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Laboratory observations and numerical simulations reveal that, in addition to 
monopoles, dipoles and tripoles, yet another stable coherent vortex may emerge from 
unstable isolated circular vortices. This new vortex is the finite-amplitude result of the 
growth of an azimuthal wavenumber-3 perturbation. It consists of a triangular core of 
single-signed vorticity surrounded by three semicircular satellites of oppositely signed 
vorticity. The stability of this triangular vortex is analysed through a series of high- 
resolution numerical simulations and by an investigation of point-vortex models. This 
new compound vortex rotates about its centre and is stable to small perturbations. If 
perturbed strongly enough, it undergoes an instability in which two of the outer 
satellites merge, resulting in the formation of an axisymmetric tripole, which 
subsequently breaks down into either a pair of dipoles or a dipole plus a monopole. 
The growth of higher-azimuthal-wavenumber perturbations leads to the formation of 
more intricate compound vortices with cores in the shape of squares, pentagons, etc. 
However, numerical simulations show that these vortices are unstable, which agrees 
with results from point-vortex models. 

1. Introduction 
In the realm of two-dimensional fluid dynamics, several types of stable coherent 

vortices are known. Firstly, we have the circularly symmetric vortex with single-signed 
monotonic vorticity profile (a ' monopole ') and, secondly, the self-propelling dipole, 
consisting of two closely packed counter-rotating vortices. In addition to these classical 
cases, in recent years another non-trivial stable coherent vortex has been found and 
dubbed the tripole (see Legras, Santangelo & Benzi 1988; van Heijst & Kloosterziel 
1989). The tripole consists of a linear arrangement of three regions of distributed 
vorticity of alternate signs, and the axis of this configuration rotates about the centre 
of the core vortex. Laboratory observations (Kloosterziel & van Heijst 1991 ; van 
Heijst, Kloosterziel & Williams 1991) and numerical simulations (Legras et al. 1988; 
Carton, Flierl & Polvani 1989; Carton & McWilliams 1989) show that the tripole is the 
finite-amplitude result of the growth of a wavenumber-2 perturbation on an unstable, 
isolated circular vortex. The wavenumber m is defined as usual with the angular 
dependence of the perturbation in polar coordinates ( r ,  0) proportional to exp (im 19). 
Laboratory observations (Kloosterziel 1990), normal-modes analysis (Gent & 
McWilliams 1986) and analysis of simple model vortices (Flierl 1988) indicate that 
which azimuthal wavenumber grows fastest depends on the steepness of the initial 
velocity profile. 

Since laboratory and numerical observations revealed the existence of tripoles as a 
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FIGURE 1. Diagram showing idealized forms of the first three members of a family of geometrical 
vortices. In each case, the core vortex is in the shape of a regular polygon of n sides and the core is 
surrounded by n semicircular satellites with vorticity of opposite sign. Cases corresponding to 
n = 3, 4 and 5 are shown here. 

result of the finite-amplitude equilibration of a wavenumber-2 mode, it was natural to 
search for higher-order instabilities that might lead to other, even more intricate 
coherent vortices. We report on the finite-amplitude form of wavenumber 3 and higher 
wavenumber instabilities on isolated circular vortices, and the stability of the resulting 
compound vortices. The nonlinearly saturated states that result from these instabilities 
have a central core of vorticity of one sign with a boundary approximately in the shape 
of a regular polygon of n sides. This boundary is maintained by the interaction between 
the core and n semicircular satellites of oppositely signed vorticity. The first three 
members of this family are depicted schematically in figure 1, and for simplicity we will 
call them by the geometrical structure of their cores. In all cases, these compound 
vortices instantaneously rotate about the centre of the core. We demonstrate that, of 
this class of vortices, it is very likely that only the triangle vortex is stable. As with the 
dipole and tripole, an analytic proof of stability of the triangle vortex is lacking, and 
we must have recourse to numerical simulation and models to indicate stability to 
finite-sized perturbations. Of all the stable compound vortices, the triangle is the least 
robust, and perhaps we should talk of marginal stability here since it is unstable to 
rather small perturbations. In any case, understanding that stability has not yet been 
proven analytically for any of the compound vortices, it appears that the dipole, 
tripole, and triangle vortex may form the complete set of stable compound vortices of 
zero circulation. 

In $2 we provide experimental evidence that, under certain conditions, an isolated 
circular laboratory vortex shows the rapid growth of a wavenumber-3 instability. At 
finite amplitude this leads to the formation of the triangular vortex as schematically 
depicted in figure 1. The resulting triangular laboratory vortex is usually unstable and 
two of the satellites are observed to merge, thus shortly yielding a tripolar form, which 
subsequently breaks up into two dipoles or a dipole and a monopole. These laboratory 
observations inspired the numerical study discussed in $ 3 .  It is shown there that a stable 
triangular vortex forms if the vortex is initially seeded with a pure wavenumber-3 
perturbation. A linear stability analysis is presented which explains the variability of 
results in the laboratory as a competition between unstable modes of different 
wavenumbers. Another stability analysis, presented in 4 3, uses finite-amplitude 
perturbations in high-resolution simulations to show that the symmetrical triangular 
vortex is stable if the initial perturbations are sufficiently small. 

In $4, we analyse the behaviour of the geometrical vortices by using point-vortex 
models. In such a model each of the regions of single-signed vorticity is replaced by an 
equivalent point vortex of the same circulation as that of the given region. The 
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triangular vortex is thus modelled by a central point vortex surrounded by three point 
vortices of opposite circulation. We find that the first stage of the observed instability, 
i.e. the close approach of two of the satellites, is intrinsic to the model when the 
positions and/or strengths of the satellites are sufficiently perturbed from their 
equilibrium positions and values. Finally, following a study by Morikawa & Swenson 
(197 l), the point-vortex models for the higher-order compound vortices are considered. 
These are found to agree with the numerical simulations for the square and pentagon 
vortices which are unstable. 

2. Laboratory experiments 
A number of experiments have been performed in a rotating cylindrical tank, 125 cm 

in diameter and 50 cm deep, placed on a large rotating table. The rotating tank is filled 
with water and brought to solid-body rotation, with a bottomless cylinder placed 
concentrically in the tank. Vortices were created by briefly stirring the fluid confined 
to the inner cylinder which, after the stirring-induced motion becomes purely 
azimuthal, was lifted vertically. Photographs of passive scalar (dye) were taken with a 
camera mounted in the rotating frame above the free surface of the fluid. The working 
depth of the fluid was 11 cm and the rotation period of the tank T = 9 s. The diameter 
of the cylinder was 10 cm. With this stirring method we have very little control over the 
details of the initial velocity profile. However, the wavenumber-3 instability could 
easily be observed in the following manner. In the inner cylinder, we create an 
anticyclone which away from the boundary layer at the wall of the cylinder is close to 
solid-body rotation (this profile is easily set up by stirring smoothly close to the wall). 
The Rossby number of these vortices is not small (i.e. O(1) or larger) and they are 
therefore, as discussed by Kloosterziel & van Heijst (1991), centrifugally unstable when 
released in the ambient fluid. When the inner cylinder is lifted vertically, vigorous 
vertical and horizontal mixing occurs at the rim of the vortex. This results in an 
azimuthal velocity profile which is unstable to wavenumber-3 perturbations. Rotation 
tends to make fluid motions two-dimensional with vertical motions disappearing 
within a few rotation periods of the tank through radiation by inertial waves 
(Greenspan 1968). Even before all vertical motion has been subdued, the growth of the 
azimuthal mode can become apparent and a triangular vortex forms. It should be 
noted that in the case of a similarly created cyclone, no centrifugal mixing occurs and 
the vortex does not show the growth of a wavenumber-3 instability. The role of the 
centrifugal mixing is important only in so far as it helps set up an initial vorticity 
distribution that is susceptible to this two-dimensional instability. 

