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In the summer of 1975, the half removal time of 223Th by settling particles, ¢, was about 11+ 4,29 + 8
and 70 ¢+ 10 days in the shelf surface water, the shelf winter water and the slope surface water of the New
York Bight, respectively. In the fall of 1974, ¢, was about 17 + 1 to 28 + 2 days from the inner shelf to the
outer shelf surface waters and about 70 + 10 days in the slope surface water. A simple box model of the
shelf water in the Middle Atlantic Bight shows that (1) the exchange rate between the shelf and the slope
waters is about 2500 + 800 km3/yr, (2) the mean residence time of the shelf water is only about 132 * 36
days, and (3) the average 226Ra and 228Ra fluxes per unit area of the coastal sediments are about 0.05 dpm
226Ra/cm? yr and 0.37 dpm 228Ra/cm? yr. These rates are consistent with previously reported results. The
implication of these rates to pollutants in the coastal environment is discussed.

1. Introduction

228Th (t,/, = 1.91 years) is continuously produced
by the decay of the dissolved ?®Ra (¢;/, = 5.75 years)
in seawater. The extent of the radioactive disequilib-
rium between 228Th and 228Ra in seawater has been
utilized to estimate the removal rate of 228Th from
surface ocean water by settling particles [1]. It was
found that the removal rate of 228Th from surface
water increases from the open ocean toward the shore,
probably due to the general increase of settling par-
ticles (both organic and inorganic) toward the coastal
environment, and partly to the direct uptake of 228Th
by coastal sediments at the water-sediment interface
[1]. A similar increasing trend of removal rate was
also observed for 234Th using 234Th-238U data [2,3].

In order to predict semi-quantitatively how fast
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many highly reactive pollutants, which may geochem-
ically behave similarly to 223Th, will be removed from
a coastal water once they are introduced, we have un-
dertaken a detailed seasonal study of 228Th-228Ra
radioactive disequilibrium in the New York Bight.

This work presents the results from two seasons,
i.e., the summer of 1975 and fall of 1974, represent-
ing periods of high-density stratification in the water
column. We also present here (see section 4) a simple
box model of the shelf water in the Middle Atlantic
Bight. It illustrates the importance of water exchange
along the shelf-slope boundary in understanding the
overall budgets of radium isotopes and ??®Th in the
shelf water.

The 223Th and 228Ra concentrated fractions from
each water sample (~800 liters) were obtained on
shipboard during the cruises of R/V “Vema” 32-01
(October 18-30, 1974) and R/V “Conrad” 19-01
(July 19—August 3, 1975). The details of the sample
processing procedure and the analytical methods for
the determination of 228Ra and 223Th are given else-
where [1]. In brief, a large volume of water (~800
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liters) is pumped into a nalgene tank. After adding
230Th spike and, through several chemical steps,
thorium and radium isotopes in the water are scav-
enged down by Fe(OH); and BaSO, precipitates,
respectively.

Once in the laboratory, thorium isotopes in the
Fe(OH); fraction are separated, purified and mounted
on a stainless steel disc for & counting. The 22%Th
concentration in the water sample can be calculated
from the 228Th/23%Th ratio obtained from the a
counting, since the amount of 23°Th spike added to
the sample is known. The BaSO, fraction is converted
to a solution (the radium raction) and is rid of 228Th.
As a natural yield tracer for 228Ra, 226Ra in the rad-
ium solution is measured by the standard Rn tech-
nique [1]. The 23°Th spike is added to the radium

solution. After a known period of time (several months),

the daughter products 228Th and >3°Th are milked
and counted. From the above the measurements the
228Ra/?26Ra ratio in the radium solution is obtained.
Since the 226Ra concentration in the water sample is
known independently, the 228Ra concentration in the
water sample can be calculated.

2. Brief description of hydrography in the New York
Bight during the two cruises

The mean advective transport of the shelf water
in the Middle Atlantic Bight (including the New York
Bight) is from north to south along the shore [4]. The
shelf water is eventually entrained in the Gulf Stream
at Cape Hatteras (e.g. [5—8]), but it also mixes with
the slope water either by diffusive mixing or as
“calved parcels” along the length of the shelf [6,9].
The mean residence time of the shelf water in the
Middle Atlantic Bight has been estimated by Beardsley
et al. [4] to be about 0.75 year.

