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Laboratory experiments on barotropic vortices in a rotating fluid revealed that the 
instability behaviour of cyclonic and anticyclonic vortices is remarkably different. 
Depending on its initial vorticity distribution, the cyclonic vortex has in a number 
of experiments been observed to be unstable to wavenumber-2 perturbations, 
leading to  the gradual formation of a stable tripolar vortex structure. This tripole 
consists of an elongated cyclonic core vortex adjoined by two anticyclonic satellite 
vortices. 

In  contrast, the anticyclonic vortex shows a rather explosive instability behaviour, 
in the sense that it is observed to immediately split up into two dipoles. Under 
somewhat different circumstances the higher-order mode-3 instability is observed, in 
which the anticyclonic core has a triangular shape, with three smaller cyclonic 
satellite vortices a t  its sides. 

A modified version of Rayleigh’s instability criterion offers a qualitative 
explanation for this apparent difference between unstable cyclonic and anticyclonic 
vortices. 

1. Introduction 
The occurrence of large-scale eddies is a well-known feature of the world’s oceans, 

and observations by satellites have provided essential information about their 
formation, their lifetime, and their spatial distribution. Ocean eddies, or vortices, are 
generated in various ways, for instance by separation from meandering currents 
(e.g. the Gulf Stream or the Algulhas Current) or by separation from unstable 
coastal currents (e.g. the Norwegian Coastal Current). An extensive collection of 
examples of oceanic eddies can be found in Robinson (1983). It is obvious from their 
large dimensions (10 to 100 km, typically) and their relatively long lifetime - in some 
cases a couple of years - that vortices play an important role in the transport of 
properties such as heat, salt and biochemical components. For this reason 
considerable effort is being put in studying the dynamics of large-scale vortices. 
Although the approach to  the problem is mainly theoretical, i.e. by performing 
numerical simulations and by applying analytical techniques, the dynamics of 
vortices in a rotating fluid system has also been investigated experimentally. An 
important question concerns the stability of vortices, and this aspect has been 
studied in the laboratory by Saunders (1973) and Griffiths & Linden (1981) for the 
case of baroclinic two-layer vortices. For some reason the behaviour of isolated 
barotropic vortices in a rotating fluid has received much less attention, as far as we 
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are aware. The present authors have carried out experiments on barotropic vortices 
in a rotating fluid, and this work has revealed a number of interesting properties not 
observed in the baroclinic cases. Part of the work was concentrated on the behaviour 
of stable barotropic vortices, i.e. vortices that remained circularly symmetric 
throughout their decay. It was found that a combination of two effects plays a 
crucial role in the dynamics of the decay process, viz. the action of the bottom 
Ekman layer and the deformability of the free upper surface. Results of this 
experimental and theoretical work will be published separately (Kloosterziel & van 
Heijst 1990). 

Along with the study of stable barotropic vortices, experiments were performed in 
which the behaviour of their unstable counterparts was examined. Under certain 
conditions the unstable cyclonic vortex showed a gradual transition to a stable 
tripolar vortex structure, a phenomenon already described by van Heijst & 
Kloosterziel (1989) and in more detail by Kloosterziel & van Heijst (1989) and by van 
Heijst, Kloosterziel & Williams (1991). In dramatic contrast to this tripole formation, 
the unstable anticyclonic vortex is generally observed to split up, often into two 
dipoles that move away from the original vortex centre. Although the details of this 
remarkable difference in stability behaviour are not yet well understood, i t  was found 
that an extended version of Rayleigh’s instability criterion (for vortex flow in a 
rotating fluid) agrees, in a qualitative sense, with the laboratory observations. 

In a number of experiments it was observed that the anticyclonic vortex was 
unstable to a wavenumber-3 perturbation, giving rise to  a vortex structure 
consisting of a triangular anticyclonic core with three smaller cyclonic satellite 
vortices beside it. This structure appeared to be unstable, however, and broke up into 
two vortex dipoles. 

Preceded by a description of the experimental set-up (52), these observations are 
described in $ 3  of this paper. The instability is considered in $4, and criteria for 
instability of cyclonic and anticyclonic vortices are derived from a modified version 
of Rayleigh’s (circulation) theorem. 

2. Laboratory arrangement 
I n  order to study the dynamics of barotropic vortices in a rotating fluid, 

laboratory experiments have been conducted in which vortices were generated by 
using a few essentially different techniques. A convenient way of creating vortices is 
by applying the so-called ‘collapse technique’, the basic set-up for which is shown in 
figure 1 :  the rotating tank is filled with a homogeneous fluid, and a bottomless 
cylinder is placed concentrically in the tank, with the fluid inside the inner cylinder 
at a level differing from that outside it. When the inner cylinder is withdrawn 
vertically, a gravity-driven flow will arise in radial direction. This radial motion is 
deflected by the Coriolis force, such that after a period of typically n/52 (52 being the 
angular velocity of the turntable) an equilibrium state is reached in which the flow 
is purely azimuthal. In this state the azimuthal flow is governed by a balance 
between radial forces, viz. the centrifugal force, the Coriolis force, and the radial 
pressure-gradient force. This balance is usually referred to as ‘gradient flow ’ (see 
Holton 1979). In particular when the difference in level AH is of the same order of 
magnitude as the average water depth, lifting of the cylinder usually results in a 
vigorous turbulent flow in the centre of the tank. Although this flow is initially three- 
dimensional, visibly involving vertical motions, after typically 2-3 rotation periods 
the fluid motion is observed to become nearly two-dimensional, taking the 
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appearance of a horizontal swirl flow around the axis. As can be understood from 
conservation of angular momentum, cyclonic vortices are created when the fluid level 
inside the inner cylinder is lower than outside, whereas a higher central fluid level in 
principle should result in an anticyclonic flow. 

In a number of additional experiments cyclonic vortices were created in an 
alternative way, by locally stirring the fluid with a thin rod. This could be done most 
conveniently by briefly stirring the fluid confined in the central bottomless cylinder, 
which - after allowing the stirring-induced motion to become organized in a purely 
azimuthal vortex flow ~ was lifted vertically. In this way both cyclonic and 
anticyclonic vortices were produced. 

The experiments described in the present paper were performed in a cylindrical 
Perspex tank, 92.5 cm in diameter and 30 cm deep, placed on top of a 1 m diameter 
rotating table (see figure 1). The working depth of the tank (measured at, rest) was 
varied between 5 cm and 25 em. Two different inner cylinders were used, with 
29.0 cm and 11 .O cm internal diameters 2R,, and the Coriolis parameter f = 2Q (in 
rad s-l) was varied in the range 0.87 s-l to 1.98 s-'. The flows were visualized by 
addition of tracer particles floating on the fluid surface, and by adding dye. Velocity 
measurements werc pcrformed by means of streak photography of the tracer 
particles; for this purpose a remotely controlled photo camera was mounted in the 
rotating frame at some distance above the fluid surface. Velocities were calculated by 
measuring the lengths of the streaks on the photographs. Qualitative information 
about the flow below the surface was obtained by dropping dye-producing crystals 
in the tank and observing the subsequent distortion of their dye trails. 