In the laboratory experiments, the triangle vortices always broke down within one 
rotation period of the vortex. A typical sequence of events is shown in figure 2. The 
flows were visualized by adding dye to the fluid in the inner cylinder before it was 
withdrawn. A set of streakline photographs showing a similar sequence of events was 
previously presented by Kloosterziel & van Heijst (1991). The photograph in figure 
2(a)  was taken shortly after the cylinder was lifted. The fuzziness of the dye is an 
indication of the vertical and horizontal mixing that occurs and the growth of a 
wavenumber-3 perturbation is already clearly discernible. In figure 2 (b), the formation 
of the three satellites is clearly visible. The structure has rotated more than 90" 
clockwise with respect to (a). The upper left satellite is somewhat underexposed in this 
picture. In figure 2 ( d )  we see that this satellite moves towards the neighbouring satellite 
(in a clockwise direction) and subsequently in figures 2 (e) and 2 (J') we observe that it 
moves between that neighbouring satellite and the core, while the core simultaneously 
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FIGURE 2(a-f) .  For caption see facing page. 

loses its triangular shape. In figure 2 ( f )  we observe an almost symmetric pattern with 
one lobe (upper left) consisting of one of the original satellites and the other lobe (lower 
right) consisting of the two tightly packed satellites which are in the process of merging. 
In figure 2(g-i) the two merging satellites can still be discerned. While the merger is in 
progress, the cyclonic vortices shear the central vortex into an elongated form. In figure 
2( i , j )  we see the anticyclonic core split in two parts, which in figure 2(k ,  I> roll up and 
collect each at the side of the cyclones. Thus two dipoles form and move away from 
each other in opposite directions. Another scenario that is sometimes observed is that 
after the merger the entire anticyclonic core pairs with the double cyclonic part to form 
one dipole, leaving behind a single cyclone. In any case, we always observe the merger 
of two satellites and a subsequent break up into either two dipoles or ohe dipole and 
a monopole. 

Although we have tried to modify our experimental procedures, we have not been 
able to produce a triangle vortex which simply decays in amplitude while preserving its 
form. We tried to create a finite-amplitude pure mode-3 instability by deforming the 
confining cylinder with three symmetrically spaced indentations. This procedure 
resulted in a more symmetric triangle vortex. The typical dye pattern that forms is 
shown in figure 3 .  Clearly visible are the triangularly shaped core and the three 
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FIGURE 2. Plan-view photographs showing the characteristic evolution of a triangular vortex in a 
rotating fluid. The experiment was carried out in a large (125 cm diameter) tank placed on a turntable. 
The working depth of the fluid was 11 cm and the horizontal scale of the photographs is 80 cm. 
Increasing time is from left to right, top to bottom. The photographs were taken in the rotating frame 
at times (a) t = O.OT, (b) 2.2T, (c) 8.9T, (d) l l . lT ,  (e)  12.2T, (f> 13.3T, (g) 15.6T, (h) 16.7T, (i) 17.8T, 
(j) 18.9T, (k)  20.0T, (1) 23.3T, where T = 9 s is the rotation period of the turntable. The evolution is 
visualized by adding dye to the vortex. The triangle vortex that forms rotates in a clockwise sense. 
The phases of the evolution are discussed in the text. 

satellites, each resembling one half of a circle. The smaller-scale structures at the edge 
vary among the experiments. The flow is anticyclonic in the triangular core (clockwise) 
whereas the motion in the satellites is cyclonic. The whole structure rotates slowly in 
an anticyclonic sense. Although this vortex survives longer than that shown in figure 
2, it also eventually broke down through merger of two of the satellites. In the next 
section, we examine the reason why it is so difficult to produce a truly long-lived 
triangle in these experiments. 

With streakline photographs of particles floating on the free surface we can, as 
described in van Heijst et al. (1991), measure the vorticity distribution and 
streamfunction of such a vortex. From photographic records streaklines are digitized. 
By dividing the length of these streaklines by the exposure time of the photograph, one 
obtains a local velocity vector. We subsequently use an interpolation algorithm, on a 
30 x 30 grid (described in some detail by Nguyen Duc & Sommeria 1988) to obtain an 
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FIGURE 3. Photograph of the triangle vortex visualized by dye. This vortex was produced in the 
rotating-tank by stirring the water in a hollow cylinder with three equally spaced vertical indentations 
and then removing the cylinder vertically. 

FIGURE 4. Graphs showing contours of (a) vorticity and (b) streamfunction of a laboratory triangular 
vortex (Kloosterziel 1990). In order to obtain these graphs, a streaklike photograph was digitized and 
the velocity field was subsequently derived from this. The vorticity field is calculated by differentiation 
of the velocity field. In (a), dashed (continuous) lines indicate negative (positive) vorticity values on 
equally spaced contour levels. The streamfunction is obtained by integration over the vorticity field. 
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interpolated velocity field. By differentiation one subsequently obtains an interpolated 
vorticity field and by integration the streamfunction. For a smooth interpolation, a 
digitized flow field best with a homogeneous spatial distribution of vector is best. Any 
clustering or local sparseness should be avoided because this may lead locally to 
unphysically large gradients and thus affect the vorticity distribution that is derived 
from the interpolated field. A characteristic example of contours of vorticity and the 
streamfunction of a triangular vortex is shown in figure 4. The irregular features in the 
vorticity distribution in (a)  are due to there being few streaklines in certain areas, and 
small errors made in the measurement of the length and direction of the streaklines. 
However, a clear indication of the vorticity distribution is provided by this graph. All 
positive vorticity is confined to the three satellites whereas all negative vorticity is 
found in the core region. The features of the streamfunction in figure 4(b) are much 
smoother because it is obtained by integration of the vorticity distribution. 

3. Numerical simulations 
The laboratory experiments discussed above raise several questions. For one thing, 

we need to understand the circumstances under which triangle vortices arise. 
Furthermore, we question the longevity of the triangle vortex: why does it appear only 
as a transient state in the laboratory and are there conditions for which it would be 
long-lived? We have investigated these and related questions by using numerical 
simulations. 

The simulations which we performed are for a purely two-dimensional flow. The 
precise form of the vorticity equation that we used is 

where 5 is the relative vorticity, and v is the divergence-free velocity field, which is 
related to the streamfunction $ according to 

The dissipative terms on the right-hand side of (1) can be used to simulate various effects 
as needed. The first term, a Rayleigh friction, can be used to simulate the effect of the 
Ekman damping by the lower Ekman layer in the rotating-tank experiments. In that 
case, vo = l /TE, where the Ekman decay time is given by TE = D/(vQ)i, with v the 
molecular kinematic viscosity of water z 0.01 cm2 s-l, D the depth of the water, and 
Q the tank rotation period. In the cases simulating the rotating-tank environment, we 
set v 2  = v. The final term, referred to as the hyperviscosity, is very useful in simulating 
an 'inviscid' flow in a finite-resolution simulation. In that case, we set v,, = v2 = 0 and 
give v4 the smallest possible value that will prevent build-up of small-scale enstrophy 
due to the finite resolution while keeping energy decay at negligible levels. The method 
of simulation used is the spectral method of Patterson & Orszag (1972) on a doubly 
periodic domain of N x N grid points. We employed an isotropic spectral truncation at 
wavenumber k,,,,, = (8/@ N .  We will report the resolutions used in these simulations 
in terms of the equivalent number of grid points on the spatial grid where this implies 
a spectral representation involving all wavevectors of magnitude less than k,,,,,. 
Unless indicated otherwise, the results reported were obtained at resolution 128 x 128. 
To make sure that inaccuracies due to resolution were not significant, many checks 
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FIGURE 5. Plot showing the radial vorticity profile for the unperturbed vorticity distribution defined 
in equation (2). The curves correspond to values of the steepness parameter LY = 3, 4, 5 ,  6, 7 and 8. 
The larger values of LY correspond to narrower annuli of positive vorticity, flatter distributions of 
vorticity in the core, and steeper slopes in the distribution between the negative and the positive 
annulus. 

were performed by comparing the 128 x 128 simulations with 64 x 64 and 256 x 256 
runs. 