Fig. 1 shows the T-S diagrams of water columns
at stations taken more or less along the Hudson Can-
yon during the summer of 1975 (bottom) and the fall
of 1974 (top). There are at least six identifiable water
types: shelf surface water, shelf winter water (at bot-
tom), slope surface water, top of the slope water,
slope oxygen minimum and deep slope water. During
the winter season, the thermocline disappears and the
shelf and slope surface waters merge into the mixing
line between the shelf winter water and the top of
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Fig. 1. The T-S diagrams of water columns at stations taken

roughly along the Hudson Canyon during October 1974 (top)
and July—August 1975 (bottom).

the slope water [10]. The thickness of the vertically
well-mixéd surface layer (i.e., the shelf and slope sur-
face waters) was only about 10 m in the summer of
1975, but was as deep as 30 m near shore and 50 m
off shore in the fall of 1974.

Since the surface mixed layer is relatively thin in
the summer, temperature is not a good conservative
tracer for delineating the mixing of surface water
masses; for example, the boundary between the shelf-
and the slope-surface waters in the summer is not
clear cut in the T-S diagram (Fig. 1). Fortunately, the
boundary is still identifiable as a front in the surface
salinity contour lines, as shown in Fig. 2 (at S ~
31.5%»). It is also apparent from the salinity contour
lines in Fig. 2 that there were two types of slope sur-
face waters separated roughly by the Hudson Canyon.
At identical salinity, the northern slope surface water
was about 1° to 2°C cooler (see Fig. 5) and higher in
phosphate content (0.1 ~ 0.2 vs. 0.05 umole/l, un-
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Fig. 2. 228Th and 228Ra (within the ovals) concentration (dpm/100 kg) of the unfiltered surface water samples, July-August 1975.

The contour lines are the isohaline:

published data) than the southern one.

In the fall of 1974 the boundary between the shelf-
and slope-surface waters was at a salinity (S) of about
33.6%o (Fig. 1). The hydrological details have been
discussed by Gordon et al. [11].

3. Results and discussion

The 228Ra and 22%Th concentrations of unfiltered
water samples from two cruises are summarized in

Tables 1 and 2 along with other pertinent information.

226R;  as a natural yield tracer for 228Ra analysis, was

estimated by the salinity vs. 22°Ra relationship in the
New York Bight area ([12], and our unpublished
data).

3.1. Summer season

As shown in Fig. 2, the 2?®Ra concentration in the
shelf surface water (§ < 31.6%o) is uniformly high
(~15 * 1 dpm/100 kg) as compared to the slope sur-
face water, indicating that coastal sediments (includ-
ing estuarine and shelf sediments) are the source of
228Ra. On the other hand, 228Th (Fig. 2) and the
22871 /228Ra activity ratio (Fig. 3), are uniformly
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Fig. 3. 228Th/228Ra activity ratio multiplied by 1000 from Fig. 2. Notice the similarity between the contours of 228Th/228Ra (the
corresponding half removal time of 228Th is also given) and salinity (Fig. 2).

low in the shelf surface water, indicating a high
removal rate of 228Th from the shelf surface water.
According to the simple model of Broecker et al. [1],
it is assumed as a first approximation that in a well-
mixed water parcel the production rate of 228Th from
the decay of 228Ra(AR, - VRa) is just balanced by the
decay rate of 228Th(Ay, - N1n) and the removal rate
of 228Th by settling particles (A - Np,), neglecting
mixing effects with other surrounding water parcels.
Thus:

ARa* VRa = Ath* N + ANTh (1a)

or:

ARa = Ath t NATn/ATh (1v)

where Ara, Nra and Ar, (FARa - VRa) are the radio-
active decay constant, the number of atoms and the
activity per unit volume of water for 2*®Ra, respec-
tively; Apn, Non and App (A th - Nn) are the same as
above, but for 228Th; and A, is the first-order removal
rate constant of 228Th by settling particles.

By rearranging equation (1b), one obtains:

A= —-R)R" An



20

where
R =?*%8Th/??8Ra activity ratio .

The removal rate constant A is the fraction
removed per unit time. The other convenient ways of
expressing the removal rate by settling particles are
the “half removal time”, ¢ (=In 2/).), and the
“removal residence time”, 7¢ (=1/A¢). The former can
be visualized as the time span required for the initial
activity in the water column to be reduced to one
half by settling of particles, and the latter as the aver-
age time span that a radionuclide atom remains in the
water column before it is removed by settling par-

41°

A
(31m)

ticles. Throughout this paper we use mainly the ¢,
but one should keep in mind that A, ¢, and 7 refer
to the same process, but expressed in different ways.
The average 228Th/?28Ra activity ratio of 0.016 +
0.006 in the shelf surface water (Fig. 3) gives a half
removal time of 228Th, ., equal to about 11 + 4 days
(or A, =0.063 day™, 7. = 16 days). For comparison,
t. in the slope surface water is about 40 days (north)
and 70 days (south) (Fig. 3) and about 185 days in
the surface layer of the open ocean [1].

