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Evolution of near-inertial waves 
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The three-dimensional evolution of near-inertial internal gravity waves is investigated 
for the case of a laterally unbounded fluid layer of constant finite depth. A general 
Green’s function formulation is derived which can be used to solve initial value 
problems or study the effect of forcing. The Green’s function is expanded in vertical 
normal modes, and is very singular. Convolutions with finite-sized initial conditions 
lead however to well-behaved solutions. Expansions in similarity solutions of the 
diffusion equation are shown to be an alternative for finding exact solutions to initial 
value problems, with respect to one normal mode. For the case of constant buoyancy 
frequency normal modes expansions are shown to be equivalent to expansions in an 
alternative series of which the first term is the response on the infinite domain, all the 
others being corrections to account for the no-flux boundary condition on the upper 
and lower boundaries. 

1. Introduction 
In this paper we study the evolution or dispersion of near-inertial internal gravity 

wave packets by analytical and semi-analytical means. Near-inertial internal gravity 
waves are a major component of the oceanic internal wave field. Kinetic energy 
spectra in the ocean nearly always show a pronounced ‘inertial peak‘ at frequencies 
slightly above the Coriolis frequency (e.g. Fu 1981). Near-inertial internal waves 
in the upper ocean are thought to be generated by fluctuations in the atmospheric 
windstress. These fluctuations cause inertial oscillations in the oceanic surface mixed 
layer. Part of their energy leaks into the underlying ocean as near-inertial internal 
waves. An open question is what processes actually cause the leakage. True inertial 
oscillations with frequencies right at the Coriolis frequency have an infinite horizontal 
scale and do not exert a pressure force on the underlying ocean. For leakage to occur, 
some process is needed that imposes a finite horizontal scale and shifts the frequency 
above the Coriolis frequency. The finite size of the atmospheric disturbance, lateral 
variations of the oceanic waveguide (e.g. Coriolis frequency, buoyancy frequency, 
ocean depth) and mean currents are the prime candidates. Here we look at the 
evolution of near-inertial internal waves after the passing of a finite-sized atmospheric 
disturbance or equivalently at the evolution of a finite-sized wave packet in an 
otherwise homogeneous ocean. 

The near-inertial oceanic response to atmospheric storms or disturbances has been 
extensively studied (e.g. Pollard 1970; Greatbatch 1983, 1984; Price 1983; Rubenstein 
1983; Gill 1984; Kundu & Thomson 1985; Kundu 1993). These oceanographic studies 
were aimed at determining the response and at estimating how much near-inertial 
energy leaks from the surface mixed layer into the underlying ocean. The effects 
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of nonlinearity, mixing, j-effect and size and horizontal speed of the atmospheric 
disturbance was considered. The study closest to ours is Gill (1984) who studied the 
dispersion of near-inertial waves in the wake of a storm. His initial conditions were 
invariant in the x-direction (the storm track), and either periodic in the y-direction or 
confined to a narrow band. In the latter case the calculations were done numerically 
and involved summing up a number of normal modes. Gill showed that the initial 
loss of energy from the surface mixed layer may be a major contributor to the internal 
wave energy in the underlying thermocline. He also showed that the amplitude of the 
near-inertial waves is intermittent, that vertical scales tend to decrease with time, and 
that there is some bottom intensification of energy. In the y-periodic case the problem 
becomes that of dispersion in the vertical only, with a fixed horizontal structure. Our 
study differs from Gill's study in that we look at the horizontal dispersion of a 
single normal mode and the simultaneous horizontal and vertical dispersion. More 
importantly, our study differs because we calculate the dispersion in an analytical or 
semi-analytical way. 

The dispersion relation of near-inertial internal gravity waves has a peculiar be- 
haviour. In the horizontal, small-scale waves propagate the fastest, whereas in the 
vertical large-scale waves propagate the fastest. Furthermore, the horizontal and 
vertical group velocities approach zero as the frequency of the waves approaches the 
Coriolis frequency. The dispersion problem is part of the Rossby adjustment problem 
(Gill 1982). Any initial condition can be decomposed into a geostrophically balanced 
part and a gravity part. The geostrophic part carries the potential vorticity of the flow. 
The gravity part disperses in the form of surface and internal gravity waves, leaving 
behind the geostrophically balanced part. We only consider the baroclinic adjustment 
problem here. For storm sizes O(500km) only the baroclinic part of the flow field 
adjusts by the dispersion of near-inertial internal gravity waves. The barotropic part 
adjusts much faster by much higher frequency surface gravity waves. 

In 92 we derive the equation that governs the evolution of baroclinic near-inertial 
internal waves. This derivation makes essential use of the fact that the scale of 
near-inertial waves is much larger than the Rossby radius of deformation, i.e. that the 
Burger number is much smaller than 1. For scales O(500 km) this is only true for the 
baroclinic modes (the baroclinic Rossby radii in the ocean are O(50 km) or less) but 
not for the barotropic mode (the barotropic Rossby radius is typically O(2000 km) at 
mid-latitudes). The resulting equation is an integro-differential equation for a complex 
amplitude which is first order in time. Our derivation of this equation is somewhat 
ad hoc. A much more systematic, but also much more involved derivation is given 
in Hasselmann (1970) using projection operators that decompose the flow field into 
its geostrophic and gravity component. This projection operator formalism does not 
require the Burger number to be small. 

