THE FLUX OF ²²⁶Ra FROM ESTUARINE AND CONTINENTAL SHELF SEDIMENTS

YUAN-HUI LI, GUY MATHIEU, PIERRE BISCAYE and H. JAMES SIMPSON

Lamont-Doherty Geological Observatory of Columbia University, Palisades, N.Y. 10964 (USA)

Received June 13, 1977
Revised version received August 18, 1977

A pronounced desorption phenomenon of ²²⁶Ra from sediment was observed in the Hudson River estuary. Mass balance calculations indicate that the desorption of ²²⁶Ra from the river-borne sediment in estuarine environment is an important source of ²²⁶Ra to the oceans.

1. Introduction

In order to explain the observed high concentration of both ²²⁶Ra and ²²⁸Ra in coastal waters as compared to either surface ocean water or river waters, Blanchard and Oakes [1] and Moore [2] proposed that ²²⁶Ra and ²²⁸Ra diffuse out of coastal sediments to the overlying coastal waters at a rate sufficient to significantly increase the water column concentration. Based on the geochemical similarity between barium and radium in the oceans and their mass balance in a two-box model of oceans (i.e., warm surface ocean and cold deep ocean), Li et al. [3] also concluded that, besides deep-sea sediments. coastal sediments (estuarine and continental shelf sediments) are a significant 226Ra source for the oceans. They predicted a total 226Ra flux of about 17 × 10³ g ²²⁶Ra/yr from the coastal sediments to the warm surface ocean as comparing to a total net flux of about 46 × 10³ g ²²⁶Ra/yr from the deep sea sediments to the cold deep ocean [3].

To estimate the flux of ²²⁶Ra from the coastal sediments, we collected a series of surface seawater samples (~20 liters) off the coastal area of the eastern United States during May 8–17, 1976, and another series of filtered water samples (~20 liters) from the

Lamont-Doherty Geological Observatory of Columbia University Contribution Number 2567.

Hudson estuary during October 27–28, 1976 (Fig. 1). Analysis of ²²⁶Ra was made by extraction and scintillation counting of ²²²Rn in radioactive equilibrium

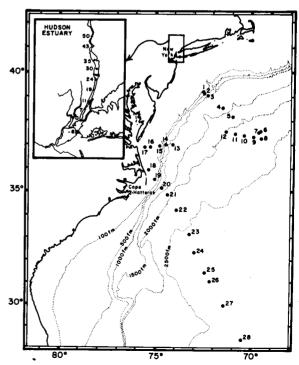


Fig. 1. The sample localities in the coastal area of eastern U.S.A. and in the Hudson river.

with ²²⁶Ra [4]. Minor modifications are that ²²²Rn is absorbed on a charcoal trap instead of a liquid nitrogen trap, and is de-emanated and transferred into a counting chamber made of quartz material instead of plexy glass to improve the reproducibility.

2. Results and discussion

The analytical results are summarized in Tables 1 and 2 and plotted in Fig. 2.

From Fig. 2 it is clear that all data points fall above a mixing line connecting the Hudson fresh water (S < 0.2%, 226 Ra ≈ 1 dpm/100 l) and the surface ocean water (S = 36.7%, 226 Ra = 8.0 dpm/100 l =

7.4 dpm/100 kg, taken from Table 1) indicating a local supply of excess ²²⁶Ra. The excess ²²⁶Ra has apparently been derived from Hudson estaurine (S >0.4%, i.e., mile point less than ~ 20 , Table 2), and continental shelf sediments. It appears that whenever sediments on the estuary floor or the suspended particles in the water are in contact with water of high ionic strength, exchangeable radium on the particles will be replaced by major cations of the contacting solution. Similar desorption phenomena were also observed in estuarine environ for ¹³⁷Cs [5], Ba [6], Zn [7], 65Zn and 54Mn [8] and Ag, Co and Ni [9]. In the fresh-water section of the Hudson River, the concentration of ²²⁶Ra is correlated to that of silica (Table 2). Probably the blooming fresh-water diatoms take up both silica and 226 Ra from the water. The cor-