3. Observations of unstable vortices 
Before describing the instability behaviour of vortices as observed in the 

laboratory experiments, i t  is necessary to make some remarks about the general 
structure of the initially circularly symmetric, monopolar vortices (we use the term 
monopolar here to mean that the vortex consists of a single set of nested closed 
streamlines and not, as some authors do, that the vorticity is one-signed). The 
velocity field of the initial vortex and its subsequent evolution can be reconstructed 
quantitatively from the streak photographs by measuring the lengths of the streaks, 
and dividing these by the exposure time. For a typical axisymmetric cyclonic vortex 
the measured azimuthal velocity v is plotted in figure 2 ( a )  as a function of the radius 
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FIGURE 2. (a)  The radial distribution of the azimuthal velocity of a typical cyclonic, barotropic 
vortex. Measured velocities are indicated with black dots while the solid line is a fourth-order 
polynomial. ( b )  The corresponding radial vorticity distribution, derived from the polynomial 
approximation of the velocity field. 

r ,  as measured from the vortex centre. The experimental data are shown by dots, and 
the solid line is a fourth-order polynomial that has been fitted by means of a least- 
squares approximation. The radial distribution of the relative vorticity 

I d  
r dr 

w ( r )  = - - (rv)  

is then easily calculated by using the polynomial fit as a representation of v(r) .  Figure 
2 (b )  shows the vorticity profile associated with the experimental data of figure 2 (a).  
Obviously, the vortex has a core of positive relative vorticity, which is surrounded 
by a ring of negative relative vorticity. It was found in the experiments that this 
vorticity distribution depends to some degree on the generation technique applied. 
For example, in some cases the outer ring of negative vorticity turned out to be 
rather narrow, with the negative vorticity having a relatively large magnitude. In 
other cases this ring appeared to be much wider, and the negative vorticity 
magnitude correspondingly weaker. Similar remarks apply to anticyclonic vortices, 
but with ‘cyclonic ’ everywhere replaced by ‘anticyclonic ’, ‘negative ’ by ‘positive ’, 
and so on. The laboratory vortices studied in this paper were generally isolated, i.e. 
had vanishing circulation for large enough radii. In  accordance with results obtained 
by Flier1 (1988) in an analytical study of the linear stability properties of similar but 
strongly simplified vortices (with piecewise-constant vorticity in the core and the 
ring), the observed instability behaviour depends very much on the shape of the 
vorticity distribution in the initial stage, i.e. before the vortex looses its 
axisymmetry. This was also shown numerically by Gent & McWilliams (1986) for 
isolated vortices with continuously distributed vorticity. In both studies the flow 
was assumed to be purely two-dimensional ; the stability properties of vortices do not 
depend on the sign of the vortex in such flows, i.e. on whether they are cyclones or 
anticyclones. The fact that  the stability behaviour of cyclones and anticyclones in 
the laboratory is quite different, as is described below, thus implies that three- 
dimensional effects in the rotating tank cannot be excluded from stability 
considerations. 
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FIGURE 3. The evolution of an unstable cyclonic stirring-induced barotropic vortex into a stable 
tripolar structure. The photographs were taken at ( a )  t = 0.6T, ( b )  7.2T, ( c )  9.OT and ( d )  17.3Tafter 
releasing the vortex, with the rotation period of the turntable T = 8.4 s. The initial vortex diameter 
was 11 cm and the mean water depth measured 15 cm. 

3.1. Stirring-induced vortices 
Both cyclonic and anticyclonic vortices were generated by the stirring technique as 
described in 92. It was found in all cases that the vortices thus produced were 
unstable and showed a rapid transition to  non-axisymmetric patterns : the cyclonic 
stirring vortices were seen to transform into a tripolar flow structure, whereas the 
anticyclonic vorticcs generally broke up into a set of two dipole structures. 

The typical evolution of a cyclonic barotropic stirring vortex is illustrated by the 
photographs shown in figure 3. For the purpose of flow visualization in this 
experiment, dye was added to the stirred fluid in the inner cylinder. Immediately 
after releasing the vortex by lifting the inner cylinder, vigorous turbulent mixing 
occurred at the circumference of the vortex. This can easily be observed in figure 
3 ( a ) ,  where the dyed patch has a rather irrcgular appcarancc. After a few rotation 
periods, however, the flow settled to an approximately circular vortex, see figure 
3 ( b ) .  Careful observation of the dye concentration in this photograph reveals a 
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FIGURE 4. Typical streakline photograph of the tripolar flow structure arising from an unstable 
cyclonic. stirring-induced barotropic vortex. 

slightly asymmetric flow structure, and this asymmetry becomes more pronounced 
as time progresses. As illustrated by figure 3(c) ,  the vortex shows a transition to  a 
tripolar structure, and the eventual tripole can clearly be distinguished in the dye 
pattern shown in figure 3 ( d ) .  This flow structure is persistent, and shows no changes 
in its shape. The motion in the tripole core is in a cyclonic direction (like the original 
vortex), while anticyclonic flow occurs in the two satellite vortices. I n  addition, the 
entire tripolar vortex structure rotates in a solid-body-like fashion relative to the 
rotating frame in a cyclonic direction. Some characteristics of this laboratory tripole 
were discussed by van Heijst & Kloosterziel (1989) and Kloosterziel & van Heijst 
(1989). For experiments like the one shown in figure 3, the Rossby number of the 
initial vortex typically lies in the range 1-3. 

In  a numerical study of perturbed ‘minimum-enstrophy vortices ’, Leith (1984) 
found evidence for the emergence of a tripole structure, and in a brief remark he 
mentioned that the strengths of the vortices in the tripole measured roughly ( -  1 ,  
2, - 1). If - in a simplifying approach - the tripole were modelled by a combination 
of three aligned point vortices with these strengths, one would indeed find a cyclonic 
rotation of this vortex constellation, in accordance with the laboratory observations. 
The flow pattern associated with such a tripolar vortex set has been calculated, and 
plotted results are presented by Kloosterziel & van Heijst (1989). 

Recently, an example of a tripole was found by Legras, Santangelo & Benzi (1988) 
in numerical experiments on forced two-dimensional turbulence, and their nu- 
merically obtained tripole structure shows much resemblance to  the dye pattern 
visible in figure 3 (d) .  Other numerical studies that showed the emergence of tripoles 
under certain circumstances have been reported by, for example, Ikeda (1981), 
Swenson (1987) and Carton, Flier1 & Polvani (1989). However, no observational 
evidence of the occurrence of tripoles in nature secms to have been reported before. 

The tripolar flow arising from an unstable stirring-induced cyclonic vortex was 
also visualized by streakline photographs of small tracer particles floating on the free 
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surface of the fluid, and an example of the observed particle paths is presented in 
figure 4. It is obvious that the streaklines indicate a tripolar pattern, but experiments 
with both dye and tracer particles revealed that the dye pattern does not coincide 
with the streakline pattern : although the axes of both tripolar patterns coincided, in 
particular the satellite vortices in the dye pattern were observed to  occupy a 
considerably smaller area than those visible in the streakline picture. The reason for 
this discrepancy lies in the solid-body rotation of the tripole, which obviously induces 
(irrotational) relative motion at some distance from the dyed region. If the streakline 
photographs were to  be analysed in order to determine the flow field associated with 
the tripole, a correction should be made for its rotation. In  fact, appropriate data 
reduction techniques are being developed and some preliminary results are presented 
by Kloosterziel & van Heijst (1989). Further details of tripolar laboratory vortices 
will be published elsewhere (van Heijst et al. 1991). 

