.

Some other interesting differences and similarities between the models and the observations-
based estimate are worth mentioning. For example, in the equatorial Atlantic the HadGEM2-
CC/ES and GFDL-ESM2G models (from Group II and Group I respectively) show a neg-

ative temperature contribution (Wang et al., 2015), disagreeing with the Landschiitzer,

lyina, and Lovenduski (2019) estimate. In the sub-polar North Atlantic the observations

©2020 American Geophysical Union. All rights reserved.
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Figure 2. Mechanisms driving the 1987-2012 interannual variability of surface
ocean pCO;. First row shows the a) Landschiitzer, Bushinsky, and Gray (2019) estimate of the

root mean square (RMS) of pCO; interannual anomalies, and its b) thermal and ¢) non-thermal

contributions. The models were grouped according to their behavior (see main text) in Group I
(CanESM2, CESM1-BGC and GFDL-ESM2G) and Group IT (HadGEM2-CC, HadGEM-ES and
MPI-ESM-LR) respectively. We first did an analysis of the RMS of the pCQOY% and its DIC, TA,

T and S contributions for each individual model, and then we calculated the ensemble mean of

‘Group T and Group II. The panels in the second and third rows show the ensemble mean of the

Group I and IT respectively, for the a) root mean square (RMS) of pCO» interannual anomalies
and its contributions from d) temperature (T), e) dissolved inorganic carbon that has been salin-
ity normalized (DIC;). f) salinity normalized total alkalinity (TA;) and g) salinity including fresh
water effect (Sy,,). For the observations, we calculate a thermal and non-thermal terms following
Takahashi et al. (2002) method because there is not enough DIC, TA and S data available. The
non-thermal component comprises the combined effects of DIC, TA and S. Following the method
of Doney et al. (2009), each map of the contributions is calculated as the 3 coefficient of Eq.

(4) normalized by the RMS of the pCO%5. In the panels, yellow-redish colors indicate a positive
contribution to the RMS of pCO; interannual anomalies and blue colors represent a negative

contribution. Each model is depicted individually in the Supplement material Figure S5.

show a non-thermal dominance north of 40°N, whereas in the models the DIC dominance
extends to 25-30 °N. Only the HadGEM2-CC/ES model shows a relatively important
alkalinity eontribution in the North Atlantic and North Pacific that counteracts the pos-
itive DIC eontribution. Salinity has a minor effect everywhere, with a small positive ef-
fect in the western Pacific associated with rainfall changes due ENSO (see Supplement
material Figure S5).

Future sea surface pCO- interannual variability

We further investigate the future spatio-temporal characteristics of the pCO, [AV.
The sea surface pCO5 TAV, calculated as the RMS-value of the interannual pCO; anoma-
lies, is amplified in most of the ocean by the end of the 21%" century (Figure 3a), (see
Supplement material Figure S5 for each individual model). Yet, the magnitude of the
TAV amplification (IAVA) exhibits large regional differences, and even decreases in the

©202Q American Geophysical Union. All rights reserved.



264 equatorial Pacific for some models. Here, we analyze the causes of [AVA and its spatial

265 heterogeneity by separating the analysis into the two groups of models mentioned in the
286 previous section. For Group I the pCO5 [AV increases everywhere except in the equa-
207 torial Pacific (see Figure 3a, upper row); Group II shows higher values of IAVA than Group

288 I globally (see Figure 3a, bottom row).

269 To determine how much of the pCO, IAVA is due to carbonate chemistry dynam-
200 ics and how much is explained by physical and biological processes, we calculate the RMS
201 of pCOs’ for the final period as if only the background carbonate chemistry - represented
202 by pCOs5 and the sensitivities (71 and ypic)- increase, but maintaining the historieal val-
203 ues of the anomalies given by T” and DIC, (see Eq. (2)). The latter anomalies are the
204 result of physical and biological variations. In both groups of models, the case in which
208 only the carbonate chemistry is changed shows a global mean TAVA twice as large as the
206 case in which DIC," and T’ are also allowed to vary (compare in Figure 3b with 3a). The
207 large increase in pCO, and vpic is similar for both groups of models and generates an

208 overall amplification (Figure 4a.b). It is important to mention that the separation be-

200 tween pCO» and 7p1c, 18 a mathematical construct rather than two separate phenom-

300 ena. Ultimately, the change in pCOs - vp1c, is what determines the increase in the DIC
301 contribution, while the T contribution increases almost exclusively due to the increase

302 in pCO- since yr remains almost unchanged (not shown).