3.1. Random initial perturbations 
We performed a series of simulations intended to capture the evolution of the flow in 
the rotating-tank experiments. For the initial conditions in these runs we use a nearly 
circularly symmetric vortex, with enough asymmetry to mimic the inevitable 
irregularities in the vortex generation in the tank. We start with a basic circularly 
symmetric state given in non-dimensional form by 

6 = - (1 -?pa) e-", (2) 

where r is the radial distance from the centre of the vortex. Distances have been non- 
dimensionalized by L, the horizontal lengthscale of the vortex, and velocities by U. 
This is the same profile used in several significant previous studies (e.g. Carton & 
McWilliams 1989). In figure 5 we show the radial structure of this unperturbed vortex 
for integer values of a from 3 to 8. Note that increasing a makes the vorticity in the 
core more uniform, the width of the annulus smaller, and the slope of the graph 
between the core and the annulus steeper. We will refer to a as the steepness parameter. 
This family of profiles is a reasonable model for the types of isolated vortices created 
in the tank. 

Orlandi & van Heijst (1992) successfully simulated the generation and evolution of 
a triangle vortex similar to that shown in figure 2 by using an initial condition in which 
the basic state in (2), with a = 5 ,  is perturbed with a randomly generated vorticity field 
defined by 

Here q(x ,  y )  is a random number uniformly generated on the range ( - ? l o ,  qo) for each 
grid point, and c is a constant chosen to ensure that the spatially integrated value of 
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FIGURE 6. Diagram of the isolated model vortex investigated by Flierl (1988). In (a) the velocity 
profile is shown and in (b) the corresponding vorticity. Non-dimensionally the profiles have 
maximum velocity at r = 1 and zero velocity beyond Y = d. If the velocity profile is steep enough (solid 
line), the vortex becomes linearly unstable, first to wavenumber-2 instabilities, while higher- 
wavenumber instabilities can have the fastest growth rate for even steeper velocity distributions. 

(i.e. the circulation of the perturbation) vanishes. This perturbation is concentrated 
at the radius where the unperturbed vorticity field changes sign, and CT can be adjusted 
to make the perturbation penetrate the core and annulus to any desired degree. In our 
series of simulations, we varied a from 5 to 8 in integral increments, varied the strength 
of the perturbation ?lo between 0.1 and 1.0, and chose various seeds for the random- 
number generation. 

The variety of behaviour in our simulations matched the variety observed in the tank 
experiments. Some cases went through a triangle vortex stage, while others formed just 
a tripole, which then broke down either into a pair of dipoles or a monopole plus 
dipole. Even for a fixed setting of a and ?lo these different scenarios can be obtained by 
changing the seed of the random number generator. We found our best examples of 
triangle formation for values of a = 6 and 7. 

3.2. Linear stability analysis 
It is natural to ask why is there so much variation, in both laboratory experiments and 
numerical simulations. It seems, from the observations, that there is a competition 
between early tripole formation (wavenumber-2 instability) and triangle formation 
(wavenumber-3 instability) that is responsible for the variability. To pursue this 
hypothesis, we turn to linear stability analysis of the unperturbed profile in equation 
(2). Flierl (1988) examined analytically the linear stability of the two-patch vortex 
system shown here in figure 6. He found that as the relative width of the outer annulus 
is decreased the azimuthal modes become unstable in sequence beginning with mode 
2. They consist of a circular core of constant vorticity q1 = 1 between r = 0 and 1, 
surrounded by an annulus of oppositely signed constant vorticity q2 = -q  between 
r = 1 and d (see figure 1). These are isolated vortices, i.e. the azimuthal velocity is zero 
for r > d. For large d (small q)  these model vortices are linearly stable to perturbations 
with any wavenumber. For d < 2 (q > i), rn = 2 perturbations are unstable, for 
d < (1 + 2/2)8 (q > 1/2/2), the rn = 3 mode is unstable, and so on. The steeper the 
velocity profile (solid line in figure 6a) ,  the higher the wavenumber of the fastest 
growing mode. By analogy, we can expect that, as the value of the steepness parameter 
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FIGURE 7. The non-dimensional growth rates for azimuthal modes 2 (*), 3 (+), and 4 (O), 
shown as functions of the steepness parameter a (see (2)). 

01 is increased, higher and higher azimuthal modes will be unstable for our continuous 
profile. In order to understand the observed competition between these modes, we need 
to examine the actual values of the growth rates involved. To measure these growth 
rates, we ran a linearized inviscid version of the simulation code. That is, we performed 
simulations of 

(4) 
ac - + u , . V ~ + v ’ . V ~ ,  = 0, 
at 

where co is the unperturbed field given by (2) and c is the perturbation taken initially 
to be 

c = ,u cos (me) exp (5) 

where ,LL is a constant amplitude. The velocity fields u, and u’ are derived directly from 
these vorticity fields by assuming periodic boundary conditions. Simulations of the 
linearized equations at resolution 64 x 64 were performed for various values of the 
mode number m and the steepness parameter 01. Each case was run long enough 
to identify a fastest growing mode and measure its growth rate. The resulting 
set of growth rates is graphed in figure 7. The growth rates for wavenumber 2 with 2 
< a! < 5 were previously calculated by Carton & McWilliams (1989) through a normal- 
modes analysis, and we used a comparison with their results to check our procedure 
and found complete agreement. The results were further checked against the early 
evolution of fully nonlinear simulations for modes m = 2,3,4 in the case a = 7. Good 
agreement was found for over three orders of magnitude of perturbation energy 
growth. The accuracy of our linearized results would be poorest for the steepest profile 
used, that is for a = 8. Those results were checked against simulations at resolution 
256 x 256 and found accurate to within 6 YO, which is sufficient for our purposes. From 
the graphs in figure 7, we see here that for 5 < a < 8 modes 2, 3 and 4 are all growing 
with growth rates of roughly the same magnitude. For states initialized with a random 
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perturbation, as in the laboratory experiments or the fully nonlinear simulations, all of 
these modes are excited. There is not a sufficiently large difference in timescale to ensure 
that the most unstable mode will dominate before nonlinear effects take over. We 
speculate that the early competition between these modes leads to the variety of 
observed scenarios in the laboratory. 