TABLE 1

226 Ra concentration of the surface coastal waters off the eastern U.S.A. (R/V "Conrad cruise" 20-01, May 8-17, 1976)

Sample No.	Date (May, 1976)	Lat. N.	Long. W	Temperature (°C)	Salinity (‰)	²²⁶ Ra * (dpm/100 l)
1	8	39°14′	72°32′	9.6	32.509	10.5
2	8	39°12′	72°29′	9.5	32.768	9.8
2 3	8	39°05′	72°19′	10.7	33.309	9.8
4	8	38°33′	71°31′	15.6	35.339	9.3
5	9	38°12′	70°60′	15.8	35.519	9.2
6	9	37°35′	69°36′	19.2	35.495	9.4
7	10	37°35′	69°39′	22.6	35.267	9.1
8	10	37° 21′	69°33′	24.2	36.049	8.3
9	10	37°21′	69°56′	24.5	36.087	9.3
10	11	37°25′	70°25′	24.2	36.084	8.6
11	11	37° 29′	70°51′	24.7	36.031	8.8
12	11	37° 35′	71°22′	17.9	34.544	9.8
13	12	37°02′	74°09′	14.9	34.440	9.8
14	12	37°03′	74°30′	14.1	33.796	9.8
15	12	37° 00′	74°47′	14.6	32.445	9.7
16	12	36°56′	75°17′	15.2	31.262	8.3
17	12	36°55′	75°36′	15.8	29.216	7.9
18	14	35°56′	75°23′	20.1	34.855	9.4
19	14	35°35′	75°03′	23.0	35.655	9.8
20	14	35°10′	74°40′	24.4	35.948	8.8
21	14	34°51′	74° 22′	22.3	36.165	8.2
22	14	34°13′	73°56′	23.4	36.208	8.8
23	15	33°07′	73°15′	21.7	36.420	8.1
24	15	32°21′	72°57′	_	36.540	8.3
25	15	31°25′	72°26′	23.0	36.570	8.0
26	15	31°02′	72°10′	23.3	36.533	8.7
27	16	29°54′	71°27′	23.8	36.702	8.1
28	17	28°23′	70°31′	24.4	36.761	7.9

^{*} The analytical reproducibility is about 4%.

TABLE 2

226 Ra concentration of the Hudson estuary waters (October 27-28, 1976)

Sample No. mile point *	Date (October, 1976)	Depth (m)	Temperature (°C)	Salinity (‰)	SiO ₂ (µm/l)	²²⁶ Ra ** (dpm/100 l)
50s	27	0	9.8	<0.2	68	2.3
50b	27	9	9.8	< 0.2	69	2.9
43s	27	0	11.0	< 0.2	52	2.4
43b	27	9	11.1	< 0.2	53	2.5
35s	27	0	10.8	< 0.2	24	1.5
35b	27	8	10.7	<0.2	24	1.3
30s	27	0	10.9	< 0.2	14	1.4
30b	27	10	11.0	< 0.2	_	1.9
24s	28	0	10.4	< 0.2	17	1.3
24b	28	14	10.7	< 0.2	19	0.9
19s	28	0	10.3	0.4	14	1.2
19b	28	10	10.8	2.8	15	4.3
11s	28	0	10.5	3.8	17	5.4
11b	28	16	11.7	13.7	20	8.1
7s	28	0	11.0	4.8	15	4.0
7b	28	16	11.5	21.1	22	10.7
0s	28	0	11.0	12.5	20	7.7
0b	28	16	10.5	25,4	17	9.8
-6s	28	0	10.8	18.3	24	8.5
-6b	28	21 -	9.9	28.6	15	10.5

^{*} s = surface; b = about 1 m above bottom.

relation plot of Si vs. 226 Ra in the fresh-water section gives a slope of about 0.46×10^{-11} g Ra/g Si as compared to a slope of 1.2×10^{-11} g Ra/g Si in the Antarctic Ocean south of the Convergence [10]. The low silica concentration in the Hudson estuary indicates that 226 Ra input from the dissolution of silica is negligible.

