Errata to

CO$_2$ in Seawater: Equilibrium, Kinetics, Isotopes

R. E. Zeebe1 and D. A. Wolf-Gladrow2

1 Department of Oceanography, University of Hawaii at Manoa, SOEST, 1000 Pope Road, MSB 504, Honolulu, HI 96822, USA.
zeebe@hawaii.edu

2 Alfred Wegener Institute for Polar and Marine Research
P.O. Box 12 01 61, D-27515 Bremerhaven, Germany.
dwolf@awi-bremerhaven.de

Supplemental MATLAB routines (including new program file csys3.m) are available at:

www.soest.hawaii.edu/oceanography/faculty_html/zebe2.html
www.awi-bremerhaven.de/Carbon/co2book.html

March 2, 2010
Errata I (included in 1st reprint 2003)

p. 19: Replace:
“A doubling of the Mg$^{2+}$ concentration, for example, will reduce pK^*_1 from 5.86 to 5.80 and pK^*_2 from 8.93 to 8.87.”

by
“A doubling of the Mg$^{2+}$ concentration, for example, will reduce pK^*_1 from 5.86 to 5.80 and pK^*_2 from 8.93 to 8.77.”

(8.87 → 8.77).

p. 174, footnote: replace

\[
\alpha'_\text{(CO}_2\text{-HCO}_3^-) = \alpha_\text{(CO}_2\text{-HCO}_3^-) \frac{1 - [^{13}\text{CO}_2]/[\text{CO}_2]}{1 - [^{13}\text{HCO}_3^-]/[\text{HCO}_3^-]}
\]

by

\[
\alpha'_\text{(CO}_2\text{-HCO}_3^-) = \frac{1 - [^{13}\text{CO}_2]/[\text{CO}_2]}{1 - [^{13}\text{HCO}_3^-]/[\text{HCO}_3^-]}
\]

p. 194 Fig. 3.3.19: time is in calendar years (not: 14C age).

Figure 3.3.19: Sea level curve and seawater δ^{18}O as derived from Barbados corals for the time period from 18,000 yr B.P. until today (after Fairbanks, 1989).
p. 219: Fig 3.4.30 below was plotted using $pK_B^* = 8.70$ instead of 8.60.

Figure 3.4.30: (a) The concentration of dissolved boron species as a function of pH ($T = 25^\circ$C, $S = 35$). The dissociation constant of boric acid pK_B^* is 8.60; the total boron concentration is 416 µmol kg$^{-1}$ (DOE, 1994). (b) Boron isotopic composition of B(OH)$_3$ and B(OH)$_4^-$ as a function of pH (cf. Hemming and Hanson (1992)).
p. 260: Eq. (A.5.9): 0.02824 instead of 0.02924.

p. 261-262: Figures A.5.5 and A.5.6: please note that K values were plotted in the book for hydrogen sulfate and hydrogen fluoride, whereas for all other acids the plots show pK values. Plots of pK^*_S and pK^*_F are provided below.

Figure A.5.5: Stability constant of hydrogen sulfate, pK^*_S, at $S = 35$ as a function of temperature.
Figure A.5.6: Stability constant of hydrogen fluoride, pK_F^*, at $S = 35$ as a function of temperature.

p. 266: the units of $K_{sp}(\text{cal})$ and $K_{sp}(\text{arg})$ should read mol2 (kg-soln)$^{-2}$ (not: mol (kg-soln)$^{-1}$).
Errata II (included in 2nd reprint 2005)

pp. vii, 53, 251, 269, 271, references to
www.soest.hawaii.edu/oceanography/faculty_html/zeebe2.html added.

p. 67, unit of K_0 in Fig. 1.5.20 should be μmol kg$^{-1}$ μatm$^{-1}$ (not μmol μatm$^{-1}$).

p. 77, replace first part of Eq. (1.6.94) by

$$r = \frac{\gamma}{1 - \gamma}.$$

p. 239, Replace:

“... m' and m are the masses of 16O and 18O ...” by

“... m' and m are the masses of 18O and 16O ...”.

(16 \longrightarrow 18).

p. 244, Replace (below Eq. (3.5.58)):

“... ω and ω' are the wavenumbers ...” by

“... ω' and ω are the wavenumbers ...”.

($\omega \longrightarrow \omega'$).

Errata III (not yet included)

The original description of stable oxygen isotope fractionation in the carbonate system (Chapter 3.3.5 and Appendix C.9) followed Usdowski et al. (1991). This analysis is incorrect and should be replaced by the description presented by Zeebe (2007).

p. 72, Replace Eq. (1.5.88) by:

$$\frac{dDIC}{ds} = \left[D_s - D_h A_s A_h^{-1} \right]$$

$$= \frac{4 K_1^* K_2^*}{h^2} + \frac{K_1^*}{h} + \frac{(K_1^*)^2 K_2^*}{h^3}$$

$$+ \frac{K_1^*}{h^2} + \frac{h}{s} \left[1 + \frac{K_w^*}{h^2} + \frac{B_T K_B^*}{(K_B^* + h)^2} \right]$$

$$+ \frac{h}{s} \left(1 + \frac{K_1^* K_2^*}{h^2} + \frac{K_1^*}{h} \right) \left(1 + \frac{K_w^*}{h^2} + \frac{B_T K_B^*}{(K_B^* + h)^2} \right)$$

$$+ \frac{4 K_1^* K_2^*}{h^2} + \frac{K_1^*}{h} + \frac{h}{s} \left[1 + \frac{K_w^*}{h^2} + \frac{B_T K_B^*}{(K_B^* + h)^2} \right].$$
p. 267, Table A.11.1. Replace K_B^* coefficient ($10^3 a_2 = 2.6080$) by -2.6080.

p. 268, Table A.11.2. Replace pK_B^* check value at $P = 300$ bars (8.4746) by 8.4575.

Additions

A platform-independent (PC, MAC, Unix) carbon system program can be found under:

http://www.obs-vlfr.fr/~gattuso/seacarb.php

p. 50 Figure 1.2.16: for further discussion of normalization by salinity compare Friis et al. (2003).

p. 188: Dole effect: the first paper is by Dole (1935).

p. 310 Table E.0.2: Notation (Latin letters)

$h = 1.054 \times 10^{-34}$ J s is Planck’s constant divided by 2π.
References