The Green's function is determined in 93. It is singular at the time origin, because 
large horizontal wavenumbers propagate with unbounded speed in the small Burger 
number approximation used here. This singular behaviour causes no problems how- 
ever once initial conditions are used that have vanishing energy at high wavenumbers. 
Formally, the Green's function can be used to find the solution for any initial wave- 
field distribution, and can also be used to determine the evolution for problems with 
forcing included. In Appendix A we show that initial value problems can also be 
solved by an expansion into similarity solutions, in close analogy to Kloosterziel's 
(1990) results for the diffusion equation. In 94 we narrow our focus to the case 
of constant Brunt-Vaisala frequency. In that case there is an alternative to using 
normal modes expansions. With the Poisson sum formula, a normal modes series can 



Evolution of near-interial waves 27 1 

be converted into a different series which has a simple physical interpretation when 
the evolution of an approximate point source is considered. The first term in this 
alternative series gives the evolution of a point source in infinite space, while all the 
other terms are strategically located point sources (‘image points’ analogous to ‘image 
charges’ found in electrostatics problems) which ensure that the boundary conditions 
on the finite vertical domain are satisfied. They can be thought of as describing the 
reflections of the waves at the boundaries. The Poisson converted series converges 
far more rapidly than a normal modes expansion, that is, few terms are needed to 
get a reliable picture of the evolution. As an example we finally apply the Poisson 
conversion to the case of an initial condition which is Gaussian in the horizontal 
and which has a large amplitude in a narrow layer near the surface. Many normal 
modes need to be summed here at any time, except for at large horizontal distances 
where the propagation of the first baroclinic mode dominates. With the Poisson sum 
formula we obtain an alternative series which converges rapidly for large time at 
small and intermediate distances from the centre. Section 5 summarizes the main 
results. Oceanographic implications of our results will be published elsewhere as well 
as many details of the wavefield evolution in various cases, omitted here for the sake 
of brevity. 

2. Equations of motion 
Consider linear hydrostatic motions of an incompressible rotating stratified Boussi- 

nesq fluid in an unbounded ocean of constant depth H .  Their governing equations 
are 

a,u - fov + axp  = 0, 
a,v + fou + a y p  = 0, 

-b + d z p  = 0, 
arb + N’(z)w = 0, 

d,u + a,v + a,w = 0, 

together with the boundary conditions 

a,[ = w at z = 0, 
p = g [  at z = 0, 
w = O  at z = - H .  

Here u,v and w are the zonal, meridional and vertical velocity components, re- 
spectively, p the pressure (divided by a reference density), f~ the constant Coriolis 
frequency, b the buoyancy, N’(z) the Brunt-Vaisala or buoyancy frequency, and [ the 
free-surface elevation. The surface is at z = 0 and the bottom at z = - H .  With ( 5 )  
and the boundary condition (8) we have 

w = - l L ( d x u  + ayv)dz’, (9) 

and using (3) to eliminate b, the buoyancy equation (4) can be written as 

&atp = N’(z) /’ (8,u + d,v)dz’, 
- H  
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with boundary condition (this follows from (6) and (7)) 
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a,p = gw at z = 0. (11) 

Equation (10) is integrated in conjunction with this boundary condition and (9) to 
yield 

z’ 

-H 
a tp  = - 1 dz’N2(z‘) / dz”(d,u + d , ~ )  - g 

tfiJQ+ 0 

(12) 

The equations of motion can therefore be rewritten in the matrix form (Hasselmann 
1970) 

0 
a, (13) ) + ( t f i f d -  it 

where 

U+ = u k iv, a, = a, k id,, 
are the rotary components of the horizontal velocity vector and the gradient operator, 
respectively, and 

,N2(z’) 
$ = / dz - 1; dz“ + 4 So dz”. 

z f,’ f0 -H 

The equation for u- is the complex conjugate of that for u+. 
The integral operator $ defines the vertical eigenvalue problem 

%4n(Z)  = %4n(Z), (16) 

where &(z) ( n  = 0,1,2,* * .) is a denumerably infinite set of vertical eigenfunctions 
(normal modes) and e the associated eigenvalues. R,, is called the nth Rossby radius 
of deformation. The eigenvalue problem (16) is equivalent to the usual differentiated 
form 

with the homogeneous boundary conditions 

(see Gill 1982). Note that the boundary conditions are accounted for by the integral 
operator, while in the differential form they have to be explicitly stated. The magnitude 
of the Rossby radii decreases monotonically with increasing mode number n. The 
Rossby radius & of the zeroth or external mode is several orders of magnitude 
larger than the radii for the internal modes n = 1,2, * .. The ratio is approximately g/e = n 2 n 2 g / H N 2  which is O(n2 x lo3) for typical deep ocean conditions. 

Eigenfunctions off  are used to find solutions to (13) with separable z-dependency. 
For instance, in a horizontally unbounded ocean equation (13) has plane wave 
solutions 

(u-(x, Y ,  z ; t )  ) = ak,n,s (u! ,n ,s  ) 4n(z) exp (i(kx + l y  - mk,n,st)) , (19) 

where k = ( k ,  1)  is the horizontal wavenumber vector, n is the vertical mode number, 

@W u+(x, Y , z ; t )  

P(& Y , z ; t )  pk,w 
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s = 0, +, - the wavebranch index, ak,n,s the wave amplitudes, (up, UFJ ,  pk.n,s> the 

polarization vector, and wk,n,s the frequency given by the dispersion relation 

(20) 
2 2 112 

Here s = 0 represents the steady, quasi-geostrophically balanced 'wave' branch (zero 
frequency) and s = +,- the two gravity wave branches. Explicit expressions for the 
polarization vectors are given in Hasselmann (1970); they will not be needed in the 
present paper. 

Any solution to (13) can be decomposed into the three wave branches, even 
if the horizontal and vertical structure is not resolved into normal modes. The 
decomposition requires finding the eigenvectors and eigenfrequencies of the matrix in 
(1 3). When the spatial structure is not resolved these eigenvectors and eigenfrequencies 
are operators. The decomposition then takes the form 

Wk,n,s = SfO(1 + ]kl 4)  lkI2 = k2 + 1 2 .  

u+(x, Y, z; t )  

P ( X ,  Y, z; t )  
(u-(x,y,z;t) ) = ($ ) aS(x,y,z;t), (21) 

where ( U i ,  U!, P) is the eigen- or polarization vector (operator) and as(x, y, z; t) the 
wave branch amplitudes. The equation of motion for the wavebranch amplitudes is 
obtained by substituting (21) in (13) and applying the adjoint eigen- or polarization 
operator. The result is 

dtus(x, y ,  z ;  t )  + iQsas(x, y, z ;  t )  = 0, (22) 

where sZs is the eigenfrequency operator. The actual algebra is involved and given 
in Hasselmann (1970). The decomposition can also be performed if source terms 
(forcing) are added to the right-hand side of (13). Then a source term also appears 
on the right-hand side of (22). 