The daily water flow rate of the Hudson River at the last gauging station (Green Island, mile point 154) during October $12 \sim 28$, 1976, though varied from 410 m³/s to 1170 m³/s but their mean is about 730 m³/s with a standard deviation of only ± 60 m³/s (U.S. Geological Survey preliminary report). Therefore, one can expect a semi-steady state distribution of salinity along the Hudson estuary at the end of this period. On the other hand, the estuarine circulation of the Hudson, driven by the horizontal density gradient, is characterized by a dense salty water flowing upstream at depth under a less dense surface water flowing seaward [11,12]. With the above two conditions in mind, one can calculate the flux of 226 Ra from sediments between mile points 24 and $^{-6}$

(Fig. 3) as follows:

 $Q_{\rm U} = Q_{\rm F} + Q_{\rm L}$ for water mass balance

 $Q_{\rm U} \cdot S_{\rm U} = Q_{\rm F} \cdot S_{\rm F} + Q_{\rm L} \cdot S_{\rm L}$ for salt mass balance and

$$Q_{\mathrm{U}}[\mathrm{Ra}]_{\mathrm{U}} = Q_{\mathrm{F}} \cdot [\mathrm{Ra}]_{\mathrm{F}} + Q_{\mathrm{L}}[\mathrm{Ra}]_{\mathrm{L}} + I_{\mathrm{Ra}}$$

for ²²⁶Ra mass balance (radioactive decay term is neglected)

where Q = water flow rate, S = salinity, [Ra] = 226 Ra, and I_{Ra} = total 226 Ra flux from sediments between mile points 24 and -6. The subscripts F, U, L represent river inflow, upper non-tidal net outflow, and lower non-tidal net inflow of bay water respectively.

By solving the above equations, one obtains:

$$I_{\text{Ra}} = Q_{\text{F}} \left[\frac{S_{\text{L}} - S_{\text{F}}}{S_{\text{L}} - S_{\text{U}}} \left[\text{Ra} \right]_{\text{U}} - \left[\text{Ra} \right]_{\text{F}} - \frac{S_{\text{U}} - S_{\text{F}}}{S_{\text{L}} - S_{\text{U}}} \left[\text{Ra} \right]_{\text{L}} \right]$$

Since at mile point -6:

$$S_{\rm U} = 18.3\%$$
 [Ra]_U = 9.3 dpm/1001

^{**} The analytical uncertainty is about 10%.

$$S_{\rm L} = 28.6\%$$
 [Ra]_L = 10.7 dpm/1001

([Ra]_U and [Ra]_L values were read off from the best fit curve in Fig. 2) and at mile point 24:

$$S_{\rm F} = 0.2\%o$$
 [Ra]_F = 1.1 dpm/1001

$$Q_{\rm F} = 1140 \pm 90 \,\mathrm{m}^3/\mathrm{s}$$

(the mean of daily flow rate at Green Island during October 12-28, 1976, multiplied by a factor of 1.56 to include the water contribution of tributaries downstream of Green Island [13]), therefore:

$$I_{Ra} = 2.1 \times 10^{12} \text{ dpm}^{226} \text{Ra/yr}$$

= 0.97 g ²²⁶Ra/yr (where 1 dpm ²²⁶Ra = 0.461 × 10⁻¹² g ²²⁶Ra)

The area of the sediments of Hudson between mile points 24 and -6 is about 87 km²; thus, the average ²²⁶Ra flux from a unit area of Hudson estuarine sedi-

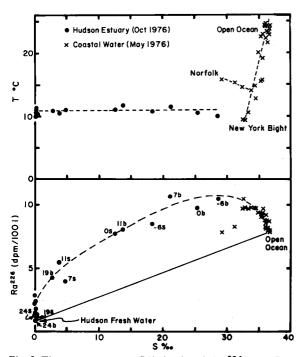


Fig. 2. The temperature vs. S % (top) and the 226 Ra vs. S % (bottom) plots of water samples from the Hudson river and the coastal area of eastern U.S.A. The mile point and the depth (s = surface, b = bottom) of the Hudson 226 Ra samples between mile points 24 and -6, are indicated in the bottom figure.