The behaviour of an anticyclonic stirring-induced barotropic vortcx is entirely 
different from its cyclonic counterpart, and the sequence of events as observed in the 
laboratory experiments is shown in figure 5 .  The first photograph (a)  is taken just 
after lifting the inner cylinder in which the stirred (dyed) fluid was confined, and - 
as in the previous experiment - the irregular appearance of the dye blob indicates 
turbulent mixing with the ambient fluid. I ts  slightly elongated appearance indicates 
that  a wavenumber-2 perturbation has already grown to a finite amplitude, and soon 
thereafter two cyclonic vortices are seen to emerge from the dyed region, see figure 
5 ( b ,  c ) ,  and these move in opposite directions away from the centre. Comparison of 
the photographs shown in ( b )  and ( c )  reveals that the motion of the vortices is not 
purely radial: the vortices show an additional drift in an anticyclonic direction. I n  
the next stage, see ( d ) ,  anticyclonic vorticity is seen to become concentrated into a 
small eddy on one side of each cyclonic vortex, leading to the formation of two dipolc 
structures, as can be observed on ( e ) .  These dipole structures are somewhat 
asymmetric, the cyclonic parts being stronger than the anticyclonic parts. For this 
reason and owing to  the presence of the tank wall, the dipoles do not move radially 
outwards, but they make a looping excursion in a cyclonic direction, back to the tank 
centre, as can be seen on (f) .  The Rossby number for experiments as shown in figure 
5 was typically O(1). In  a numerical study of unstable barotropie vortices, Flier1 
(1985, 1988) found a similar behaviour with a vortex breaking up into two dipolar 
structures, and his vorticity maps calculated for the successive stages of the break- 
up process show a remarkable resemblance to the dye concentrations observed in the 
laboratory experiments shown in figure 5 .  Other numerical studies showing dipole 
splitting are discussed by, for example, Ikeda (1981)’ Swenson (1987), Gent & 
McWilliams (1986)’ Stern (1987) and Polvani & Carton (1990). Evidence of dipole 
splitting in ‘nature’ (i.e. in the laboratory) has previously been described by 
Ginsburg et al .  (1987) but not in much detail. 

I n  a number of additional experiments stirring vortices were created in a two-layer 
fluid, and even in the case of a thin bottom layer of slightly larger density, their 
behaviour appeared to be essentially different from their barotropic counterparts. In  
cyclonic baroclinic vortices, the raised interface takes on a dome-like shape, and the 
bottom layer apparently stabilizes the vortex : it remains axisymmetric with circular 
streamlines, and no transition to non-axisymmetric patterns has been observed. On 
the other hand, the anticyclonic, stirring-induced vortices were observed to  be highly 
unstable, again, as in the barotropic case discussed above. Since the bottom layer 
effectively shields the upper layer from the strong bottom Ekman layer (the 
interfacial Ekman layer is much weaker), these results may indicate that the 
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FIGURE 5. The evolution of an unstable anticyclonic, stirring-induced barotropic vortex. The 
photographs were taken at (a) t = 0.6T, ( b )  1.92', (c) 2.9T, ( d )  4.1T, (e )  6.25" and ( f )  16.72' after 
releasing the vortex, with T = 6.3 Y. The initial vortex diameter was 11 cm and t h r  mean water 
depth 13.3 cm. 
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instability of the barotropic cyclonic vortices is related to the advcctive action of the 
interior Ekman circulation, which is known to change the velocity and vorticity 
distribution of a vortex considerably, and which thus can bring a vortex into a 
critical form that is unstable to two-dimensional disturbances, as will be discussed in 

The immediate instability of anticyclonic stirring vortices in both the barotropic 
and baroclinic cases indicates that  centrifugal instability could be a trigger for this 
instability behaviour. The fact that  the subsequent events show so much resemblance 
to what is observed in the above-mentioned two-dimensional simulations does not in 
itself prove that the underlying causes for the observed behaviour are the same. In  
fact, dipole splitting has also been noted to occur in the case of unstable two-layer 
baroclinic vortices in the laboratory (see Griffiths & Linden 1981) and in numerical 
experiments on baroclinic vortices (see Carton & McWilliams 1989). In  $4  it will be 
shown that Rayleigh’s circulation theorem, extended to  a rotating system or an 
f-plane, can partially explain the different stability behaviour of cyclonic and 
anticyclonic vortices. 

I n  a number of stirring experiments anticyclonic vortices were produced with 
small Rossby numbers. Since by simply stirring the liquid in the inner cylinder one 
usually creates a vortex that has a Rossby number that is not truly small, the flow 
in the inner cylinder was left to decay for a while before withdrawing the cylinder. 
In  most cases an immediate instability set in, usually with a dominant m = 2 
component, which led to  dipole splitting, but in a few cases a wavenumber-3 
perturbation grew to a finite amplitude instead. This is clearly recognized in the 
streakline photographs presented in figure 6. The first photograph was taken only 5 s 
after the vortex was released and already a distinctive deformation of circular 
symmetry is observed. A dominant wavenumber is not easily recognized in figure 
6 ( a ) ,  but in figure 6 ( b )  an m = 3 component is clearly visible as well as in the next 
two frames. The time exposure of these photographs was 1 s, and an estimate of the 
Rossby number 8 based on the streakline lengths gives 8 - 0.64 .7 .  By comparing the 
subsequent photographs i t  is seen that this m = 3 vortex is not stationary in the tank, 
and the structure rotates in anticyclonic direction. The motion in the core of the 
vortex is anticyclonic (clockwise) whereas the three satellites are cyclonic vortices. 
An interesting and important feature of this vortex is that the amplitude of peak 
vorticity of the core vortex is of the same order of magnitude as that of the satellite 
vortices. Measurements showing this are discussed elsewhere (see Kloosterziel 1990), 
but here it may be noted that in tripoles as discussed in $3.1 the amplitudes of the 
vorticity of the core and the satellites diffcr by a t  least a factor 5 shortly after they 
have formed. This indicates that the initial conditions leading to tripole formation 
and triangular vortex formation differ a t  least in that the ratio of the amplitude of 
peak vorticity (positive and negative) is much larger in one case than in the other 
case. In $4  some studies are cited that have shown that isolated vortices with narrow 
rings of high-amplitude vorticity surrounding the core are more unstable to higher- 
wavenumber perturbations than vortices with a broader ring of low-amplitude 
vorticity. Since the anticyclones that transformed into triangular vortices were 
usually confined to the inner cylinder for a prolonged period of time in order to have 
a small Rossby number, it seems likely that the Ekman circulation is responsible for 
setting up a special initial condition not attainable by direct stirring. 