303 The damping of the pCOs TAVA (Figure 3 (a)) is due to a decrease of the DICY in-
04 terannual variability. As shown in Figure 4 (¢), the simulations differ in DIC' creating

305 a large spread in the projected IAVA (see Supplement Material Figure S9). The most

306 striking difference between the groups of models is the location of the maximum DICs

307 STD. In the first group of models, the maximum of the DIC’ standard deviation is lo-

308 cated in the low latitudes, in contrast to Group Il for which the maximum variability

309 oecurs in high latitudes.

a10 Another important difference, is the future change on DIC TAV in the equatorial

an band. For Group I, the DIC STD largely decreases in this region, whereas for the mod-
a2 els HadGEM2-CC/ES the STD increases. For the MPLI-ESM-LR model, the STD slightly
31 increases, but this model (as well as HadGEM2-CC/ES) is dominated by T in this re-

314 gion (see Figure 2). In high latitudes, for groups I and II the future DIC STD decreases

as but the sensitivity increases the most, resulting in a large amplification of pCOs vari-

316 ability. The high latitudes’ strong sensitivity has been well documented in previous stud-
317 ies (Bates et al., 2014; Egleston et al., 2010; Fassbender et al., 2017). In summary, of the
a8 two groups of models, the Group II simulates a larger increase in the sensitivity and a

219 smaller reduction on DIC’, therefore result in a larger pCO2 IAVA than Group 1. Inter-
120 estingly, the T' anomalies remain of similar magnitude during both periods of time, but
a as [COs] increases, the overall T contribution is more amplified than the DIC contribu-
2 tion (see Supplement material, Figure S6).

323 ‘The intra-model differences of future DIC’ and T’ AV arise from the models’ bio-
a4 physical mechanisms, or due to possible future changes in the main modes of ocean-atmosphere
a2 variability, such as ENSO, NAO, SAM and PDO. An in-depth analysis of these causes
a2 is beyond the scope of this paper, but we discuss some possible explanations discussed

an in the current literature. One of the reasons for the diminished DIC' variability may be
128 related to the fact that models simulate a weaker Walker circulation in response to global
a9 warming (Vecchi et al., 2006; Zhao & Allen, 2019). A weaker Walker circulation would
330 weaken the upwelling of DIC-rich waters during La Nifia conditions.

a Keller et al. (2015) studied ENSO variability in the CESM1-BGC model for the

212 850-2100 period, the authors found that the warmest period had the lowest variance in
a1 ENSO, and that the air-sea CO» flux response was the lowest. The latter result agrees
a4 with our finding that the pCOs variability decreases in the eastern equatorial Pacific for
s thismodel. However, unresolved large equatorial model biases with magnitude similar
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Figure 8. Causes of increasing sea surface pCO.' variability: Total change (measured
as 2045-2095 minus 1870-1920 values) of a) the RMS of pCO2’, b) RMS of pCO2" when only the
value of pCOQ, 4pic, and yr vary, but we keep the historical (1870-1920) value of the DIC, and
T interannual anomalies. First we compute the total change for each model and subsequently
take the ensemble mean of Group I (CanESM2, CESM1-BGC and GFDL-ESM2G) (top row)
and Group Il (HadGEM-CC/ES and MPI-ESM-LR) (bottom row). Panel b) highlights that
the RMS of pCO; increases due carbonate chemistry changes. However, the interannual variabil-
ity of DIC and T generates differences between column a) and b) that depend on the models’
physieal and biological dynamics.

3% to the projected future warming (Cai et al., 2015; Timmermann et al., 2018) suggest that

397 our model-based projections of future pCO; variability in the eastern equatorial could

138 still be subject to larger uncertainties, which at this stage are difficult to quantify.

239 Another possible explanation for the diminished DIC' variability is the projected

340 shoalmg of the winter mixed layer depth, associated with a reduced heat loss during the
341 cold season. The mixed layer shoaling will cause less mixing of deep rich DIC waters to
32 the surface on both, seasonal and interannual timescales. In the winter deep convection
34 regions the future shoaling of the MLD may be underestimated by models, because they
364 show a shallower than observed present-day mixed layer depth (Downes et al., 2009; Sallée
345 et al., 2013). Simulations show that a decrease in mixed layer depth will also reduce the
36 input of macronutrients and therefore reduce primary productivity (Bopp et al., 2013).