3.3 .  Formation of stable symmetrical triangular vortices 
Given the results of the linear stability analysis, we supposed that the full array of 
behaviour observed in the laboratory experiments and the random initial condition 
simulations could be understood as simply a matter of the growing azimuthal mode 
with the highest initial amplitude ‘winning’ the competition before nonlinear effects 
take over. Since the initial stages of the observations show tripole formation, which we 
associate with a mode-2 instability, and triangle formation, which we associate with 
mode-3 instability, we performed a series of simulations with a perturbation on our 
basic profile (2) that is just a linear superposition of these two modes. Specifically, we 
took 

= &, cos (28) +,u3 cos (38)) exp yf-J, 

where a = 6 and ,u3 was held fixed at 0.1 while ,u2 was varied from one simulation to 
the next. For ,uz/,u3 in the range from 0.25 to 2.0, the evolution does indeed cover the 
range of observed initial stages from nearly symmetric triangle formation with 
breakdown after about one rotation, to no discernible triangle but strong tripole 
formation. These simulations were performed with the only dissipation being 
hyperviscosity as discussed above. 

Of this series of simulations, the one with pJp3 = 0.5 followed the evolutionary 
scenario of the rotating-tank experiment shown in figure 2 particularly well. In figure 
8, we show the evolution of a passive scalar field that was also calculated in the 
simulation. Figure 8 (a)  shows the circularly symmetric ‘dye’ distribution. Figure 8 (b)  
shows a well-formed triangle core surrounded by three semicircular cyclones which 
are somewhat asymmetric in position and shape. At this point, the triangle has already 
rotated by about a quarter of a turn from its orientation when it first clearly formed. 
The satellite furthest from the triangle core pulls a filament of material away from one 
vertex of the triangle. This also appears to be happening in the laboratory experiment 
(compare with figure 2c). Next, after about another quarter of a revolution, we see in 
figure 8(c )  the beginning of the merger of two of the satellites. Also note the light 
coloured filament which is the core material that had been pulled out by the process 
initiated in (b). This filament is also visible in the remaining panels and is very similar 
to such a filament observed in the laboratory experiment (compare figure 2d-I). In the 
simulation, we find that this is an active filament in the sense that associated with it is 
a persistent filament of negative vorticity, which was also drawn off from the core 
triangle vortex. In figure 8 (e), the satellite merger is nearly complete and the splitting 
of the central core has begun. Figure 8 ( f )  shows the final dipole splitting, which is 
quite similar to that shown for the laboratory experiment (compare figure 2 I ) .  

The spiral structure of the dye field within the vortices is due to the fact that the 
initial passive scalar distribution differs from the vorticity field distribution. In order 
to capture this effect smoothly, we have had to resort to using a hyperdiffusivity. The 
usual Laplacian diffusivity with a physically realistic diffusivity constant, which is three 
orders of magnitude smaller than molecular viscosity, proved inadequate for keeping 
small-scale noise due to finite-resolution effects from making the spiral filaments 
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FIGURE 8. Shaded contour plot for the passive tracer field in a simulation of the evolution of a 
triangular vortex from a 5 % mode-2 plus a 10 % mode-3 perturbation on the circularly symmetric 
a = 6 structure. The contour levels of the shaded regions are kept fixed from frame to frame (see text). 

patchy on the scale of the widths of the filaments. We found that with a diffusivity of 
the form K ~ V ~  the coefficient K~ could be determined empirically so that it was small 
enough to allow formation of thin filaments but large enough to prevent undue 
breakup of these filaments. Simulations using only physical values for both diffusivity 
and viscosity show all the same features discussed in the previous paragraph. Besides 
the patchiness of the passive scalar spiral filaments and a change in timescale, the main 
difference with the viscous simulation has to do with the filament that was expelled 
from the core. In the inviscid case, the vorticity associated with this filament does not 
decay, while in the viscous case it decays by an order of magnitude in amplitude over 
the course of the run. 

Continuing the series of inviscid simulations based on the perturbation (6) (with 
a = 6), we found that for cases in which ,u2/p3 < 0.25 the triangle continued to rotate 
with no sign of breaking down. This was a surprise because in all of the laboratory 
experiments and simulations with random initial conditions, the triangle vortices broke 
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FIGURE 9. (a)  Vorticity and (b) streamfunction contour plots of a numerically simulated triangular 
vortex. Thick (thin) contours in (a)  indicate positive (negative) relative vorticity, and the contour level 
values are chosen to have increments of A< = 0.2 s-l. The streamfunction, (b), is evaluated in the 
corotating frame with rotation period 81 s ;  the contour increment was taken as AY = k2 A<, where 
k = ji/a withji = 3.83 and where a = 12 cm is approximately the radius of the semicircular satellites. 
The dimensional velocity and length scales used in the initialization were U = 20 cm/s and 
L = 11 cm, and the length of a side of the computational domain was 90 cm (although here we have 
only plotted the field over an inner square of 54 cm on a side). 

down within one rotation period. Apparently, if modes other than mode 3 are 
sufficiently weak initially, a symmetric triangle vortex can form and persist. We 
performed several simulations with a pure mode-3 perturbation. In these simulations, 
we used various combinations of the values of the viscosity coefficient, vo, v2, and v4, 
to see if these choices had any appreciable effect on the form of the compound vortex 
that resulted. We found that there is no significant difference between the structures 
that form when we use, for example, viscosity, as appropriate to the rotating-tank 
experiments or no viscosity at all. In the latter case, however, small-scale noise appears. 

In order to see if the emergence of a triangle that would persist in the laboratory 
environment is possible, we ran one case with a pure mode-3 initial perturbation and 
with viscosity appropriate to the rotating-tank conditions used in the experiment 
shown in figure 2. A fairly symmetric triangle forms by the end of the first rotation - 
it also takes about one rotation for the triangle to form in the purely inviscid case but 
the rotation period is about 15 % shorter. Figure 9 shows the triangle structure in the 
viscous simulation after about two full rotations. It is not perfectly three-fold 
symmetric because of asymmetries associated with the finite resolution of the grid 
which have amplified during the evolution. 

This triangle persisted unchanged in form although becoming somewhat broader in 
scale due to the effect of the Laplacian diffusion. During the course of the simulation 
the amplitude of the vorticity field decayed by three orders of magnitude and its energy 
by over six orders of magnitude under the influence of Ekman drag and molecular 
diffusion. This indicates that it should be possible to create a triangle vortex in the 
laboratory which would simply decay in amplitude. 

Since the structure of the triangle vortex shown in figure 9(a)  is typical of that 
observed even in the inviscid generation (save for the small-scale noise), we will explore 
it somewhat further here. In figure 9(b) we plot the streamfunction in the frame 
corotating with the triangle, that is, Y = y?-+wr2, where w is the rotation rate of the 
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FIGURE 10. Scatter plot corresponding to the vorticity and streamfunction in the corotating frame 
shown in figure 9. The two dashed straight lines indicate the slope in the relationship which defines 
the internal structure of the Lamb dipole: 5 = Y, where ka = j :  and where a = 12 & 0.5 cm give 
the limits on the measured radius of the semicircular satellites. 

triangle, which we measured by allowing the vortex to rotate inviscidly for one 
revolution from the time of figure 9. With this estimate of the rotation rate, we 
computed the scatter plot of vorticity at each grid point versus the streamfunction in 
the frame corotating with the vortex. This is shown in figure 10. The spread of the 
points indicates that the state is not exactly stationary in the frame rotating with the 
estimated period, although it is nearly so. The horizontal branch corresponds to the 
exterior flow where the vorticity is negligible. The other branch has two sections. The 
part in the negative vorticity range comes from points in the triangular core. The part 
in the positive vorticity range comes from the satellites and is a roughly linear 
relationship. The combination of a linear relationship between Y and 5 and the 
semicircular structure of the boundaries suggests that the vorticity field in the satellites 
may be approximated by that of the celebrated Lamb dipole (Lamb 1932; Batchelor 
1967). The vorticity field for this dipole is given by 