The complexities of Hasselmann's analysis can be circumvented since we only 
consider the internal Rossby adjustment process due to the dispersion of the relatively 
slow internal modes and not the external adjustment due to the dispersion of the fast 
external surface mode. For internal modes the rigid lid approximation w = 0 at z = 0 
can be imposed. Equation (9) then implies that u,v are baroclinic and (1) and (2) 
then imply that the vertical average of the pressure is zero. Integratim of (10) from 
z' = z to z' = 0 yields an integration constant which is determined by this condition, 
and we find 

2' 

d,p = - [ dz'N2(z') LH dz"(d,u + d,v) + - J" dz 6" dz'N2(z') [i dz"(d,u + +I). 
(23) 

-H 

Thus, if we restrict ourselves to the internal or baroclinic dispersion then the operator 
j in (13) needs to be replaced by 

and the integral eigenvalue problem becomes 
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which yields the same eigenmodes as (17) with boundary conditions 
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= 0, n = 1 , 2 , . * .  

but not the barotropic mode (n = 0). The eigenmodes are all baroclinic, i.e. 
ro 

(conversely, integration of (17) shows that dz& = 0 at z = -H and baroclinicity 
implies dZ4,, = 0 at z = 0). 

The second approximation that we employ is based on the assumption that the 
Burger number 

is much smaller than one. Here NO is a typical value of the Brunt-Vaisala frequency, 
and L a typical horizontal lengthscale of the wavefield. The small Burger number 
approximation is a long-wave approximation, i.e. we consider motions that vary in 
the horizontal on a scale which is large compared to the depth H of the fluid and 
such that H / L  multiplied by 1No/fol is small. To derive the equation of motion in 
the small Burger number limit, consider the complex amplitude 

(27) 

The second and the third terms on the right-hand side are of the order of the Burger 
number. For the third term this is obvious. To see this is the case for the second term 
we recall that for pure inertial oscillations ( B  = 0) the pressure vanishes. From (13) 
we find the evolution for a+ to be 

i 
a+(x, y, Z;  t) = U+ - -a+p + $ p a +  (a-u+ - a+u-). 

fo 

a,a+ = -ifoa+ + i fopa+a-u+ = -ifoa+ + ifogza+a-a+ + o ( B ~ ) .  (28) 

Correct to first order in the Burger number B the near-inertial amplitude evolves 
according to 

(29) 
where 

(30) 
is the horizontal Laplace operator. Vertical integration of (29) using (24) shows that 
the field is at all times baroclinic, i.e. 

a,a+ + ifoa+ - itfoViYu+ = 0, 

v; = a+a- = a; + a; 

1: a+dz = 0, (31) 

if it is initially. Equation (29) can also be obtained by applying Hasselmann’s (1970) 
projection formalism which yields 

a,a+ + ifO(1- ~ ~ ~ + a - ) l / ~ a +  = 0, (32) 
for arbitrary Burger number. The small Burger number limit we consider here, i.e. 
(29), is obtained by expanding the square root in (32). When vertical and horizontal 
normal modes like (19) are introduced, equation (32) reproduces the dispersion 
relation (20) and equation (29) the dispersion relation 

Wk,n,+ = fO(1 + ~IRJ~R;T) ,  (33) 
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which is the correct approximation for lkI2q << 1, i.e. for waves with small enough 
horizontal wavenumbers, i.e. large horizontal scales. In this approximation the 
horizontal group velocity cg has for a given vertical normal mode a magnitude 

lcgl = IfOllklJc, (34) 

which is unbounded for Ik( + co, while without the small Burger number approxi- 
mation the group velocity 

has an upper bound If0lRn. 
Equation (29) is equivalent to the differential form 

with the conditions 

aZa+Iz=-H,O = (37) 

The evolution of the complex conjugate of a+, denoted by a-, is governed by the 
complex conjugate of (29) 

a,a- - ifoa- + i+fo2V$z- = 0, (38) 

where a- = (a+)’ (a * denotes complex conjugate). If we multiply (29) by a- and (38) 
by a+ and add, we obtain 

ata+a- = a,la+I2 = iifo ( u - ~ ; u +  - u+Yv;u-). (39) 

It is not hard to show that 2 is a self-adjoint integral operator, that is f H  +Yytdz = 

fH y2+dz ,  if +,v satisfy J!H +dz = J!H ydz = 0, which is the condition to be 
satisfied by a* (baroclinicity). Therefore, we have 

with 

When we integrate (39) over the (x, y)-plane, we find that 
v h  = id, +jay.  

‘ / / I H  dt (a+12dzdxdy =0, 

if 

(42) 

goes to zero ‘fast enough’ as Ix, yl -+ GO. To lowest order in the Burger number Ja+I2/2 
is equal to the horizontal kinetic energy density. 

We scale the vertical coordinate by the fluid layer depth H ,  the horizontal coor- 
dinates with some arbitrary lengthscale L, time with f;’ and N(z) by some typical 
value NO. The non-dimensional form of (29) is then 

&a+ + ia+ - ifE2Via+ = p+, (43) 
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where 9 and Vi are now dimensionless and 
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N;H2 

m2 & = -  (44) 

the Burger number. On the right-hand side of (43) the term p+ represents all possible 
baroclinic forcing terms. Integration of (43) in the vertical shows that a+ remains 
baroclinic if it so initially and if p+ is baroclinic at all times. 