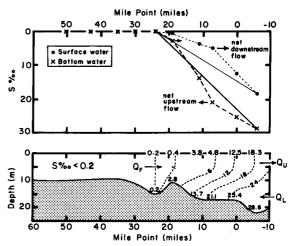


Fig. 3. The mile point vs. S % (top) of the Hudson river samples, and the salinity distribution along the Hudson estuary (bottom).

ments is about 110×10^{-14} g 226 Ra cm $^{-2}$ yr $^{-1}$, which is much higher than the flux from deep-sea sediments, i.e., about 1.7×10^{-14} g cm⁻² yr⁻¹ [3]. With such a high radium flux, we expect a big deficiency of ²²⁶Ra with respect to its parent ²³⁰Th in the sediments. Indeed, a strong acid (6N HCl + 6N HNO₃) leachate of the surface sediment from the New York Harbor gives 230 Th = 1.2 ± 0.1 dpm per gram of dry sediment with 226 Ra/ 230 Th activity ratio of 0.19 \pm 0.02 (our unpublished data), i.e., about 1 dpm ²²⁶Ra deficiency per gram of the Harbor sediment. Thomson et al. [14] also found 230 Th $\approx 1.5 \pm 0.2$ dpm/g and 226 Ra/ 230 Th ≈ 0.35 from the leachates of a Long Island Sound sediment core (0 to 18 cm). Another interesting observation is that an unfiltered surface water at mile point 35 (S < 0.2%), after being acidified to pH ~ 2 , gives ²²⁶Ra concentration of 5.1 dpm ²²⁶Ra/1001 as compared to 1.5 dpm ²²⁶Ra/100 l of a filtered sample. Since the concentration of suspended particles is about 2.0 g/100 l, one gram of dry suspended particles gives off about 1.8 dpm ²²⁶Ra. On the other hand, at mile point 11 (S = 3.8%), the concentration of ²²⁶Ra for filtered and unfiltered surface water (3.0 g suspended matters/100 l) is respectively 5.4 and 6.4 dpm/100 l. Therefore, the suspended particles give off at most only about 0.3 dpm ²²⁶Ra/g, indicating a big loss (≈1.5 dpm ²²⁶Ra/g) of ²²⁶Ra from suspended particles by desorption in the Hudson estuarine environment.

The sedimentation rate in the New York Harbor is about 5 g cm⁻² yr⁻¹ and the total area of the New York Harbor is about 30 km² [15]. Therefore, the total sediment deposited in the Harbor annually is about 1.5×10^{12} g/yr, which should be close to the total sediments that have passed through the Hudson estuary every year since most of the sediments from the Hudson River have been deposited in the New York Harbor [15]. If the deficiency of ²²⁶Ra with respect to ²³⁰Th in the Harbor sediments is due to the desorption of ²²⁶ Ra in the estuarine environment, then from the total sedimentation rate of the harbor one can predict a desorption rate of at least about 1.5×10^{12} dpm 226 Ra/yr in the Hudson estuary, which is comparable to our model calculation (i.e., $I_{Ra} = 2.1 \times 10^{12} \text{ dpm}^{226} \text{Ra/yr}$.

The worldwide estimate of suspended sediment carried to the oceans by the rivers ranges from 13×10^{14} to 33×10^{14} g/yr, as summarized by Garrels and Mackenzie [16]. If the radium deficiency of 1 dpm 226 Ra/g from the New York Harbor is assumed to be typical of all other estuaries, the total 226 Ra flux from the estuaries by desorption would be about 13×10^{14} to 33×10^{14} dpm 226 Ra/yr or 6×10^3 to 15×10^3 g 226 Ra/yr, which is again comparable to the total flux of 17×10^3 g 226 Ra/yr from the coastal sediments as estimated by Li et al. [3].