All our subsurface samples are characterized by
their 7-S data as being from the shelf winter water
(compare Fig. 1 and crosses in Fig. 5). 22®Ra concen-
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Fig. 4. 228Th and 228Ra (within the ovals) concentration of the unfiltered subsurface water samples (all are the shelf winter water),

July-August 1975. The depth of water samples is in parentheses.



trations in the shelf winter water are quite variable,
ranging from 8 dpm/100 kg north of the Hudson Can-
yon to about 20 dpm/100 kg south of the Hudson
Canyon (Fig. 4). But it is clear from the 2?®Ra vs.
salinity plot of all our data (excluding the few 2**Ra
data with high uncertainty as indicated by parentheses
in Table 1) that all 228Ra data points can be obtained
by the mixing of four end members (Fig. 5, top), i.e.,
shelf surface water (?28Ra ~ 15 dpm/100 kg, S ~
31%x), the northern slope surface water (*2*Ra ~ 7.8
dpm/100 kg, S ~ 33%c), the southern slope surface
water (228Ra ~ 5 dpm/100 kg, S ~ 35.5%o) and the
shelf winter water south of the Hudson Canyon
(3?8Ra ~ 19 dpm/100 kg, S ~ 33%s, the high 2**Ra
concentration here indicates again the source of
228Ra from the shelf sediments).

The 228Th concentration in the shelf winter water
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Fig. 5. Plots of salinity vs. various parameters, July-August
1975. The northern cross section represents the slope water
(S > 31.6%o) north of the Hudson Canyon. The first and
third diagrams do not include the highly uncertain points
(parentheses in Table 1).
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is quite uniform (0.5 + 0.1 dpm/100 kg). The average
2287T1/228R3 activity ratio of 0.04 + 0.01 gives # in
the shelf winter water equal to about 29 £ 8 days.
The longer ¢, in the shelf winter water than in the
shelf surface water is probably due to the lack of
phytoplanktonic uptake of 228Th and/or release of
228Th by oxidation of organic matter in the shelf
winter water.

We have also collected a series of filtered surface
water samples in addition to the unfiltered samples.
The 22®Ra concentration in the filtered and the un-
filtered sample pair agrees very well within our experi-
mental uncerainty. On the other hand the 22*Th con-
centration in the filtered samples appears to be
systematically about 0.1 dpm/100 kg lower than in the
unfiltered counterparts, though the suspended particu-
lates concentration varies greatly from sample to sam-
ple (varying from 12 ug/l to 270 ug/1). We suspect
that the systematic lowering of 0.1 dpm 22*Th/100 kg
was caused by the adsorption of >*®Th in our filtra-
tion system. The real 228Th contribution from the
suspended particles should be less than 0.1 dpm/100
kg. A strong acid leachate of suspended particles col-
lected by centrifugation in the inner shelf of New
York Bight during the winter of 1976 gave 2**Th =
1.1 £ 0.1 dpm/g and 228Th/?32Th = 2.0  0.1. There-
fore, the suspended particulates concentration of less
than 0.027 g/100 1 in the surface water (mostly less
than 0.010 g/1001 [13]) will contribute no more than
0.06 dpm 222Th or 0.03 dpm 232Th/100 L. Our mea-
sured 232 Th concentration in unfiltered surface waters
is usually less than 0.04 dpm/100 1 and the most
likely value is 0.02 + 0.02 dpm/100 1, in good agree-
ment with our prediction.

The suspended particulate concentration in our
inner shelf winter water samples is about 0.04 ~ 0.03
g/1001 and in the outer shelf samples about 0.02 ~
0.005 g/1001 [13]. Therefore the 228Th contribution
from suspended particulates in the near shore zone is
usually not greater than 0.09 dpm/100 1. Additional
measurement of the 228Th content of suspended par-
ticulate matter will be performed in the future.