3. Green’s function 
3.1. Baroclinic Green’s function 

In this section we derive the appropriate Green’s function formulation for the general 
problem where forcing and initial conditions are supplied. Although we will focus on 
the initial value problem in the present paper, the general expression is derived here 
for future reference purposes. The conjugate version of (43) for the Green’s function 
is 

- dtoG(r, tlr~, to)  + iG@, 4r0, t o )  - i4&90Vi~G(r, tlr~, t o )  

= 6( t  - to)[b(z - zo) - 11w - X O ) S ( Y  - Yo) ,  (45) 

where G = 0 for to  > t (causality). Here the 6 denote Dirac delta functions. The index 
0 is affixed to the integral operator to indicate that it acts on the zo-dependent part 
of the Green’s function. The variables with the index 0 represent ‘source’ space-time 
coordinates while the variables without an index correspond to observer coordinates. 
The reason for the use of a term 6(z - ZO) - 1 instead of just 6(z - ZO) is that we will 
seek an expansion of G in vertical normal modes, which are baroclinic. This is only 
possible if the right-hand side of (45) can also be expanded in a similar fashion, and 
this requires a ‘baroclinic’ delta function. To simplify the notation we have indicated 
a triplet of spatial Cartesian coordinates in vector notation by 

Y(0) = i X ( 0 )  + h ( 0 )  + kZ(0).  

When we integrate (45) from to = t - At to to > t, with At > 0 arbitrarily small, we 
find G(r, tJrO, to = t )  = [6(z - ZO) - 1]6(x - xo)S(y -yo), or, in other words, G describes 
the evolution of a (baroclinic) point source which is released at to = t. 

When we take Gx (43) -afx (45), we get 

G(r, ~ I Y o ,  t~)&,,a+(ro; t o )  + a’b-0; to)4,G(r, tlr~, t o )  + if &a%; t0)20Vi~G(r, t l r~ ,  t o )  

-if&G(r, tlrO, to)90Vi~a+(ro; t o )  

= p + h ;  to)G(r, 4r0, t o )  - a+(ro; t0)6(t  - t0)[6(z - ZO)  - 11&x - X O ) ~ ( Y  - YO). (46) 
The first two terms combine into a single time derivative while the next two terms 
can be written as a divergence 

if a+ is baroclinic and if in addition 
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because 3 is then a self-adjoint integral operator (see remark at the end of $2). In 
(47) VhO is given by (41) but with an index 0 attached to x,y. 

Consider the problem where at t = 0 the field a+ is specified and the forcing is 
given for t 2 0. Integrating from to = 0 to to = t+ and over space, the right-hand side 
of (3.1) is equal to 

Since a+ has to be baroclinic, the last integral is zero at all times. The divergence (47) 
when integrated over x0,yo is zero if IVhoGl and JGI tend to zero fast enough (for all 
zo) as xg + y i  + co. This needs to be verified later on, once G has been determined. 
Using the fact that G(r,tlro,to) = 0 for t o  > t we obtain 

3.2. Normal modes expansion 
The Green's function for the finite-layer-depth case can be expressed as a series with 
respect to the vertical normal modes in the following fashion. One starts by expanding 
the d(z - ZO) - 1 term on the right-hand side of (45) in terms of the eigenfunctions of 
the operator 3. In the case of constant N 2  the eigenfunctions are for example 

4 n ( ~ )  = JZcos(nnz). (50) 

In this particular case it is clear that we can apply the usual Fourier theorems to 
expand z-dependent square-integrable functions in a cosine series. But, in general 
the eigenfunctions of 3 are orthogonal and complete in an LZ sense (see Morse 8z 
Feshbach, 1953). Therefore an arbitrary $(z) ,  which is square-integrable and which 
satisfies the same conditions as the eigenfunctions, can be developed in a series 
4(z) = C,, where w,, = (4,4,J and (f, g) = J!l f gdz. The eigenfunctions are 
normalized such that (4,,, &) = a,,, with dnm the Kronecker 6 symbol. Specifically 

W 

d(z - 20) - 1 = C 4n(zMn(zo). 

G(X, Y ,  2, ~ I x O ,  Y O ,  20, t o )  = C Gn(x, Y ,  ~ I x O ,  YO,  to)4n(z)~n(zo). 

- d,G, + iG, - ifenVioGn = d(t - to)d(x - xo)d(y -yo) .  

(51) 
n=l 

We expand G in the same fashion: 
m 

(52) 
n=l 

Substitution of (51) and (52) in (45) shows that G, satisfies 

(53) 

Here the non-dimensional parameter E ,  is (the square of the non-dimensionalized nth 
Rossby radius) 

le 
En = - 

L2 ' (54) 
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The normal modes expansion implies that (48) is satisfied. Writing 
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and putting 

we find with (53) that y, satisfies 

1 
271 

dtoyn - iy, - if&,(k2 + 12)y, = - - ~ ( t  - to), 

which is solved by 

Here V(x) is the Heaviside stepfunction. For t > to we have 

Combining the k and 1 integrals, which are easy to evaluate, we find 

exp ( i ~ ~ / [ 2 ~ , ( t  - to)] - i(t - t o ) )  
i2.nsn(t - to) 

G, = U ( t  - t o )  3 

where R is the horizontal distance to the source point 

R = ( ( x  - X O ) ~  + ( y  - ~ 0 ) ~ ) " ~ .  (57) 
Substitution of (56) in (52) yields the Green's function expanded in a series of vertical 
baroclinic modes. 