At present no detailed analysis has yet been carried out concerning the evolution 
of vorticity of anticyclones and nothing really precise is known about the initial flows 
that show triangular-vortex formation in the laboratory. Which wavenumber is the 

§ 4. 
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FIGURE 6. Streakline photographs showing the evolution of a low-amplitude anticyclonic stirring 
vortex. Pictures were taken at (n) t = 0.4T, (6) 0.9T. (c) 1.4Tand ( d )  2.2T after releasing the vortex. 
with T = 11.6 s. The vortex was created by stirring in a cylinder with a diameter of 212, = 29 cm 
The mean water depth was H = 15 cm. Q = 0.54 s-l and the exposure time 1 s. 

fastest growing one seems to be sensitively dependent on the precise initial 
conditions. In the laboratory this is reflected by the fact that whenever the 
experiment is repeated a few times (sinre the stirring is done by hand, the precise 
initial conditions are never the same) only now and then does an m = 3 perturbation 
amplify. It is for this reason that few examples have been found of this particular 
vortex type. 

In figure 7 the sequence of events that followed what is seen in figure 6 is shown. 
In  figure 7 ( a )  the triangular vortex is still as it was before, but soon thereafter t w o  
of the cyclonic satellites merged, leading to the formation of an anticyclonic tripole 
(see figure 7 b ) .  This tripole in turn became unstable, as is seen in figure 7 (c), and this 
led to a splitting of the vortex into two dipoles (figure 7 d ) .  The same sequence of 
events has also been observed for much smaller vortices, and this big vortex was only 
chosen because i t  provided the clearest streakline photographs ; the instability is not 
forced upon the vortex by boundary effects. The triangular vortex seems not to have 
been reported before, and the reason for this could be that it is always unstable. This 
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FIGURE 7 .  A sequence of streakline photographs showing the further evolution of the triangular 
vortex shown in figure 6 ( d ) .  The photographs were taken at (a) t = 3.4T, ( b )  6.0T, (c) 7.8T and ( d )  
10.32'. Further details are given in the caption of figure 6. Exposure times were: (a) 2 s, ( b ,  c) 3 s ,  
and (d )  4 s. 

is not clear as yet and maybe stable triangular vortices do exist, but in view of the 
frequency a t  which tripoles and dipoles are observed, it is expected to be a much 
rarer coherent vortex type. 

3.2. Off-centre, stirring-induced vortices 
Barotropic stirring-induced vortices were also created at some distance from the 
rotation axis, and these experimcnts revealed a number of interesting features. After 
releasing a cyclonic stirring vortex by lifting the cylinder, vigorous turbulent mixing 
occurred as in the experiment with a centred vortex (see figure 3), soon resulting in 
a regular, almost axisymmetric vortex flow. This can be clearly seen on the 
photographs presented in figure 8(a, 6 ) .  Within a few rotation periods, however, the 
cyclonic vortex starts to.propagate towards the centre of the container. On its way 
to the centre, the vortex shows a transition to a slightly asymmetric tripole 
structure, leaving behind a weak anticyclonic vortex that slowly moves in an 
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FIGURE 8. The evolution of a cyclonic, stirring-induced barotropic vortex released at a position 
some distance away from the tank centre. The photographs were taken at (a )  t = 0.5T, ( 6 )  4.5T, ( c )  
11.6T and ( d )  21.3T after the vortex was released. with T = 6.28 s. The initial vortex diameter was 
11 cm and the mean water depth 15 em. 

anticyclonic direction (see figure 8c) .  In the final stage, as illustrated by the 
photograph in figure 8 ( d ) ,  the tripole has reached the tank centre and rapidly 
becomes symmetric, like the tripole shown in figure 3. 

Careful observation of the dye patterns in consecutive photographs reveals the 
existence of a weak overall anticyclonic flow in the rotating tank: this is easily 
observed from the anticyclonic drift of the anticyclonic vortex left at the rim of the 
tank (boundary effects are possibly involved here), but also from the apparent 
anticyclonic rotation of the (cyclonic) tripole structure at the centre. The anticyclonic 
flow is likely to be caused by the translation of the cyclonic vortex towards the 
centre: ambient fluid is forced to flow away from the centre, resulting - as can be 
understood from conservation of angular momentum ~ in anticyclonic motion. The 
anticyclonic flow can also be observed from the dye streaks originating from some 
dye-producing crystals left at the bottom a t  the initial position of the stirring vortex : 
the dye in the bottom Ekman layer spirals radially outwards in an anticyclonic 
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direction, which indirectly indicates anticyclonic flow in tJhe fluid column above the 
bottom layer. Also, the dye on thc tank bottom nicely visualizes the track followed 
by the tripole on its way to the ccntre. Obviously, this track is not purely in radial 
direction, and seems to be slightly affected by the overall anticyclonic flow. 

The crucial features in this cxperiment, being the translation towards the rotation 
axis and the formation of a tripolar vortex structure, appear to  be reproducible very 
well, and have in fact been observed in a number of experimental runs with stirring- 
induced vortices of varying intensities. It was found, however, that the translation 
of the vortex and the tripole formation are characterized by timescales that are not 
necessarily equal. For example, in a few runs the cyclonic vortex was seen to  
translate towards the rotation axis without loosing axisymmetry, and a transition to 
a tripolar shape was not observed until the vortex had reached the centre of the 
container. In  particular the most energetic vortices showed this behaviour, whereas 
the weaker vortices became tripoles before reaching the rotation axis (as in figure 8). 

The observed inward motion is analogous to the propagation of vortices over 
topography as is discussed by Carnevale et al. (1988). In this numerical study it was 
observed that cyclones tend to ascend topographic hills in an anticyclonic spiral. It 
has been plausibly suggested that this phenomenon is in fact equivalent to  the 
northwest motion of cyclonic monopoles on a northern-hemisphere /?-plane (see 
McWilliams & Gent 1986). In both cases, conservation of potential vorticity leads to 
a dipolar perturbation field on the initially monopolar vorticity structure, which in 
turn leads to an overall motion towards the northwest (for flows over topography, 
the compass directions are defined by the local gradient of the topography). 
Effectively, the parabolic shape of the free surface in our experiments acts as a 
parabolic topographic feature. Further experiments with cyclonic sink vortices, 
which were stable and did not transform into tripoles, revealed nice anticyclonic 
spiralling motions towards the tank centre (sec Carnevale, Kloosterziel & van Heijst 
1990, for some other examples of topographically induced motion of barotropic 
vortices). The fact that the stirring vortices while translating simultaneously 
transform into tripoles, indicates that the overall motion is typically an  integral 
property that is rather insensitive to  the precise details of the structure of the vortex. 