37 However, in higher latitudes, such as the Southern Ocean, a reduction in light and tem-
ae perature limitations estimulate primary productivity (Stenmcher et al., 2010) which could
240 counteract the decrease of the DIC' variability.

350 The total reduction of the DIC' STD may be a combination of these factors; for

351 example, even if ENSO’s magnitude and frequency increase, a reduction of the MLD may
as2 confine the ocean uptake of CO» to the surface, thereby reducing the DIC vertical gra-

351 dient. As a result, frequent upwelling events would have a smaller impact on DIC’ [AV.
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Figure 4. Changes in carbonate chemistry and interannual variability of surface
DIC,.' and T'. Percentage change (measured as 2045-2095 minus 1870-1920 values) of a) pCO,
and b) yprc,. A 100% change indicates a doubling in magnitude. ¢) and d) show the ensem-
ble mean of the zonally averaged standard deviation of DIC," and T’ respectively. The top row
shows the ensemble mean for models in Group I and the bottom for Group II.

4 Summary and Conclusions

The ocean surface pCO- responds to climate modes of variability that alter the ocean’s
cireulation and biogeochemical conditions on interannual time-scales (Resplandy et al.,
2015). The CMIP5 models present a larger present-day pCOs IAV than the observation-
based estimates of Landschiitzer, Bushinsky, and Gray (2019). The difference can be partly
attributed to the presence of near-annual variations that are less present in the Landschiitzer,
Bushinsky, and Gray (2019) dataset, but that have a large impact on the dynamics of
the simulated monthly anomalies of pCOs.

Two opposing mechanisms control the simulated future changes in pCOs TAV. The
first i8 the result of the changing ocean’s carbonate chemistry; a higher background CO»
concentration and increased oceanic sensitivity to anturally occurring DIC and T fluc-
tuations amplify the pCO; IAV . The second opposing mechanism is a reduction of the
interannual fluctuations in DIC that counteract the pCO5 TAVA. In other words, although
changes in DIC” will be smaller compared to present-day, the ocean will be much more
sensitive to them and to T’, resulting in an overall increase of pCOy variability in most
of the global ocean. However, this result is based on fully-coupled ocean models with bi-
ases in mean state and variability. Beyond improving future earth system models in this
regard, it is paramount to maintain extended carbonate chemistry observational networks
that will help monitoring the interannual changes in DIC and pCOs.

‘The response of the pCO» variability to greenhouse gases varies with latitude; most
models show that the high latitudes with large pCO» TAV are also the ones that will be
exposed to larger variance amplification, because the buffering capacity decreases faster
in these regions (Egleston et al., 2010; Fassbender et al., 2017). The mid-latitudes vari-
ability will be mildly amplified by a larger pool of COs that magnifies the response to
T variability. In the equatorial Pacific the models show a larger discrepancy; the mod-
els. that agree with present-day observations in terms of pCOs dynamics project a de-
crease in equatorial variability due to a large reduction of the DIC’. On the other hand,
the HadGEM2-CC/ES and MPI-ESM-LR models show a small increase in equatorial vari-
ability, because their local pCOs TAV is dominated by T instead of DIC.
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Further study is required to detect how the pCOs [AVA will influence the regional
and global CO5 flux variability. Dong et al. (2016) found no increase in FCO5 IAV in
the CMIP5 models, however, the authors compared the STD of the FCOs anomalies be-
tween pre-industrial and present day levels, while we compared the end of the century
levels with those at the onset of the industrial revolution. The increase in IAV is grad-
ual and remains small at the beginning of the 215°. Therefore, longer time series are needed
to detect the emerging forced amplification.

Changes of surface ocean pCO; on interannual time scales affect the source/sink
nature of the ocean, and they may generate acidification and hypercapnia episodes on
interannual time-scales in the most vulnerable regions (McNeil & Sasse, 2016; Sasse et
al., 2015). In the mean time, future projections rely on ocean models as the current datasets
are sparse and lack time continuity. The models’ differences and similarities highlight
the large gap in knowledge about the complex physical and biological factors modulated
by ocean-atmosphere interactions that control the interannual variability, but also con-
firm the undeniable consequences of the changing background carbonate chemistry.
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