For t to the G, should tend to 6(x - xo)S(y -yo). It is not hard to show that we 
have 

xo+Ax ya+Ay 

G,(X, Y ,  tho, Yo, t o w  dY = 1, 'E L0-A.x  l 0 - A ~  

for any Ax, Ay, which is a defining property of &functions. For t close to to the 
amplitude of G, is everywhere large and oscillatory, and does not decay at infinity. 
This is a consequence of the small Burger number approximation which allows for 
unlimited group velocity (see (34)). Since waves of all wavelengths are used in equal 
measure to build up the &source, a signal can propagate with infinite velocity. At a 
fixed time (see figure la) shorter waves are found at larger distances from the source 
origin, which is in accordance with the dispersion relation (33) (shorter waves have 
higher group velocity). At a fixed point in space (see figure lb), as a function of 
time, one first observes very rapid oscillations with an initially large amplitude. The 
amplitude decays with l / t  while the oscillation frequency decreases. Note that apart 
from the pure inertial part, time is scaled in each G, by E,. The value of E ,  decreases 
with increasing n, because in (54) the Rossby radii R,, decrease with n, and therefore 
the evolution associated with higher vertical normal modes is slower than that of the 
lower modes. The fastest evolution is for the first baroclinic mode. 

Although the G,, and thus G, violate the assumption of vanishing at infinity, (49) 
is valid. Below, this will be shown through an example. There are various other ways 
to show the validity of (49), for instance with either Laplace transform or Fourier 
transform techniques. 



Evolution of near-interial waves 279 

800 

400 

Gn O 

-400 

- 800 
0 5 10 15 0 0.05 

R En (?-to) 

FIGURE 1. Graphs showing the real (solid lines) and imaginary part (dashed lines) of the Green’s 
function G,, as given by (56). (a) G,  as a function of R (horizontal distance to the source) at the 
non-dimensional time e,(t - to )  = 1. ( b )  G ,  as a function of time at a fixed position R = 1. Here, for 
~ , ( t  - to) near zero the graph has been cut off because the response becomes infinitely large with 
infinitely high frequency. 

3.3. Example 
The singular behaviour of the Green’s function (infinite response everywhere near 
t = to)  disappears when convoluted with initial conditions that have vanishing energy 
at the high horizontal wavenumbers, which is necessary for the small Burger number 
approximation to be valid (long-wave approximation). We will show this through a 
simple example here. According to (49) the evolution of an arbitrary initial condition 
a+(x , y , z ; t  = 0) is 

m 

with 
n=l 

C P  

with Gn given by (56) and 

+ an (x, y ;  t = 0)  = ~‘(x, y ,  Z ;  t = O)6,(z)dz, 

i.e. the projection of the initial condition on the nth mode. The evolution equation 
for u;t is the projection of equation (43) on the nth mode (without forcing) 

a,a,f + ia,f - i;cnVia,f = 0. (61) 

For instance consider the projected initial condition 

e-(x2+y2)/2a2 

2rcct2 . 
a, f (x ,y ;  t = 0)  = 

With (59) the evolution is 
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Substituting (56), and performing the xo and yo integrals, we find 
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Note that as t 4 0 the initial condition (62) is satisfied. At any time the amplitude of 
the field decays exponentially for large x , y  and for any n the solution behaves well, 
i.e. it is finite everywhere. It is oscillatory with increasing distance r = ( x 2  + y2)'I2 
from the origin, and has a Gaussian envelope which spreads with increasing time 
while simultaneously decaying in amplitude. For each n the evolution is the same, 
only at different rates since time is scaled by E,. The fastest evolution is for the first 
baroclinic mode, and at large times and large horizontal distances this mode will 
eventually dominate. At intermediate times and distances usually many modes need 
to be summed in (58). In $4 we investigate how these various rates of horizontal 
dispersion for the various vertical modes combine in the case of constant N 2 ,  when 
the 4, are trigonometric functions. The spectrum of the above initial condition 
is 

and for any CI > 0 it decays exponentially for large horizontal wavenumbers. 
In Appendix A we discuss an alternative to employing the Green's function for 

initial value problems. It involves expansions in time-dependent similarity solutions 
of the diffusion equation with complex time. Many exact solutions to initial value 
problems can be obtained with these expansions, like the dispersion of a one- 
dimensional storm track, as done numerically by Gill (1984), and numerous other 
interesting ones. Also various asymptotic results (large time limits) can be obtained, 
because the similarity solutions decay in amplitude at different rates. 

4. Case of constant N 2  
4.1. Poisson-converted series 

The results of $3 and Appendix A are valid for any set of normal modes, i.e. for 
arbitrary N 2 ( z )  profiles. To obtain a picture of the evolution of a given initial 
condition, one needs to sum over the normal modes, which for most N 2  profiles will 
have to be done numerically. In the case of constant N 2  various other interesting 
results can be obtained which show how the different dispersion rates associated with 
the vertical modes combine. With N 2  constant the eigenfunctions 4, (z )  are given by 
(50) and the Rossby radii R, by 

N 2  H 2  
%=f,'(1271)2* 

The parameter E, appearing in (56) is in this case 

E n = - - -  e -  E 
L2 (nn)2' 
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with E the Burger number, as in (44). Substitution in (56) shows that the Green's 
function is formally equal to 

with R as in (57). Owing to the factor (n7r)2 this series is divergent. Convergent 
expressions are found whenever the Green's function is convoluted with a finite- 
sized initial condition. If the resulting series is absolutely convergent, the Poisson 
sum formula can be applied. This converts the series expansion of normal modes 
into another one which has a simple interpretation. Consider the initial condition 
a+(x,y,z;t = 0) = 6(x - xo)S(y - yo)f(z), with J-lf(z)dz = 0. If we call fn = 

f 1  f(zo)+n(zo)dzo, then the evolution is for t > 0 

0 

We take for f a narrow Gaussian centred around z = 4, with d E (-1,O) 

If we choose a very small, we find that to a high degree of accuracy 

f n -  - JZe-(nn)2a2/2 cosfnnd). 