The vortex motion towards the tank centre as observed for the barotropic cyclonic 
vortices is in a way similar to the observed uphill motion of baroclinic vortices on a 
sloping bottom in the laboratory experiments by Mory, Stern & Griffiths (1987) : in 
both cases the vortex shows a tendency to  minimize its height. The uphill 
displacement of the vortex was attributed by these authors both to frictional effects 
associated with the Ekman layer a t  the bottom, and to  the asymmetry in vortex 
stretching in the up-slope direction. By using a cover, and therewith flattening the 
free surface, i t  was found in our experiments, however, that  the barotropic vortices 
no longer move towards the tank centre. Since, effectively, the influence of the 
Ekman dynamics doubles in this case, it follows that the Ekman layer(s) should play 
a negligible role in an explanation for the observed translation of the barotropic 
vortices. 

3.3. Vortices produced by gravitational collapse 
Under certain conditions the barotropic vortices produced by the collapse technique 
as described in $2 became unstable too, in thc scnse that they lost axisymmetry. 
Unstable cyclonic vortices - generated by the fluid level inside the inner cylinder 
being lower than outside - were generally seen to show a gradual transition from a 
circularly symmetric flow pattern to an elliptical structure. In  some cases the 
streamline pattern appeared to change back and forth between circular and elliptical 
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FIGURE 9. The ultimate vortex structure, observed in experiments on cyclonic barotropic vortices 
created with the collapse technique, as a function of the mean water depth H and the relative initial 
level difference AH/H. The symbol 0 refers to circular and elliptical vortices, whereas 0 refers to 
clearly discernible tripolar vortices. Very weak tripoles, that  is, vortices with very narrow regions 
of anticyclonic motion, are indicated 0. For a further discussion of this diagram, see text. 

shapes, a behaviour similar to that found in a study by Cushman-Roisin, Heil & Nof 
(1985). In  other cases, the pinching of the ellipse continued, eventually leading to a 
stable tripolar streamline pattern identical to the ones observed in the experiments 
with stirring-induced vortices (cf. figure 3). The experiments revealed that, once a 
tripole structure was formed, this flow pattern was persistent, indicating the stability 
of these tripoles. 

In  order to investigate the criterion for transition from axisymmetry to tripolar 
structures, the intensity of the cyclonic vortex was varied systematically. This could 
be conveniently done by varying the difference in level (AH) of the fluid on either side 
of the inner cylinder. The flow was visualized by dyeing the fluid in the inner cylinder 
and by using tracer particles floating on the free surface; observations were made 
both photographically and by eye. In the experiments AH was varied between its 
maximum value (empty inner cylinder) to  approximately 0.217, with H the mean 
water depth, measured a t  rest after the experiment. Except for a, which was varied 
from 5.0 to 21.8 cm, all other experimental parameters were kept constant, i.e. l2 = 
1.0 s-' and the diameter of the inner cylinder 2R, = 29.0 cm. The observational data 
obtained from some 35 experiments on cyclonic vortices are presented graphically in 
figure 9. In this graph the open circles represent experiments in which a transition 
to tripoles was observed, whereas the black dots denote experiments in which the 
vortex remained circularly symmetric or became slightly elliptic (in the observations 
by eye, the difference between circular and slightly elliptic vortices is hardly 
discernible). Tripole-like vortices with extremely weak satellite vortices are denoted 
by squares in figure 9. In such weak tripoles two very thin, elongated regions of 
anticyclonic vorticity are observed to be compressed against the cyclonic core, which 
is in such cases almost circular. So there is in fact a continuous range of forms: a 
tripole like the one shown in figure 3 is found a t  one end of this range, while the 
stable, circularly symmetric vortex is found a t  the other end. 
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Usually, the observation period lasted as long as there were observable motions, 
and the type classification indicates what kind of streamline pattern is observed just 
before velocities fall below measurable levels. For relatively small values of 8 and 
AH/H (lower left corner in figure 9) a transition to a clearly discernible, strong tripole 
is observed to occur within a period approximately equal to the Ekman time, while 
the stronger vortices for relatively large values of H (upper right corner in figure 9) 
stayed close to circular even after a period equal of two or three times the Ekman 
time. The evolution of these stable vortices is discussed in Kloosterziel & van Heijst 
(1990), where i t  is shown that the ‘ collapse ’-produced stable vortices asymptotically 
(in time) get very close to a state in which thc azimuthal velocity distribution is well 
approximated by the following profile : 

vstir(r) = &“(r/L’) exp ( - ~ ( Y / L ’ ) ~ ) ,  

for which the corresponding vorticity distribution is given by 

wStir(r) = (U’/L’) (1 - + ( r / L ’ ) Z )  exp ( - ~ ( T / L ’ ) ~ ) .  

Here U’ and L‘ are respectively an appropriate velocity scale and lengthscale. But 
measurements of the velocity profile of stirred vortices prior to transforming into 
tripoles revealed, to a high degree of precision, the same velocity distribution. The 
fact that the stirring vortices just before transforming into tripoles are very close to 
this particular form too thus seems to indicate that this state in some sense draws a 
line between stable and unstable flow profiles. 

In  the next section a critical Rossby number is derived for this vortex structure, 
which, if exceeded, is expected to lead to centrifugal instabilities. If the Rossby 
number of a particular vortex is far below this critical value, i t  appears that tripole 
formation is a manifestation of the instability of the vortex to two-dimensional 
perturbations. Isolated vortices like the vortex with the velocity distribution above 
given, all satisfy Rayleigh’s inflexion-point theorem, which is a necessary but not 
sufficient condition for instability with respect to two-dimensional perturbations (see 
Drazin & Reid 1981). It was observed in many experiments (see Kloosterziel & van 
Heijst 1990) that the collapse-produced monopolar vortices have a slowly changing 
velocity and vorticity distribution, this being induced by the Ekman circulation. 
Although the initial monopolar vortex might be stable in itself, its vorticity 
distribution can thus be modified slowly in such a way that the vortex eventually 
becomes unstable. Roughly stated, instability requires that the amplitude of the 
vorticity minimum relative to the core maximum has to exceed some critical value. 
For certain simple model vortices criteria of this kind are derived by Flier1 (1988). 

For relatively small values of R and AH/H the motion is observed to be confined 
to a region small compared with the tank width and to have a rather narrow ring of 
strong negative vorticity around the core, whereas for larger values of H and A H / H  
the stronger vortices are observed to be much wider and to have a much wider region 
of small-amplitude negative vorticity relative to the size of the positive-vorticity 
core. In the former case a fraction of the Ekman time is needed to bring the vortex 
close to the critical form, owing to the Ekman circulation, and enough energy is left 
then to have an observable transition to the tripolar form, due to the growth of 
wavenumber-2 instabilities; in the latter case so much time is needed to bring the 
vortex to this form that by then the vortex may have been entirely dissipated. The 
above-mentioned weak tripoles fall somewhere in between these two possibilities : not 
enough energy is left then in these cases for the satellite vortices to grow appreciably. 
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In an attempt to produce anticyclonic barotropic vortices, the same collapse 
technique was applied with the fluid level inside the inner cylinder higher than 
outside. It was found, however, that  no vortex forms after lifting the inner cylinder : 
the resulting flow appeared to be highly irregular. and no well-defined structures 
could be recognized. 