5 = CJ,(kr) sin 0 (7) 

inside a circle of radius a and vanishes outside this circle. Here C is a constant and the 
parameter k is given by 

(8) 

wherej: is the first zero of the J1 Bessel function. In the case of the dipole, this solution 
corresponds to a linear relation between the streamfunction and vorticity field in the 
co-moving frame. If the satellites have a vorticity distribution given by (7), then the 
relation between Y and 5. up to an arbitrary additive constant in Y, will be 

ka = j i  = 3.83, 

5 = - k 2 Y .  (9) 

In view of (8), k can be determined by measuring the diameter of the satellites. From 
figure 9, we estimated the radius a to be 12k0.5 cm. The two dashed lines in figure 10 
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have slopes that correspond to the estimated upper and lower limits on a. The steeper 
slope, corresponding to the lower limit, is a reasonable fit to the data. Also we note 
that, in accordance with our hypothesis, the contours in the satellites as shown in figure 
9(a, b)  nearly coincide when the ratio of the contour level increments is k2.  Thus it 
appears that the satellites are indeed quite close to half of a Lamb dipole. The analytic 
form for the interior solution is highly dependent on the vorticity distribution near the 
centre of the initial circular vortex. 

3.4. Stability of the triangular vortex 

We now turn to the question of why it is so difficult to produce a stable triangle vortex 
in the laboratory. We already know that viscosity is not responsible for the instability 
of the triangle vortex as shown by the simulations discussed above. Thus we now 
proceed to investigate the effects of perturbations to the symmetric triangle vortex. In 
these investigations we used the triangle state shown in figure 9 as the initial condition. 
We followed the inviscid evolution of this vortex for over twenty of its rotations 
without observing any evidence that it would break down. This was verified at both 
resolutions 64 x 64 and 128 x 128 (while at 256 x 256 the simulation was only checked 
for a few rotations due to the prohibitive expense of runs at that resolution). Although 
there was some variation of its form over that long period, the basic structure did not 
change significantly. Thus it appears possible that for inviscid flow the symmetric 
triangular vortex is a stable structure. The difficulty in finding a stable triangle vortex 
experimentally or in the corresponding random-perturbation simulations must be 
because it is only stable for perturbations with amplitude below some small threshold 
value. 

To examine how large the tolerance for perturbations is, we performed two different 
kinds of stability tests. In the first, we perturbed the strength of the satellite vortices 
while leaving the inner triangle core unperturbed. This type of perturbation was 
suggested by an analysis of point-vortex models as discussed in the next section and by 
experience from the experiments and simulations discussed above. It seemed from these 
sources that the triangle may be very sensitive to variations in the strengths of the outer 
satellites which would lead to variations in the rate of revolution of the satellites about 
the core and thus permit a collision of a pair of satellites. The perturbation was 
prepared by taking the state shown in figure 9 and multiplying the vorticity field of the 
satellites by the factors 1 + 6, 1 - 6, 1, respectively, in one set of experiments, and by 
factors 1 +6, 1 -+a, 1 -fa, in a second series. All of the stability simulations were run 
with no bottom drag and no Laplacian viscosity; however, in order to avoid the build- 
up of enstrophy in the smallest scales during the long runs, hyperviscosity was used. 
In figure 11 (a), we plot the time it takes until a merger occurs between two of the 
satellites in each of these series of experiments. The time is given in units of the rotation 
period of the unperturbed vortex and the simulations were terminated after 20 rotation 
periods even if no breakdown had occurred. For perturbations less than 2 %  the 
triangle remains intact for more than 20 rotation periods. There is a steep fall off of the 
time to merger or breakdown between perturbations of 2 and 4 YO. Defining a stability 
boundary based on simulations requires some arbitrary choice of how to define the 
stable regime since numerical noise will eventually contaminate the results. For 
practical purposes, we can take our stability boundary to be approximately where the 
lifetime, as a function of the perturbation amplitude, becomes very large. Thus in figure 
11 (a) the stability boundary is around 3 %. This estimate can be compared to the rough 
estimates of the stability boundary for dipoles being about 10 % judging from studies 
of dipoles propagating over topography (Carnevale et al. 1988). 

11-2 
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FIGURE 1 1. Stability plots for the triangle vortex. (a)  The time to merger of two of the satellites for 
the perturbed triangle vortex as a function of the strength of the perturbation. The data points 
marked by asterisks (circles) correspond to the case in which the initial satellite vortex strengths are 
multiplied by 1 +S, 1-8, 1(1+ 8, 1 -8/2,1 -S/2). The merger time is expressed in units of the 
unperturbed vortex rotation period (81 s) and the perturbation strength in percent (i.e. 1008). (b) The 
results from a stability study in which a random vorticity field of lengthscale h and amplitude yms 
was added to the triangle vortex. Asterisks mark the experiments in which merger occurred between 
two of the three satellites before ten rotations periods of the unperturbed structure had elapsed. 
Circles mark those simulations in which the vortex system was still intact after ten rotation periods. 
The perturbation amplitude ym,, is given in multiples of the r.m.s. velocity of the triangle vortex, and 
h is defined so that h = 1 corresponds to the size of one side of the triangle vortex (see text). 

In the second kind of stability study, we added a randomly generated homogeneous 
isotropic vorticity field to the vortex shown in figure 9. This perturbation field was 
created by adding contributions from all wavenumbers between two fixed limits, 
k, < k,, in such a way that the energy spectrum of the perturbation was independent of 
wavenumber. The real and imaginary parts of the complex amplitude for each 
wavenumber were generated from a Gaussian distribution. In figure 11 (b) we show the 
resulting stability diagram. The perturbation amplitude is measured as the ratio of the 
r.m.s. velocity of the perturbation to the r.m.s. velocity of the triangular vortex. The 
r.m.s. averages are taken only over the area within an imaginary boundary of an 
idealized structure consisting of the triangle surrounded by three semicircles. The 
lengthscale of the perturbation is defined as h = &/(LA k), where L, is the size of the 
periodic computational box, LA = 2a is the length of one side of the triangle vortex, 
and k = $(k, +k,). Thus h = 1 corresponds to the scale of the triangular vortex. The 
circles on this plot indicate the simulations in which the triangle vortex survives for 
more than ten rotation periods, and the asterisks indicate the simulations in which the 
triangle breaks up before that time limit is reached. Again the definition of a stability 
boundary is somewhat fuzzy. The fall off of time to merger for the points marked by 
asterisks is fairly steep as one moves away from the dark curve drawn in the diagram 
(just as in the case described by figure 11 a). Thus we see that the triangle vortex is most 
unstable to perturbations of lengthscale close to its own, and the minimum strength of 
the perturbation needed to destabilize it is about 3 YO measured in r.m.s. velocity. The 
structure appears very stable to large-scale perturbations, which for the most part 
simply advect it, and also to very small-scale perturbations, which are quickly sheared 
out to even smaller scales to be eventually dissipated by hyperviscosity. 
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FIGURE 12. (a)  Vorticity and (b) streamfunction contour plots of a square vortex. In (a)  thick (thin) 
contours indicate positive (negative) relative vorticity ; the contour level values are chosen to have 
increments of A< = 0.3 s-l. The streamfunction shown in (b) is evaluated in the corotating frame with 
rotation period 44.8 s. Beyond a certain value, the high-level contours were not drawn because of 
‘bleeding’ between the lines. The contour increment was taken as A!€’ = k2A<, where ka = j ;  and 
a = 8.3 cm is approximately the radius of the semicircular satellites. The dimensional velocity and 
length scales used in the initialization were U = 20 cm/s and L = 11 cm, and the length of a side of 
the computational domain was 90 cm (although here we have only plotted the field over an inner 
square of 54 cm on a side). 