Substitution in (68) yields 

JZe-" a2 
inct az2 a+(x,y,z;t) = -- s, 

with 
iR2(nn)2 (nn)2a2 00 ( 2Et - -) cos(nnd) cos(nnz). s = C e x p  

2 
n=l 

We observe that S is a sum of type Cf(nn) .  The Poisson sum formula tells that this 
sum is equal to (Carrier, Krook & Pearson 1966) 

Fc(p)  = (:) 'I2 cos(pm)f(m)drn. (69) 

Applying the Poisson sum formula to S ,  we find with some elementary integrations 

+m 

u + ( x , ~ , z ;  t > 0) = C G(z + d - 2p) + G(z - d - 2p), (70) 
p=-00 

where 
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R is again as in (57). By direct integration of (71) it is found that for any Ax,Ay one 
has 

xo+Ax yo+Ay e-z2/2u2 

% L o - A x  L o - A y  Gdxdy = ___ (2n)’W 
and it appears that G(z) is the evolution of the initial condition 6(x)6(y)6(z) on the 
infinite domain, with 6(z) approximated by the Gaussian bump (a  arbitrarily small). 
This cannot be inferred from a consideration of (29) because the definition of the 
integral operator 9 cannot be extended to the infinite interval. It can, however, be 
shown by a consideration of the differential version (36) for the infinite domain. The 
eigenfunctions of the (d/dz)2 operator are exp(imz) for any m, and one can solve the 
initial value problem with, for instance, a Fourier-transform method. 

The wavy part of (71) is determined by the factor in the exponential. The term in 
the square bracket is important for the amplitude of the wavefield but not for the 
oscillation frequency (this is easily seen by writing each term as A(R, z, t )  exp(iO(R, z, t)) ,  
with A real). For very small a at given z ,  R the oscillation frequency for t << R2/&a2 
is to a good approximation 

2 2  
u(R,z) = 1 + fe - .  

R2 
This can be explained by a consideration of the dispersion relation. For a plane wave 
ei(kx+ly+rnz-wt) we have (substitute in non-dimensionalized (17)) 

k2 + l 2  
m2 

0 = 1 + ie-. 

The three-dimensional group velocity vector has the components 

(73) 

and is perpendicular to the wavevector with components k ,  1, m. So if an observer is at 
position R, z with respect to a source, which consists of a combination of all possible 
plane waves, he/she will only see waves come by which satisfy lml/(k2 + 1 2 ) 1 / 2  = R/lzl, 
or in other words, waves with the frequency given by (72). 

The solution on the infinite domain (71) can be written as a similarity solution 

) 
a. a o  ao k 1 -(k2 + 1 2 )  

c g =  (- ak  ’ - a1 ’ -) dm =“2 ,2 ,  m3 

Thus, as time increases the amplitude decreases uniformly with t-’ while a simul- 
taneous stretching in the radial direction occurs, while for smaller a the amplitude 
of G increases uniformly while there is further compression uniformly in both the 
horizontal and the vertical direction. In figure 2 where we show contours of a3et[ GI 
as a function of R’ and z’. The largest amplitude at any time is at z’ = R’ = 0 
and it decays rapidly with increasing (z’J. At any given time the response goes to 
zero as distance to the source point goes to infinity. At early times large-amplitude 
high-frequency waves propagate from the source mainly in the vertical direction, 
while at later times the propagation direction gets an increasingly larger horizontal 
component, with lower-frequency waves. 

In (70) the G are distributed throughout infinite space such that at z = -1,0 the 
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Z‘ 

0 1 2 3 4 

R’ 
FIGURE 2. Contours of a3&tlGI as a function of the scaled vertical distance z’ and scaled horizontal 
distance R‘, as given by (74). G gives the evolution of the initial condition 6(x)6(y)6(z) with 6 ( z )  
approximated by a Gaussian bump ((2n)’/2a)-’ exp(-z2/2a2). Contour increments are 1/10 of the 
maximum at R’ = z’ = 0. 

boundary conditions are satisfied, i.e. &a+ = 0. When (67) is considered to apply to 
all z ,  it describes the evolution of the initial condition 

on the infinite domain. The solution for the finite domain (70) is analogous to that 
found in electrostatics problems, where boundary conditions on parallel plates for 
the field due a charge are satisfied by first considering the solution on the infinite 
domain, and then by adding strategically located ‘image charges’. In our problem, the 
boundary condition &a+ = 0 was derived from the no-flux condition on the vertical 
component w of the velocity field. On a semi-infinite vertical domain with boundary 
condition w = 0 at, say, z = 0, the evolution of a narrow Gaussian bump at z = -d 
would be G(z + d )  + G(z  - d) ,  the first term being the response on the infinite domain, 
the second an ‘image’ at z = +d.  By symmetry the addition of the second term makes 
w = 0 at z = 0. Then, to satisfy also the boundary condition w = 0 at z = -1, 
an infinite number of image points needs to be added, leading to (70). If one has 
small wavepackets in mind, the image points can also be interpreted as describing the 
various reflections at the upper and lower boundary. To get an accurate picture of 
the response in the finite vertical domain, few of the image points are needed because 
they are at increasing vertical distances away (increasing p in (70)) and the amplitude 
of G decays exponentially with lzl. At any given time fewer image points are needed 
at small R than at larger R. 

Consider now the case where the initial condition is of the form 

a+(x, y, z ;  t = 0)  = [a(z - zo) - l ~ e - ~ ” ~ ,  (75) 
2 2  r2 = x + y 

where zo E (-1,O). This is the converse of the previous example, i.e. this initial 
condition has finite horizontal size, combined with a &structure in the vertical. The 
solution with (75) as initial condition will be denoted by uS+(x, y, z ;  tJzo). Projection 
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on the nth mode gives 

With (59) the evolution of (76) is the same as the example given in 93.3 (see expression 
(64) with M = 1 and without the factor 2n). Using the definition of E,, (66), we find 
with (58) 

R. C. Kloosterziel and P. Miiller 

a,+(x,y; t = 0) = e-r2/24fl(zo). (76) 

In Appendix B we show through an application of the Poisson sum formula that 

&(x, Y ,  z;  tlzo) 

(78) 

Note that this is a sum similar to (70). The J0,Io are zeroth-order Bessel functions 
(Watson 1966). The time-dependent factor ia(t) is 

ia(t) = -ein/4(~t)1/2 = - (~t /2) ' /~  - i (~t /2) ' /~ ,  (79) 

so for t > 0 the amplitudes of the terms eia(t)lzkd-2pl decay exponentially, both with 
increasing time and increasing p .  This implies that, again, as time progresses less and 
less terms are needed, i.e. the contribution from terms with large p (distant 'image 
points') become negligible. 