4. Stability considerations 
During the course of the experimental work it was noted that it is virtually 

impossible to create anticyclonic vortices in the rotating tank if one attempts to do 
so by simply stirring the fluid locally. But cyclonic vortices are easily created in this 
way ! In the anticyclonic case stirring does not lead to any well-defined, organized 
vortex flow - it leads to turbulent motion and the generation of wares - whereas from 
cyclonic stirring a well-defined smooth vortex forms. If such vortices are initially 
generated in a bottomless cylinder and subsequently released, then the cyclones 
transform into tripoles while at all times showing Taylor-column motion. During the 
evolution towards this state, all motion appears highly synchronized in the vertical 
direction ; this implies that  the tripole formation is close to two-dimensional. It is 
observed, however, that  the instabilities of anticyclones as described in 5 3.1 involve 
strong vertical motions and lead to vigorous turbulent mixing. The flow rapidly ‘self- 
organizes’, and during this process the dipoles form. When viewed from the side, 
these dipoles look like a combination of two counter-rotating columns, and their 
motion is by then two-dimensional too. 

So, in general the instabilities of cyclones appear to be non-axisymmetric two- 
dimensional ones, whereas those of anticyclones are often three-dimensional. This 
difference is not fully understood yet, but some results partially explaining the 
difference are presented below. Later in this section critical Rossby numbers are 
derived for two different vortex structures : for the isolated vortex with a flow profile 
given by (1)  and for a non-isolated vortex which, under typical laboratory 
circumstances, was never observed to become unstable if cyclonic. These Rossby 
numbers provide a threshold value beyond which Rayleigh’s circulation theorem is 
satisfied. This theorem states that  a sufficient condition for instability is that the 
circulation decreases in magnitude somewhere in the vortex. If these critical values 
are exceeded, centrifugal instabilities will cnsue in the form of axisymmetric 
overturning motion. For cyclones these critical numbers are much higher than for 
anticyclones, and this gives a satisfactory explanation for the difficulties one has with 
generating anticyclones by stirring in an unconfined region. 

The critical Rossby number for anticyclones is rather small, and in most 
experiments with anticyclonic stirring vortices this number was ~ unintentionally - 
exceeded. Assuming that thc stirred vortices of both kinds have the same flow profile 
prior to releasing them (this will only be so if one quickly withdraws thc cylinder 
after the stirring has been stopped), the only difference would be their absolute 
angular momentum, and this is a determining factor only for three-dimensional 
centrifugal instabilities. The explosive character of the instabilities that set in when 
anticyclones are released and the relative calm way cyclones evolve (they usually do 
not exceed the critical Rossby number) indicate that part of the subsequent 
evolution of anticyclones involves centrifugal instabilities. 

To differentiate between the different possible instability types is difficult. For 
instance, if the critical Rossby number is exceeded. axisymmetric perturbations will 
grow, while simultaneously three-dimensional non-axisymmetric perturbations and 
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two-dimensional non-axisymmetric perturbations may grow (for the latter type of 
instabilities, the relative flow has to satisfy Rayleigh’s inflexion-point theorem). All 
these instabilities are competing and without further research one cannot tell which 
is the fastest-growing mode. It may well be that a vortex is unstable to two- 
dimensional perturbations with wavenumber 2, to three-dimensional perturbations 
with wavenumber 3 and at the same time (if the critical number is exceeded) show 
overturning motions. Which mode is observed depends on the relative growth rate 
of each unstable mode. 

Tripole formation has recently been observed in numerical simulations of two- 
dimensional flows (see Carton et al. 1989) as well as dipole splitting (see Flierl 1985, 
1988 and Stern 1987, among others), and in all cases this was the result of the growth 
of wavenumber-2 perturbations. In  the laboratory, the tripole formation appears to  
be covered by the two-dimensional theory, but during dipole splitting a ‘mix ’ of both 
two-dimensional instabilities and overturning (vertical) motions is observed (this 
may well be a single three-dimensional, non-axisymmetric mode too). For this 
difference no satisfactory theory has been developed. The normal-modes analysis of 
Chandrasekhar (1961) can be extended straightforwardly to the f-plane or the 
rotating-tank case, and, with respect to non-axisymmetric three-dimensional 
perturbations, the following can be said. If the critical Rossby numbers are exceeded, 
both cyclones and anticyclones will have growing non-axisymmetric modes too. For 
high enough Rossby numbers therefore, axisymmetric overturning motions and 
three-dimensional non-axisymmetric motions will ensue. One cannot tell which will 
be dominant from the normal-modes analysis without actually constructing these 
modes ; this poses insurmountable problems and the analysis therefore stops at this 
point. For cyclones the critical Rossby number is usually not exceeded, and the 
results to  be derived below show that axisymmetric instabilities (overturning 
motions) will not grow, but according to Chandrasekhar (1961) it remains an open 
question whether three-dimensional, non-axisymmetric perturbations will amplify 
or not. So even if a cyclone or anticyclone has a Rossby number below the critical 
value, three-dimensional non-axisymmctric perturbations may grow, but proving 
this is difficult. The two-dimensional character of the tripole formation favours the 
option that cyclones are stable to these perturbations, and that the flow evolution is 
essentially two-dimensional. 

I n  some experiments anticyclonic isolated vortices were left for a while in the inner 
cylinder until the estimated Rossby number was near or below the critical value. 
When these vortices were released two different things could happen. In  many cases 
again dipole splitting occurred, but in some other cases a triangular vortex formed 
(see 33.1). Since purely overturning instabilities are excluded in this case, these 
scenarios can be manifestations of either two- or three-dimensional non-axisymmetric 
instabilities. It is not known which mode is the most unstable one, and much remains 
to be answered here. The fact that two-dimensional numerical simulations show such 
a striking resemblance to  the laboratory observations of dipole splitting (see Flierl 
1985, 1988) indicate that a t  least part of the evolution is due to the growth of two- 
dimensional perturbations. 

If one assumes that all vertical motion is zero a t  all times, one enters purely two- 
dimensional theory in which there is no difference between cyclones and anticyclones. 
Rayleigh’s inflexion-point criterion applies in this case, and i t  follows that a 
necessary condition for instability is that  the gradient of the vorticity changes sign 
somewhere ; the amplitude or sign of the flow is of no importance. All isolated vortices 
satisfy this criterion. Both Rayleigh’s circulation theorem (three-dimensional flows) 
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and Rayleigh’s inflexion point criterion (two-dimensional flows) provide conditions 
tha t  have to  be satisfied if perturbations are to  grow or not. but they do not reveal 
which type of perturbation is the fastest growing one. 

For smooth velocity profiles like that  given by ( i ) ,  a normal-modes analysis proves 
to  pose a very complicated analytical problem, and such it profile is therefore usually 
tested for its (linear) stability properties by means of somc numerical analysis (an 
exception is the analytical treatment of Flier1 ( 1988) concerning the stability of 
vortices with pieccwise-constant vorticity). An example is Gent & McWilliams‘ 
(1986) analysis of several smooth flow profiles for which the fastcst-growing modes 
wcre determined by means of a finite-differences mcthod. According to  their study the 
profile given by ( 1 )  is unstable to  wavenumber-2 perturbations only, and this appears 
to  be in accordance with the observcd tripolc formation linkcd to this profile type (a 
Galerkin method in Kloostcrziel (1 990) predicts a wavenumber-3 perturbation to  be 
the fastest-growing mode for this vortex ; a reason for this conflict in results has as 
yet not been found). 