3.2. Fall season
The 228Ra concentration of the surface waters

increases steadily from the slope (6.5 £ 0.5 dpm/100
kg) to the inner shelf (14.4 dpm/100 kg) while the
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228Th concentration and >?8Th/??8Ra activity ratio
show the reverse of this trend (Figs. 6 and 7). We cal-
culate ¢ in the shelf surface water (S < 33.6%o) to be
about 28 * 2 days in the outer shelf, and 17 + 1 days
in the inner shelf (Fig. 7). In the slope surface water
t. is again about 70 days (Fig. 7). ‘

Of the shelf surface water data (Fig. 8), the high
228Ra concentration of the inner shelf waters and the
non-linearity in the 228Ra vs. salinity plot again indi-
cate that the 2*8Ra is supplied from the coastal sedi-
ments.

41°

40°

4. A box model of the shelf water in the Middle
Atlantic Bight

One can regard the shelf water within the 100-m
isobath and between Cape Cod and Norfolk as a big
box. In order to keep the mass balance of water and
salt within the box at a steady state, the sum of input
fluxes should be equal to that of output fluxes, i.e.:

Or*+01=0,+0y 2

for water balance ,

w/&‘ﬂ m S

39° -

¢ 6.5
¢ 40
/ \oy »{\0
1 | | ] 1 1 | /'r ] ] | | ] 1 i | 11 1 1 1

Fig. 6. 228Th and 228Ra (in ovals) concentration of the unfiltered surface water samples, October 1974,
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and:
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Fig. 7. 228Th/228Ra activity ratio multiplied by 1000 from Fig. 6.

3)

for salt balance ,

where:

QR = the total river discharge along the coast to the

Qv =

O

Qx

box ~ 150 km3/yr [9] to 157 km3/yr [14];

the excess of evaporation over precipitation on
the box ~ 0.2 Qg [9] or near zero [15];

the along shore mean influx of shelf water within
the 100-m isobath through a transect south of
Cape Cod ~ 7000 + 1800 km?3/yr [4];

the along shore mean outflux of shelf water

Ox=

.

Ssh=

within the 100-m isobath through a transect east

of Norfolk;

the exchange rate of shelf and slope waters across
the shelf-slope boundary by horizontal eddy dif-

fusion normal to the coast (including calved par-

cels);

= the mean salinity of river water ~0.1%so;

the annual mean salinity of Q; ~ 32.96 * 0.02%o.
(estimated from fig. 2 of Ketchum and Keen [9]
down to 50 fathoms);

the annual mean salinity of @, ~ 33.19 + 0.02%0
[9L;

the annual mean salinity of shelf water within
the box ~32.93 + 0.02%» [9];
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Fig. 8. Plots of salinity vs. various parameters, October 1974.
Two high-temperature points stick out in the 7-S diagram
(bottom) represent the most southern stations of the shelf
water (Fig. 6). The dashed lines in various diagrams are drawn
to show the difference in slopes between the shelf and slope
waters.

Ss1 = representative average salinity of the slope surface
water ~35.2%. [15].

By solving equations (2) and (3) with the values given
above, one obtains:

_ Q182 — 51) +Or(S2 —SR) — Oy~ S
(Ssl - Ssh)
= 2500 + 800 km3/yr

The uncertainty here is largely due to the uncertainty
in @1, Qy and Qg but the uncertainty in @, is not so
critical in estimating Q, as long as (S, — Sy) is small.
Our model is essentially similar to Wright’s model [15]
except that he implicitly assumed S, = §; = Sgp, and
(Q2 — Q1) = 300 km?/yr. The latter assumption is not
correct, as has recently been pointed out by Kupfer-
man and Garfield [8].

Ox

The mean residence time of shelf water, 7, in the
box is defined as:

.= Vsn - Vsh
v Ql +QR+Qx Q2 +Qx+Qv
=0.36 £ 0.10 year
=132 + 36 days

@

(or ¢, = the half replacement time of water in
the box

=In 2 X 7, =91 days

Aw = the fraction of water in the box
replaced per unit time = 1/7,, = 0.0076
day™)

where Vg, = 3500 km?® = the volume of the box, esti-
mated from table 1 of Ketchum and Keen [9]:

Beardsley et al. [4] give 7, = 0.75 year, using Vg, =
6000 km>. We consider this to be an over-estimate,
even though the volume which they use includes the
entire shelf area between Nantucket Shoals and Cape
Hatteras. Moreover, they neglected the important Q,
term in equation (4).