4.2. Example of three-dimensional evolution 
Solution (77) remains singular (infinite amplitude) at z = zo at all times. This singular 
behaviour disappears when we also give the initial condition some finite vertical 
structure. For instance, consider 

(80) 

with an f(z) that has zero vertical average. a: as given by (77) can be used as a 
Green's function for initial conditions like this, and the evolution is 

a+(x, y, z; t = 0) = e-r2/2f(z), 

As an example we take the case where 

f(z) = -1, -1 < z < -d 
1 - d  - -- - d < z < O .  

d '  

Since to lowest order in the Burger number a+ = u + iv this is an initial condition 
where the velocity field at any z is pointing along the x-direction, with a Gaussian 
amplitude distribution. For small d it has a large positive amplitude in a narrow 
region just underneath the upper surface. This is a realistic z-dependent amplitude 
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for cases where an impulsive force is applied at the upper surface, and the barotropic 
(vertically averaged) response has been subtracted. According to (81) the evolution is 

where we have used that the derivative of A: vanishes at the bottom and at the 
surface (this follows from (77)). Other f(z)  with more steps, or piecewise linear, can 
be handled with equal ease as (82). 

Whenever we differentiate functions of type g(lzo + bl) (as are the terms appearing 
in (78)), we have 

(a prime denotes differentiation), where sgn(x) = -1 + 2U(x), with U again the 
Heaviside function. Using this we find 

- e-it-fr2 a 
sgn(+d)sgn(z + d - 2p)eia(t)lz+d-2pl 

p=-00 
d 

a+(x,y,z;t) = 

r2e-it-r2/2 2 
sgn(+d)sgn(z 2 d - 2p)eia(t)1zfd-2p1 

p=--00 
+ 2d 

where terms (. .) are as in (78) with zo = -d and with the combination of z f d - 2p 
the same as in the exponential they are multiplied by. To arrive at this form we have 
used the identity (see Watson 1966) JL(z) = -J~(z).  With (84) we can determine the 
evolution at r = 0. In the limit r + 0, the terms containing J1(. . a ) / ( .  . a )  tend to a finite 
value, and the parts of (84) that are multiplied by r2 are thus zero. Furthermore, since 
Jo(0) = Zo(0) = 1, at r = 0 we have Jo(0)Io(O)e-2xdx = -1/2, and the evolution at 
r = O i s  

e-it O0 

a+ = - 
2d 

sgn(+d)sgn(z f d - 2p)eia(t)12kd-2p1. 
p=-" 

With (85) and (79) we find that for t -+ 00 the solution goes to zero everywhere except 
at the point z = -d. On one side z = -d+ (i.e. approaching z = -d from above 
in the upper layer) it goes to (2d)-', on the other side z = d- (in the lower layer) it 
goes to -(2d)-', i.e. there is a phase jump of 180". The amplitude which is initially 
discontinuous becomes asymptotically continuous. Near the step location energy in 
the upper layer is decreasing while it increases near z = -d in the lower layer. For 
all z # -d every term tends to zero for increasing time, and for large time all the 
energy will get concentrated in a narrow layer around z = -d. This is illustrated in 
figure 3 where we have plotted the amplitude at r = 0 at several times. The dashed 
line indicates the initial amplitude, in this case for d = 0.2, and the solid lines the 
amplitude at several later times, as indicated. At E t  = 1 (for a Burger number E = 0.1 
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-0.4 

Z 

-0.8 

0 2.5 5.0 

Amplitude 
FIGURE 3. Graph showing the amplitude evolution of the Gaussian (80) with an initial baroclinic 
step (82) of thickness d = 0.2 at r = 0 as a function of depth according to (85). The initial amplitude 
is shown as a dashed line while the solid lines indicate the amplitude at times ct = 1, 2 and 4. For 
large time the amplitude is approximately (2d)-' exp(-(~t/2)'/*lz + dl) when the step is at z = -d. 

this is after 10 inertial periods) the amplitude has decreased in the upper layer as well 
as in the lower half of the lower layer (i.e. between approximately -1 < z < 0.5). 
In the upper region of the lower layer the amplitude has increased. At later times, 
E t  = 2,4, we see that in the upper layer near the surface the amplitude continues to 
decrease but it tends to a value 2.5 (= (24-l for the d we used) near z = -d. Similarly 
in the upper part of the lower layer near z = -d the amplitude keeps increasing to a 
value of (2d)-' but in the lower part it goes to zero. Already for Et = 1 few 'image 
points' (the terms containing p = 1,2,. . .) are needed to obtain a fractional accuracy 
of Note that at all times shown in figure 3 the vertical derivatives are zero at 
the surface and the bottom, which indicates that enough 'image points' have been 
used. 

For r # 0 the integrals involving the products of Bessel functions in (84) cannot 
be evaluated in closed form. A numerical program was written which evaluated the 
integrals, and summed over the image sources until a fractional accuracy of lop3 
at each point was obtained. In order to evaluate the integrals over the infinite line, 
we only integrated to a certain xmax, such that beyond this point the integrands 
were negligibly small. These integrals were calculated using eighth-order Romberg 
integration, with a trapezoidal rule, and extrapolation to zero step size by means of 
rational function extrapolation of the Bulirsch-Stoer type (see Press et al., 1990). The 
Bessel functions of complex argument were obtained from the commercially available 
IMSL numerical package. 