Centrifugal instability 
Rayleigh’s circulation theorem states tha t  in the absence of viscosity a necessary 

and sufficient condition for a stationary swirling flow, with an azimuthal vclocity 
distribution v(r ) ,  t o  be stable to  axisymmetric disturbances is that  the square of the 
circulation does not decrease anywhere. i.e. 

d 
- (zir)2 2 0 
dr  (3) 

(see Drazin & Reid 1981, or Chandrasekhar 1961), whereas the flow is unstable if it 
decreases somewhere. Rayleigh (1916) invoked an energy argument in which two 
concentric fluid rings were imagined to  bc interchanged while conserving their 
angular momentum. By comparing the kinetic energy before and after the exchange, 
i t  followed tha t  if (3) is satisfied. the kinetic energy increases. In  such cases then, 
without a source of energy such an event would never occur spontaneously. On the 
other hand, if (3) is violated in some rcgion the exchange would liberate energy and 
instability ensues. 

Instead of using the energy argument. it is instructive to  approach the question of 
stability by means of a ‘ displaced-particle * argument (an entirely analytic treatment 
is presented in Kloosterziel 1990). A fluid clement is given a ‘virtual displacement’ 
in the prevailing force field and it is then checked whether it will accelerate or not, 
be ‘pushed back’ or not, thereby taking the force field, which is here the pressure 
gradient, as unaltered and undisturbed by the motion of the fluid element. 

In  a rotating system that  rotates with angular velocity Q ~ or on an  f-plane ~ the 
equation for the azimuthal velocity of circularly symmetric flows reads 

where u is, as usual, the radial velocity component, v the azimuthal component and 
f the Coriolis paramet,er. For a rotating tank f = 2Q. The material derivative is 
defined here as 
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where w is the vertical velocity component. Equation (4) implies the following 
conservation law : 

D 
- (vr + i f r 2 )  = 0. 
Dt ( 5 )  

For a vortex located at the centre of the rotating tank the term within the brackets 
is the absolute angular momentum, or circulation, of a revolving fluid element at 
radius r .  The equation for the radial velocity componcnt is 

If the stationary basic vortex whose stability is under study has an azimuthal 
velocity distribution vo(r) ,  the pressure-gradient force is necessarily 

If a fluid element is imagined to change its position slightly, from, say, ro to r’ = 
ro+6r ,  it will acquire an azimuthal velocity v’(r’) that is determined by the 
conservation law expressed by ( 5 )  : 

v’(r’) r’++frr2 = vo(ro)ro+$r& (8) 

This holds only for flows that are axisymmetric, and axisymmetry can only hold 
when all motion takes place in the form of an exchange of rings; this necessarily 
involves three-dimensional overturning motions. 

Assuming that the prevailing pressure field is not changed by the motion, the 
element experiences an acceleration 

-- 
Dt2 (9) 

where vo is understood to be evaluated a t  r = r’. Taking (8) into account, the right- 
hand side is found to  be equal to 

1 2 2  1 
- { (vo(ro) ro + 3 f ro)  - (vo(r’) r’ + +fr”),”}. 
rr3 

If this is developed in a Taylor series around r = ro, one obtains 

Assume, for example, that  Sr is positive (6r = u6t ; u > 0) ,  then this equation tells 
us that there is a tendency to accelerate it even farther away from its original 
position if, for some ro, 

d 
- (vo r + g r 2 ) 2  < 0. 
dr 

Note that Rayleigh’s original criterion is regained if one lets f + O .  The criterion 
expressed by (11) could have been directly inferred from (3) if one has in mind 
vortices that are located exactly a t  the centre of the rotating tank, since in that case 
one can read for v in (3) the absolute velocity v + Q r .  The criterion derived here is 
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valid for vortices on an f-plane as well as for vortices that are off-centre in a rotating 
fluid system (for such vortices (4) and (6) are valid too). Spatially varying depth 
effects and free-surface effects have been assumed to be of negligible importance 
under typical laboratory conditions. 

Introducing a velocity scale ( J ,  equal to, say, the maximum velocity, and a 
lengthscale L ,  which can for instance be the position of maximum velocity, the 
criterion is, in non-dimensional terms, 

(e'U"+R)(~(3+2) > O+stable, 

(cv"+K)(e3+2) < O+unstable, 

where 6 is the dimensionless velocity 17 = v / U ,  (3 the dimensionless relative vorticity 
(3 = w / ( U / L )  and the Rossby number E = U/(QL) .  Rayleigh's modified criterion thus 
states that a vortex is stable if the product of absolute vorticity and 'absolute' 
velocity (on an f-plane sG+H cannot be interpreted as the absolute velocity) is 
positive everywhere, or, alternatively, that they be of the same sign everywhere. 
Instability is found if the vorticity and velocity differ in sign somewhere. In 
particular, this implies that in an inertial frame (52 = 0 or f = 0), where (3) applies, 
in an unbounded domain stable vortices are those with single-signed vorticity 
(having non-vanishing circulation for r + a), whereas all vortices with vanishing 
circulation ('isolated vortices ') and single-signed velocity are unstable. The exact 
sign is of no importance, of course. A typical stirring vortex is an isolated vortex and, 
as a simple experiment shows, such a vortex will not persist if it  is created in a (non- 
rotating) container that has a diameter much larger than the region that is stirred 
(in a tea cup the walls play a stabilizing role, but in a large container stirring merely 
leads to turbulent and wavy motion). 

In a rotating system or on an f-plane the sense of rotation of the vortex is 
important as the criterion stated by (12), (13) shows. There is no symmetry in the 
sense that a vortex with some specific velocity profile can be stable if it  is a cyclone, 
whereas it is unstable if anticyclonic. This is elucidated by the following examples. 
Two reference cases will be considered ; that of a stirred vortex with the velocity and 
vorticity given by ( 1 )  and (2), respectively, and that of a vortex with a velocity 
profile 

{ 1 - exp ( - ~ ( T / L ' ) ~ ) }  vSink(r) = U'- 
1 

(r/L')  

and corresponding vorticity 

usink(r) = (U'/L') exp ( -+ (T- /L ' )~ ) .  (15) 

The subscript 'sink' refers to the fact that these profiles are representative of a class 
of laboratory vortices created with the so-called sink technique (see Kloosterziel & 
van Heijst 1990). The sink vortex is an example of a non-isolated vortex with infinite 
energy on an unbounded domain while the stirred vortex is a truly isolated vortex 
with vanishing circulation for larger radii and finite energy. In  order to illustrate the 
consequences of the non-dimensional criterion stated above, the velocity profiles are 
scaled such as to have Cmax = 1 and R,,, = 1.  The Rossby number is thus based on 
position and amplitude of the peak velocity. I n  figures 10 and 1 1  the product 
(sC+R) (€07 + 2) is shown as a function of R for these two cases while differentiating 
between the cyclonic and the anticyclonic cases : the Rossby number has been given 
the values 0.5, 2 and 5 .  Instability is recognized where the product takes negative 
values. It is seen in figure 10 that the non-isolated vortex, which in an inertial frame 
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4 R 

FIGURE 10. The product of the non-dimensional absolute vorticity and velocity as a function of the 
dimensionless radius R of the vortex, with velocity and vorticity given by (14) and (15), for (a)  the 
cyclonic and (b) the anticyclonic case. This is a characteristic example of a non-iso2ated vortex for 
which the circulation does not vanish at  large radii. The Rossby number has been given the values 
E = 0.5, 2 and 5. I n  the region where the product is negative, centrifugal instabilities are expected. 
Only anticyclones of this type will be unstable if a critical Rossby number is exceeded (see text). 