3.5 Higher-order instabilities 

Seeing that the mode-3 instability leads through nonlinear saturation to the triangular 
vortex, we are led to investigate whether the mode-4 instability would lead to a square 
vortex. We performed a series of experiments with values of a running from 3 to 8, both 
with and without viscosity. To the unperturbed state we added a perturbation as 
defined by ( 5 )  with azimuthal mode number 4 only, with amplitudes varying from 
p = 0.1 to 0.5 and with lengthscale CT = 1 in the initial condition (2). Further exploration 
of the parameter space was not performed since we found that these somewhat 
arbitrary choices did lead to the formation of square vortices for a > 5.  The best- 
defined square vortices in our experiments formed for a = 7 and 8. For example, in 
figure 12 we show the vorticity and streamfunction plots of a square vortex which 
formed for a steepness parameter of a = 8. The simulation which produced this vortex 
was run with the molecular viscosity of water. The basic structure developed by time 
t = 10 s, and by t = 72 s the structure reached that shown in the figure. The vorticity 
pattern is shown in figure 12(a) and the streamfunction in the corotating frame of the 
vortex system is given in figure 12(b). The rotation rate of the structure was determined 
by inviscid simulation for one quarter of a rotation period. The scatter plot of the 
streamfunction and vorticity in the corotating frame is shown in figure 13. As with the 
triangle, the slope of the scatter plot in the positive vorticity range is well approximated 
by the proportionality constant which defines the Lamb dipole. The dashed line in the 
diagram results from taking 2a = 16.6 cm as the length of one side of the square and 
then solving for k from ka = j :  % 3.83. Unlike the triangle, however, the shape of the 
satellites here are somewhat narrower than semicircles with radius a. The thickness of 
the outer satellites is found to vary with the value of a. 

In all the simulations in which the square vortex formed, the structure broke down 
before at most 3.5 rotations were completed. The inviscid runs preserved the structure 
the longest. The most long-lived square vortex was achieved for a = 8, starting with a 
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FIGURE 13. Scatter plot corresponding to the vorticity and streamfunction in the corotating frame 
that were shown in figure 12. In addition, the straight dashed line shows the slope in the relationship 
which defines the internal structure of the Lamb dipole: 5 = ( k ~ ) ~  Y, where ka =j:  and a = 8.3 cm 
is approximately one half of one side of the square. 

perturbation amplitude of ,u = 0.5, with only hyperviscosity dissipation acting. In all 
cases, these square vortices, which have satellites of equal strength, broke down 
through the simultaneous merger of their satellites in two pairs on opposite sides of the 
square core. In order to assess the possibility of whether the square vortex could be 
observed in the rotating tank under the same conditions that produced the triangle 
vortex, we performed a simulation with the appropriate dissipation as discussed above 
(i.e. TE = 132 s and v = 0.01 cm2 s-l). The initial vortex in this simulation was created 
with a = 8, and a wavenumber-4 perturbation of amplitude ,u = 0.125. The resulting 
evolution is shown in figure 14. The square vortex formed after about 10 s. Unlike the 
triangle vortex which lasted indefinitely under the same conditions, this square vortex 
broke down after about two and a half rotations. The double satellite merger is shown 
in figure 14(c). This led to an intermediate tripole state (pd) which then broke down 
through the familiar double dipole instability. We also performed simulations in which 
the square vortex shown in figure 12 was perturbed by strengthening one satellite while 
correspondingly weakening another to preserve the total circulation. In those cases, 
only two satellites merged at first, leading to a temporary triangle vortex. Then another 
merger took place leading to the tripole state, and then finally the double dipole 
instability took over. From these results, we conclude that it should be possible to 
observe a square vortex emerge from a nearly circularly symmetric vortex in rotating- 
tank experiments if the initial perturbation is made sufficiently close to a pure mode- 
4 perturbation. However, it is also clear that it would only appear as a transitory state. 

We have also been able to create a pentagon vortex in a numerical simulation by a 
wavenumber-5 perturbation on an a = 8 profile. Although strong satellites do form 
rapidly, the structure breaks down after executing only about a half of a rotation. The 
breakdown began with the nearly simultaneous merger of two pairs of satellites which 
produced a roughly triangular system. Another merger followed, producing a tripole 
state. The tripole finally broke up into a dipole and monopole. 
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FIGURE 14. Vorticity contour plots showing the evolution of the square vortex. For this simulation 
we used a kinematic viscosity v = 0.01 cm2 ssl and bottom drag with an Ekman decay time of 132 s, 
thus demonstrating the possibility of producing a transitory square vortex in the rotating-tank under 
conditions similar to those in which the triangle was produced. The dimensional velocity and length 
scales used were U = 20 cm/s and L = 11 cm, and the length of a side of the computational domain 
was 90 cm. Thick (thin) lines represent positive (negative) contour levels. (a)-(d) Times t = 0,80, 130 
and 140 s, respectively, with contour-value increments of A{ = 0.8,0.4,0.12 and 0.11 s-l, respectively. 

4. Point-vortex models 
Further insight into the stability behaviour of the triangular vortex can be achieved 

through a consideration of a point-vortex model. The simplest model of the triangular 
vortex is obtained by replacing each of the three satellites by point vortices with 
circulations K ~ ,  K ~ ,  K ~ ,  each of the same sign, and the core vortex by a point vortex 
with circulation K*.  Since we are only considering isolated vortices we have 
K~ = - (K ,  + K~ + K ~ ) .  The equations are non-dimensionalized with lengthscale L, a 
typical distance between satellite and core, and time by T = L'/IKI, where K is a typical 
circulation of one of the satellites. 

If the satellites are slightly unequal a steadily rotating configuration can still be 
achieved, but the satellites will no longer be at the vertices of an equilateral triangle. 
For any combination of satellite strengths (within certain limits beyond which there are 
no steadily rotating triangular configurations) the positions of the satellites can be 
determined (see below), but there are no simple expressions for the positions or the 
rotation rate. 
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The equations of motion of a collection of point vortices can be derived from a 
Hamiltonian H (Batchelor 1967). They are (a dot denotes the time-derivative) 

with 

Here dEI is the Euclidean distance between vortex number a and vortex number p. 
Generally a system of four point vortices, unlike one with only two or three point 
vortices, is not integrable (cf. Aref & Pomphrey 1982). However, it has been noted by 
Eckhardt (1988) and Rott (1990) that in the case of zero net circulation and zero net 
impulse, there are enough integrals of motion in involution to reduce the effective 
number of degrees of freedom of the system to one. In this particular case a simple two- 
dimensional phase diagram contains all the information about the evolution of the 
system up to Galilean transformations (translations and rotations). The laboratory 
vortices as discussed in $2 are isolated and have no net impulse and thus the 
corresponding point-vortex model falls into the integrable class. 