For a mass balance of radium isotopes within the
shelf water box, the following relationship should hold
at a steady state:

QR'CR+Q1 -Gy +Qx'Csl+I

=Q2'C2+Qx'csh+>\'csh'Vsh (5)

where C; = mean radium concentration in Q; or a
water mass V;; and I = total radium influx from the
coastal sediments under the box. For >?*Ra, Cg ~ 1
dpm/1001and Cq ~ 9 dpm/1001 [12]. Assuming
Cy ~ C, ~ Cy, ~ 10 dpm/100 1 (New York Bight
value [12]), we obtain from equation (5):

I=(36+8)X 10" dpm 2?*Ra/yr .

Since the bottom area of our box is about 730 X
10'2 cm? [9], the ?®Ra flux per unit area of the
coastal sediments is about 0.05 + 0.01 dpm/cm? yr
or (2.3 +0.5) X 107'* g/cm? yr, which is comparable
to the estimate of Li et al. [16] of ~4.6 X 1074 g/cm?
yr through the mass balance of **Ra in the oceans.
For 228Ra, Cg ~ 1.4 £ 0.2 dpm/100 1 (unpublished
data from Hudson River); and Cg ~ 6 £ 0.5 dpm/
1001 (present work). Again assuming C; ~ C, ~ Cy, ~



14 £ 1 dpm/100 1 (New York Bight data from the
present work), we obtain:

I=(270 £ 40) X 10'? dpm *?®Ra/yr
or 0.37 £ 0.06 dpm 2?®Ra/cm? yr .

According to our unpublished Atlantic GEOSECS
228Ra data, the total 228Ra in the surface layer of the
Atlantic Ocean is about (30 + 10) X 10'® dpm. Since
the shelf area within the 200-m isobath in the Atlan-
tic Ocean is about 14 X 10'® cm? [17], the average
228Ra flux per unit area of the coastal sediment
should be:

0.693 _ 30 X 10'¢ dpm
575yr = 14X 10'¢ cm?

=0.26 + 0.09 dpm *?*®Ra/cm?® yr ,

again in general agreement with our box model calcula-

tions.

5. Conclusions

It has been shown that minor alkali and alkali-
earth elements (e.g., 13’Cs [18], Ba [19,20] and Ra
[12]) are desorbed from river-borne sediments by ion
exchange as soon as the river sediments contact with
the high ionic strength waters of estuaries and the
continent shelf. Therefore, the newly deposited estu-
arine and shelf sediments often become the sources
of minor alkaline and alkaline-earth elements instead
of the sinks. As shown in this work, the shelf sedi-
ments are the sources of radium isotopes for the
coastal and open ocean waters.

If non-reactive pollutants (alkaline and alkaline-
earth elements or halides) which are soluble in sea-
water and do not react significantly with any solid
phases are introduced into the shelf water of the
Middle Atlantic Bight, they will on average reside in
the shelf water for about 132 + 36 days (i.e., for the
mean residence time of the shelf water). About 3/4
(Q2/[Q2 + Qx]) of the pollutant will be entrained into
the landward-side of the Gulf Stream and the other
1/4(Q,/[02 + Oy]) will be dissipated into the slope
water by the water exchange processes through the
shelf-slope water boundary.

If any highly reactive pollutant (e.g., heavy metals,
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Pu, DDT, PCB, etc.) which adheres to particles as
rapidly as 228Th is introduced into the shelf water
during a summer or fall season, the mean residence
time of that pollutant in the shelf water 73, would be
(neglecting the spontaneous decomposition or decay
of the pollutant):

1 1
A tAy 1ty 1ty In2

where A’ and ¢’ are the removal rate constant and
the half removal time of the reactive pollutant in the
shelf water. T

For ¢ = 11 days (i.e., equal to the half removal
time of 228Th in the shelf surface water during the
summer) and ¢, = 91 days (the half replacement time
of the shelf water), 7 is about 14 days. About 90%
G/ + Ay)] X 100%) of the pollutant will be
deposited on the continental shelf sediments (within
the 100-m isobath), and 10% will be exported to the
Gulf Stream and the slope water.

For ¢ = 29 days (i.e., equal to the half removal
time of 228Th in the shelf winter water during the
summer) and ¢, = 91 days, 7y is about 32 days. About
76% of the pollutant will end up on the shelf sedi-
ments and the rest (24%) will be transported to the
Gulif Stream and the slope water.

There is no reliable estimate of the mean residence
time of the slope surface water. If the reactive pollu-
tant is introduced into the slope surface water, we still
can estimate a maximum mean residence time of the
pollutant in the slope surface water by ignoring the
A term in equation (6), i.e.:

(6

Tz

7y <1/A¢ =100 days for ¢ = 70 days ,

which is still smaller than in the surface open ocean
(~270 days [1]).
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