I / \ Anticyclone I 

FIGURE 11.  The product of the non-dimensional absolute vorticity and velocity as a function of the 
dimensionless radius R of the stirred vortex, with velocity and vorticity given by ( 1 )  and (2), for 
(a)  cyclones and (b) anticyclones. This is an example of an isolated vortex, i.e. a vortex with 
vanishing circulation. The Rossby number has been given the values E = 0.5,2 and 5. Both cyclonic 
and anticyclonic vortices are unstable if a critical Rossby number is exceeded (see text). 

would be stable irrespective of amplitude or scale, in the cyclonic case is stable for 
any Rossby number too, but in the anticyclonic case it becomes unstable if the 
Rossby number exceeds a critical value that is approximately x 0.57. The 
isolated vortex can be unstable in both the cyclonic and anticyclonic case, as figure 
11 indicates. For the cyclone the critical Rossby number is eCrit x 4.5 whereas for the 
anticyclone it is eCrit z 0.65. Although the value of the critical Rossby number does 
depend to a large extent on the exact structure of the vortex considered, a simple rule 
of thumb can be inferred from these results: only very weak anticyclones are 
centrifugally stable in a rotating system whereas only very strong cyclones are 
centrifugally unstable. 

All this is in accordance with the observation that it is rather hard to generate 
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persistent anticyclones since one usually exceeds quite easily (and unintentionally) 
a critical forcing level. Consider for instance the cyclonic stirring vortex. If one 
assumes that the maximum velocity occurs a t  a radius rmax = 4 cm, such a cyclone 
would still be stable if the amplitude was 18 cm s-’! On the other hand, an 
anticyclone - with a maximum a t  the same position - is unstable if the amplitude 
exceeds a value of about 2.5 cm s-l (approximately one revolution of a fluid element 
in 10 s, which is very slow). Another interesting difference between these two cases 
is that manifestations of centrifugal instabilities (in the form of overturning motions) 
in the cyclone will take place in a region around r = 2rmitx, which is a t  the edge of the 
vortex, whcreas in anticycloncs that have a Rossby number that just barely exceeds 
the critical point the region is right in the core ; for increasing Kossby number it shifts 
outward. 

The cyclonic sink vortices were never observed to become unstable, irrespective of 
the different levels of forcing used (see Kloosterziel & van Heijst 1990). On the other 
hand, it was noted that one could create anticyclones by reversing the procedure, 
that is, by injecting fluid into the rotating fluid layer, but only if very low volume 
fluxes are maintained, i.e. if the Rossby number is kept very small (Griffiths & 
Hopfinger 1987 estimated the Rossby number of thcir (stable) anticyclonic sink 
vortices initially to be approximately 0.15). 

I n  a recent study i t  was shown by Bayly (1988) that Rayleigh’s circulation 
theorem (in an inertial frame) can be cxtended to a large class of monopolar vortices. 
For vortices consisting of a set of nested convex closed streamlines, a sufficient 
condition for instability to three-dimensional centrifugal instabilities is that the 
circulation along a streamline decreases outward in strength somewhere. This can 
probably be extended without much difficulty to rotating systems, and, say, 
elliptical cyclones of moderate strength would then be stable whereas their 
anticyclonic counterparts would again be unstable. Circular symmetry therefore 
need not be enforced, as was done in this section. 

5. Conclusions 
The laboratory experiments described in this paper demonstrate the remarkable 

difference between unstable cyclonic and anticyclonic vortices in a rotating 
homogeneous fluid, both in their instability behaviour and in the actual conditions for 
instability. 

An unstable cyclonic vortex was observed to show a gradual transition into a 
stable tripolar structure consisting of a core of positive vorticity, adjoined by two 
weaker satellite vortices with negative vorticity. In  contrast, an anticyclonic 
barotropic vortex generally shows an ‘explosive ’ instability behaviour, in the sense 
that it immediately splits up into two dipolar vortices which rapidly move away from 
the original vortex centre. In  addition to this dipole splitting of an unstable 
anticyclone, another behaviour was observed in a few cases, viz. the higher-order 
mode 3-instability which consists of a triangular anticyclonic core vortex with three 
smaller cyclonic satellite vortices beside it.  In  the experiments this mode was not 
stable, however, and the structure showed a rapid transition into an anticyclonic 
tripole, which in turn became unstable and split up into two dipolar vortices. 

Whether an initially axisymmetric vortex is unstable or not depends on its 
vorticity distribution as well as on the value of the Rossby number characterizing the 
vortex strength. An extension of Rayleigh’s original instability analysis to a rotating 
system or an f-plane ($4) provides a criterion, which is that a vortex is centrifugally 
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stable if the product of absolute vorticity and absolute velocity is positive 
everywhere. The background rotation in the system obviously causes symmetry 
breaking, and the rotation sense of the vortex is therefore an important factor in the 
instability criterion. In  order to  examine the role of the vorticity distribution in the 
vortex instability, examples of two different vortex types were considered, viz. an 
isolated and a non-isolated vortex (corresponding with laboratory vortices generated 
by the ‘stirring’ and the ‘sink’ technique, respectively). I n  the latter case i t  was 
found that a cyclonic vortex is stable for all Rossby numbers, whereas its 
anticyclonic counterpart becomes centrifugally unstable when the Rossby number 
exceeds some (small) critical value. On the other hand, an isolated vortex was found 
to be unstable both in the cyclonic and the anticyclonic case, but for completely 
different values of the Rossby number. Although the value of the critical Rossby 
number depends to a large extent on the structure of the vortex considered, the 
results of the analysis can be expressed as the following approximate rule of thumb : 
only very weak anticyclonic vortices are centrifugally stable, whereas only very 
strong cyclonic vortices are centrifugally unstable. The laboratory observations 
agree very well with this rule, a t  least in a qualitative sense. 

A number of the experiments described in this paper were carried out on a direct- 
drive turntable that was built more or less as a duplicate of a rotating table in use 
a t  the Department of Applied Mathematics and Theoretical Physics, University of 
Cambridge, UK. We are very grateful to Dr Paul F. Linden for his courtesy and his 
kind willingness to provide us with the required technical instructions and 
specifications. One of us (R. C. K.) gratefully acknowledges financial support from 
the working group on Meteorology and Physical Oceanography (MFO) of the 
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