Following Eckhardt (1988), a canonical transformation is found in which the 
Hamiltonian, as given by (lo), can be expressed as a function of two variables J and 
4, with the distances given by the following expressions: 

d,2, = Kt {(I +p2)-(1 -pZ)J+2p(l -J”kosq5}, 
2 4 %  + K3) 

{( 1 + p2) + (1 -p2) J -  2p( 1 - J”>” cos $h}, -K2K4 

d’4 = 2K3(K2 + K3) 

- K 3 K 4  {(I +a2)+(1-2)J+20-(1 -J2)kOS$6}, 
d,24 = 2K2(K2 + K 3 )  

where p = (- K1 K 3 / K 2  K ~ ) : ,  r = (- K~ K 2 / ~ 3  K$. I 
In Eckhardt (1988), the prefactors which explicitly depend on the circulations were not 
given. Since these prefactors are essential to the construction of the spatial 
configuration from given values of J and 4, and since their derivation is quite tedious 
and long, we give them here explicitly. Note that in our expressions the K~ are signed 
and not, as in Eckhardt’s notation, the absolute values of the circulations. In these non- 
dimensional expressions we have J E  [ - 1, + I] and 4 E [0, XI. To any pair (J, 4) there 
corresponds a unique configuration (up to the rotations and translations) of the four 
point vortices (with numbers 1-3 having positive circulation and number 4 with 
negative circulation) with zero net circulation and zero net impulse. 

The evolution of the system modulo translations and rotations is along contours 
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FIGURE 1.5. Diagrams illustrating the stability of the symmetric-strength four point-vortex system, 
under perturbations in shape. (a)  A contour plot of the Hamiltonian for the four-point system with 
point-vortex strengths K~ = K~ = K~ = 1 and K~ = - 3. J ranges from - 1 to 1 on the horizontal axis, 
while 4 ranges from 0 to 7c on the vertical. (b) The deformation of the shape of the four-point-vortex 
system corresponding to the phase-space coordinates J and Q indicated by the positions of the stars 
in (a). The solid lines in (b)  indicate the shape of the fully symmetric configuration corresponding to 
the star at the extremum of the Hamiltonian at the centre of panel (a), and the dashed line shows the 
shape of the most perturbed configuration corresponding to the star outside the stable elliptical 
region in panel (a). 

H(J,  q5) = constant. The phase-space curves H = constant for the symmetric case are 
shown in figure 15(a). In this case, i.e. K~ = K~ = K~ = 1 and K - - 3 ,  the steadily 
rotating configuration corresponds to ( J ,  q5) = (0, in). This is the elliptic fixed point in 
the middle of the phase diagram. Substitution of these values of J and 4 in the above 
expressions for the dap verifies that the satellites are indeed at equal distances of 
magnitude 1 from the centre vortex and at the vertices of an equilateral triangle. 

In general the values of J and q5 for the steadily rotating state can be found by 
simultaneously solving 

4: 

i3H --0, i3H - - = o .  
ilJ aq5 

By substitution in the equations of motion the rotation rate can then be found. In the 
phase diagram there are six singularities where IHI + 00 ; these correspond to those 
situations where two point vortices come infinitesimally close. As is easily found 
with ( 1  l ) ,  they are at J = k 1 (the whole left and right boundaries of the diagram), 
and at ( J ,  q5) = (4 ,0) ,  (6, 0), (- 4, TC) and (- J,, n), where 4 = (1 -a2)/( 1 + a2) and 

From figure 15(a) it is clear that the symmetric steadily rotating configuration is 
stable to sufficiently small perturbations of the positions of the satellites. If perturbed 
enough, the system is placed on one of the phase curves that extend away from the fixed 
point. To see how much of a perturbation is needed to put the configuration on a phase 
curve that does not enclose the fixed point, we have drawn a number of stars in figure 
15(a) starting at the elliptic point outwards along the line q5 = in. In figure 15(b) we 
have drawn the physical configurations corresponding to the ( J ,  q5) values marked by 
stars in figure 15(a). The configuration marked by the star just inside the stable region 
corresponds approximately to a 20 % variation in the distance of one of the satellites 
from the centre point. The value for J needed for a perturbation of a given size is 

4 = @2- 1)/@2+ 1). 



326 G .  F. Carnevale and R. C. Kloosterziel 

FIGURE 16. As figure 15 but for K~ = 1.1, K~ = 0.9933, K~ = 0.9067, K~ = -3.0. 

readily computed from (1 1) for d14 (e.g. for dI4 = 0.8, J = 0.36 and then keeping 
q5 = in the rest of the of the distances can be computed easily). The configuration 
indicated by the star outside the closed elliptic region in figure 15(a) is unstable. This 
state corresponds to a perturbation of almost 30% in the distance d14 from the 
symmetric case at J = 0. The spatial configuration corresponding to this unstable 
initial condition is indicated by the dashed line in figure 15(b). In this case, in less than 
one rotation period, one of the satellites overtakes the one ahead of it and moves in 
between it and the core vortex, and this corresponds to moving up or down along the 
vertically oriented lines on the right-hand side of the elliptic region in figure 15 (a). This 
is also what happens just before the merger of two of the satellites in our examples of 
the instability of the triangle with continuous vorticity fields. By comparing the dashed 
triangle with the solid triangle (the steadily rotating configuration), one can see how 
strong the initial perturbation must be for instability. Perturbations in other directions 
away from the centre in figure 15(a) correspond to even stronger deformations. 

Considerably less of a perturbation is needed, though, to make the steadily rotating 
configuration unstable when the satellites have unequal strengths. As was shown by 
Eckhardt (1988), the closed region around the elliptic fixed point shrinks in size when 
the strengths of the satellites are made unequal. With a 10 YO variation in the strength 
of the satellites, the spatially symmetric configuration is no longer stable. We show 
this in figure 16 with the aid of the phase diagram for the particular case K~ = 1.1, 
K~ = 0.9933, K~ = 0.9067, K~ = -3.0 which was previously treated by Eckhardt (1988). 
Again we have indicated a number of positions on the phase diagram (figure 16a) and 
constructed their corresponding spatial configurations (figure 16 b). Note that the 
stable configuration (solid lines) corresponding to the elliptic fixed point is not spatially 
symmetric. On the other hand, the nearly symmetric configuration (dashed lines) is 
unstable and lies on a trajectory that takes it towards the left border of the phase 
diagram, which corresponds to the singular point dZ3 = 0. In this case two of the 
satellites will eventually come very close. For even larger differences between the 
strengths of the satellites, the size of the closed region around the fixed point shrinks 
to zero (see Eckhardt 1988) and there is no longer a steadily rotating triangular 
configuration. The main conclusion is that the steadily rotating triangular vortex 
model is (nonlinearly) stable to small enough perturbations, but with a stability 
domain that decreases rapidly in size when the strengths of the satellites become 
unequal. 
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FIGURE 17. Diagram showing the positions of the positive vortices (open circles) representing the 
satellites and the negative vortices (filled circles) representing the extended core in the five-point- 
vortex model of the triangle vortex. The distance between the negative vortices is d = 0.5. 

FIGURE 18. Diagram showing the trajectories of the vortices for the five-point model shown in figure 
17 with two different sets of vortex strengths. (a) The strengths are given by K~ = K~ = K~ = 1 and 
K* = K~ = - 1.5. These trajectories illustrate that splitting the core vortex alone does not destabilize the 
system. (b) The strengths have been altered according to (12) with the perturbation parameter given 
by S = 12.5%. 