Of course, our calculations involve a lot of assumptions and uncertainties, but they indicate, at least, that the amount of ²²⁶Ra desorbed from the riverborne sediments in the estuarine environment are a significant source of ²²⁶Ra to the surface ocean.

Acknowledgements

Seawater samples were kindly taken by Tom Aitken on the R/V "Conrad" cruise 20-01. Bruce Deck provided silicate and Curtis Olsen suspended matter data. Many thanks are due to Drs. W.S. Broecker, K. Cochran, A. Kaufman, T. Takahashi and K.K. Turekian for their helpful suggestions and criticisms.

The work is supported by ERDA contract No. EY 76-S-02-2185 and ERDA contract No. R 803-113.

References

- 1 R.L. Blanchard and D. Oakes, Relationships between uranium and radium in coastal marine shells and their environment, J. Geophys. Res. 70 (1965) 2911-2921.
- 2 W.S. Moore, The measurement of ²²⁸Ra and ²²⁸Th in seawater, J. Geophys. Res. 74 (1969) 694-704.
- 3 Y.H. Li, T.L. Ku, G.G. Mathieu and K. Wolgemuth, Barium in the Antarctic Ocean and implications regarding the marine geochemistry of Ba and ²²⁶Ra, Earth Planet. Sci. Lett. 19 (1973) 352-358.
- 4 W.S. Broecker, An application of natural radon to problems in ocean circulation, in: Symposium on Diffusion in Oceans and Fresh Waters, T. Ichiye, ed. (Lamont Geological Observatory, Palisades, N.Y., 1965) 116-145.
- 5 S.M. Jinks and M.E. Wrenn, Radio cesium transport in the Hudson River estuary, in: environmental Toxicity of Aquatic Radionuclides. Models Mechanisms, M.W. Miller and J.N. Stannard, eds. (Ann Arbor Science, Ann Arbor, Mich., 1975) 207-227.
- 6 J.S. Hanor and L.H. Chan, Non-conservative behavior of barium during mixing of Mississippi River and Gulf of Mexico waters. Earth Planet. Sci. Lett. 37 (1977) in press.
- B.N. Troup and O.P. Bricker, Processes affecting the transport of materials from continents to oceans, in:
 Marine Chemistry in the Coastal Environment, T.M.
 Church, ed., Am. Chem. Soc. Symp. Ser. 18 (1975) 133-151.
- 8 D.W. Evans and N.H. Cutshall, Effects of ocean water on the soluble-suspended distribution of Columbia River radionuclides, in: Radioactive Contamination of the Marine Environment (International Atomic Energy Agency, Vienna, 1973) 125-140.
- 9 K.K. Turekian, Rivers, tributaries and estuaries, in: Impingement of Man on the Oceans, D.W. Hood, ed. (John Wiley and Sons, New York, N.Y., 9-73.
- 10 T.L. Ku and M.C. Lin, ²²⁶Ra distribution in the Antarctic Ocean, Earth Planet. Sci. Lett. 32 (1976) 236–248.
- 11 H.B. Stewart, Upstream bottom currents in New York Harbor, Science 127 (1958) 1113-1114.
- 12 A.F. Kao, A study of the current structure in the Sandy Hook-Rockaway Point transect, MS Res. Paper, Stony Brook Marine Sci., Res. Center, State Univ. of New York (1975) unpublished.
- 13 H.J. Simpson and D.E. Hammond, Application of onedimensional models to the Hudson river estuary (in press).
- 14 J. Thomson, K.K. Turekian and R.J. McCaffrey, The accumulation of metals in and release from sediments of bong Island Sound, Estuarine Res. 1 (1975) 28-43.
- 15 H.J. Simpson, C.R. Olsen, R.M. Trier and S.C. Williams, Man-made radionuclides and sedimentation in the Hudson River estuary, Science 194 (1976) 179-183.
- 16 R.M. Garrels and F.T. Mackenzie, Evolution of Sedimentary Rocks (Norton and Co., 1971) 397 pp.