As an interesting aside, we note that by giving some structure to the core by 
representing it by two point vortices instead of one, we can capture the essential 
features of the entire instability scenario. The configuration of the five-point model is 
drawn in figure 17. We fix the sum of the strengths of the satellites at 3 and the sum 
of the strengths of the core anticyclones at -3. The case in which d, the distance 
between the anticyclones, is zero is equivalent to the four-point model. First of all, we 
consider the symmetric case with K~ = K~ = K~ = 1 and K~ = K~ = - 1.5. For choices of 
d less than 0.78, we found that the orbits of the point vortices are all nearly circular, 
or, more precisely, the satellites remain in orbits bounded by two circles of radii near 
r = 1 while the two core vortices remain in orbits bounded by two circles of radii near 
id. For example, figure 18(a) shows the orbits, for a period of four revolutions of the 
outer vortices, for the case with d = 0.5. Thus, for a large range of values of d, this is 
also a good model for a symmetric triangle vortex. 

Through numerical simulations we examined the results of changes in strengths 
while leaving the initial positions as shown in figure 17 (with d = 0.5). For simplicity 
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we chose to examine only the case in which one satellite is made stronger at the equal 
expense of the other two. The constraints of zero total circulation and zero momentum 
then fix the values of the interior vortices. Thus we take 

and Kq = -;-36, K 5  = -:+36, 

where 6 is arbitrary. For 0.124 < S < 0.133, the evolution captures most of the 
important features observed in the laboratory experiments. For S somewhat less that 
0.124 the configuration does not split, and for S somewhat larger than 0.133 a wide 
variety of behaviour is observed. The exact boundaries of the range of 6 for which the 
behaviour is as in the laboratory experiments is difficult to determine due to the 
sensitivity of the results to initial data and numerical error near these boundaries. 
Figure 18(b) shows the orbits of the five points for the case 6 = 0.125, with solid 
(dashed) curves indicating the trajectories of the satellites (core vortices). After 
approximately three-quarters of an orbit the strongest of the satellites pairs with the 
weaker of the two core vortices, forming a dipole which leaves the figure at the right. 
Meanwhile, the two weaker satellites begin to rotate around each other and as a unit 
combine with the strong core vortex to form a dipole structure which propagates off 
to the left in the figure. This mutual orbiting of the two weak cyclones is observed in 
the laboratory experiment as a prelude to the merger of these vortices into a single 
cyclone (see figure 2). Of course, with the point vortices this merger cannot actually 
occur (unless some ad hoc rule were appended to the dynamics as in Carnevale et al. 
1991). However, the fact that the three-point structure that moves off to the left 
continues to act essentially as a dipole is sufficient for our current purpose. 

Finally, we turn to the stability of the higher-order geometrical vortices, the square, 
the pentagon, etc., from the point of view of point-vortex models. Specifically, we 
consider here only the zero-circulation steadily rotating configurations consisting of n 
equal-strength point vortices symmetrically placed on a circle centred on a point vortex 
of opposite sign. It can be shown that the case n = 2, a model for the tripole, is 
nonlinearly stable (Kloosterziel 1990), and we have seen above that Eckhardt’s (1988) 
analysis proves that the case n = 3, the model of the triangular vortex, is also nonlinear 
stable (cf. figure 15a). Morikawa & Swenson (1971) performed a linear stability 
analysis on these models for all n. The perturbations they considered were small 
displacements in the initial positions. Consistent with the later nonlinear stability 
results, they found that the cases n = 2 and 3 are linearly stable, but more importantly, 
they proved that for all cases n > 4 the configurations are linearly unstable. We 
illustrate this instability for the cases n = 4 and 5 ,  the models of the square and 
pentagon vortices, in figure 19. For these fully nonlinear simulations of the evolution, 
initial perturbations were made only in the initial positions of the satellites. In each 
case, one satellite was moved 1 YO further away from the centre vortex, and the other 
satellite positions were perturbed to a lesser extent but in such a way that the net 
momentum of the complete structure remained zero as in the unperturbed case. Figure 
19 shows that in less than one rotation, the trajectories deviate greatly from the circle, 
and that the system reaches the stage where at least one of the satellites has caught up 
with the one ahead of it in angular position and has moved in between it and the centre 
vortex. This is the same form of instability that led to the close approach and merger 
of satellites in our simulations of the continuous square and pentagon vortices. This 
should be contrasted with the case of the point-vortex model of the triangle, where we 
saw that perturbations of even 20 % in the positions of the satellites can still be stable. 
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FIGURE 19. Diagram showing the instability in the trajectories of the vortices for the five- and six- 
point models of the square and pentagon vortices. In the unperturbed cases, the satellites lie on a 
circle centred on the core vortex. Here the satellites are initially perturbed from those positions by at 
most 1 O/O. The figure shows the perturbed orbits up to the point where at least one of the satellites 
moves in between the one ahead of it and the core vortex. 

In view of the results of Morikawa & Swenson (1971), we anticipate that all higher- 
order coherent vortices that may form through amplification of wavenumbers even 
higher than 5 are also unstable. 

5 .  Summary 
Inspired by laboratory observations, we have investigated the emergence and 

evolution of triangular vortices and higher-order geometrical vortices through 
numerical simulations. We have shown that it is possible to create a stable symmetrical 
triangle vortex from a circularly symmetric profile by a pure mode-3 instability. This 
triangle vortex was shown to be stable to perturbations of amplitude less than about 
3 % in either velocity or vorticity amplitude. In the parameter regime where the pure 
wavenumber-3 instability yields the triangle vortex, the growth rates of neighbouring 
wavenumbers are all of the same order of magnitude. It is for this reason that arbitrary 
initial perturbations containing all these components in their spectrum lead to the 
formation of asymmetric unstable triangular vortices. This is typically the case in the 
laboratory, and usually the triangular vortex is observed to change into a tripole, 
through the merger of two satellites, and subsequently break up into either two dipoles 
or a dipole plus monopole. These observations have been compared to predictions 
based on point-vortex models in $4. The point-vortex model of the symmetric 
triangular vortex is stable to finite perturbations of both the equilibrium positions and 
the strengths of the satellites. If the satellites are sufficiently asymmetric in strength (e.g. 
10 % variation) and placed symmetrically about the core vortex, then the structure is 
highly unstable. The instability leads to the close approach of two of the satellites, 
which in the continuous system leads to merger. The events observed in the laboratory 
and in the simulations can be captured by the point-vortex model if the core is replaced 
by two point vortices. The instability then proceeds with dipole splitting. 

The higher-order geometrical vortices that we examined, the square and the 
pentagon, proved unstable even when symmetrically prepared. Furthermore, the 
results of Morikawa & Swenson (1971) concerning the stability of point-vortex models 
for the higher-order structures suggest that the triangle vortex is probably the only 
stable member of the family of geometrical vortices. Thus, the set of stable coherent by- 
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products of the breakup of simple unstable circularly symmetric isolated vortices of the 
type considered here most likely only includes the monopole, dipole, tripole and 
triangle vortices. 

After the submission of our original manuscript, we discovered that another study 
of geometrical vortices was performed by G. Morel and X. J. Carton but not published 
(SHOM internal report on oceanography 1991). They used contour dynamics to study 
the stability of these vortices with piecewise-constant vorticity from triangles up to and 
including octagons and reached the same conclusion that we did, namely that only the 
triangle is stable. Also since this manuscript was first submitted, an article has appeared 
on instabilities of tornados (Lin 1992) which shows, with contour dynamics, the 
instability of a circularly symmetric vortex leading to the triangle vortex. 
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department at University of California, San Diego. We are grateful for some very 
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