We find that for small r the amplitude evolution is similar to that shown in figure 3 
for r = 0 while for large r the amplitude is proportional to that of the first baroclinic 
mode, which has the fastest horizontal dispersion rate. A qualitative overview of the 
evolution is obtained by plotting the contours of constant amplitude at various times. 
In figure 4 we plot the evolution between E t  = 0 (the initial condition) and E t  = 1 
for the case d = 0.2. In figure 4(a) we show the initial condition (80) with f given 
by (82). The straight lines below the step position correspond to the fact that the 
amplitude is there depth independent and equal to exp(-r2/2). In the upper layer 
the amplitude is exp(-r2/2)(1 - d ) / d ,  which is much larger at the same r position. 
The contour plotting software has some problems around the step position, because 
of this discontinuity, and the lines are for that reason bent a little. In parts (b-f) 
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FIGURE 4. Graphs showing the evolution of the Gaussian (80) with an initial baroclinic step (82) 
of thickness d = 0.2. Contours of constant amplitude are shown here. Times are (a) E t  = 0 (initial 
condition), ( b )  ct = 0.2, ( c )  ct = 0.4, ( d )  ct = 0.6, (e )  ct = 0.8, and (f) ct = 1.0. Contour increments 
are 0.1. 

snapshots of the field are shown in time steps of Act = 0.2. The outermost contour 
has a value of 0.1 here, and is seen to propagate outwards near the bottom and the 
surface. A typical bulging pattern evolves at the outer side of the Gaussian near 
the surface. Near the step at r = 2 we see that at Et = 1.0 (figure 4f) energy has 
decreased. Note that near the surface the discontinuity can be seen to propagate. 

In figure 5 we ‘zoom out’, and continue from Et = 1 to Et = 4. The contour with 
value 0.1 has at Et = 4 (figure 5 4  moved far to the right, while the piling up of 
energy near the core below the step is clearly visible. A secondary maximum develops 
at the bottom but with low amplitude. The pattern thus established persists at even 
later times (not shown), while shifting further to the right. When we look at the far 
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0 10 0 10 
r r 

FIGURE 5. Continuation of figure 4 plotted on a wider horizontal scale. Times are (a) E t  = 1.0 (as 
figure 4f) ( b )  E t  = 1.5, (c) et = 2.0, and ( d )  E t  = 4.0. Contour increments are 0.1. 

field in more detail we find that the amplitude at large time is dominated by the first 
baroclinic mode, as expected from the dispersion relation. There the normal modes 
sum is more efficient than our Poisson converted series. 

In $2 we showed that in the unforced case energy has to be conserved. Although 
amplitudes grow at larger r ,  they remain small compared to the initial amplitudes near 
the centre of the Gaussian. We have checked our solutions for energy conservation. 
The total energy corresponding to the plots shown in figure 4 and figure 5 was found 
to vary less than 0.1% in a time interval Et = 4. In polar coordinates the energy 
integral is 4 J J la+12rdr d8, and the factor r weights the contribution at larger r in 
favour of those at small r, i.e. there is geometrical attenuation. 

After a time interval ~t = 4 we find that the frequencies are everywhere very close 
to the Coriolis frequency if E is small. Only in the very early stages are appreciably 
super-inertial frequencies observed. For instance after 10 inertial periods frequencies 
of about 1.03f0 are found near the bottom when E = 0.1. For higher Burger numbers, 
the frequencies are higher, and vice versa closer to f o  when the Burger number is 
smaller. In the early stages we find that the frequencies increase monotonically with 
depth for all r .  

Finally we remark that a sufficiently large sum of normal modes converges to the 
solutions like shown in figures 4 and 5. With 200 normal modes summed there is 
essentially no difference in all these cases. For large time and large r it is actually 
computationally advantageous to use a normal modes sum, since the integration 
over Bessel functions involves large arguments of the Bessel functions, and there are 
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limitations on how large these can be in numerical packages like IMSL which we 
used. For r not too large and large time the Poisson converted series is very effective 
because few ‘images’ are needed, and the integrals involving the Bessel functions 
converge rapidly. 

5. Summary and discussion 
We have investigated the evolution of near-inertial internal waves in horizontal- 

vertical space. We assumed the Burger number to be small and considered baroclinic 
waves in a layer of constant depth. The equations of motion can be formulated 
either in integral or in differential form. In the main body of the paper we work 
with the integral formulation, which is first order in time. First we formulated the 
Green’s function formula for the problem, taking into account that our equations 
govern baroclinic disturbances only. For depth-dependent Brunt-Vaisala frequency a 
normal modes expansion is employed. The Green’s function is very singular. This is 
is due to the long-wave approximation (small Burger number limit) which allows for 
unbounded horizontal group velocity for waves with very large horizontal wavenum- 
bers. Well-behaved solutions are found when convoluted with an initial condition 
that has vanishing energy in the large horizontal wavenumbers. The evolution of 
a given initial condition projected on a vertical normal mode can analytically be 
determined with expansions in similarity solutions. This is an alternative to using the 
Green’s function. Based on this observation many interesting exact solutions can be 
constructed which would be hard otherwise. Each vertical normal mode has a distinct 
horizontal dispersion rate which is fastest for the first baroclinic mode, which there- 
fore appears first at large distances from some localized source. For non-constant 
Brunt-Vaisala frequency all one can do is sum over normal modes, and how the 
various different disperson rates combine can only be determined numerically. For 
constant buoyancy frequency we find that the normal modes series can be converted 
into another series by application of the Poisson sum formula. This new series can 
also be obtained by applying the method of images, starting from the differential 
formulation on an infinite layer. At present it is not clear whether the method of 
images can also be applied to non-constant N*-profiles and what its relation is to the 
normal modes expansion. The conversion by means of the Poisson sum formula is 
very effective in that the resulting series converge rapidly. We first showed that for 
a highly concentrated initial condition the entire field can be expressed (to a high 
degree of accuracy) with just a few analytical expressions in closed form which bring 
out the z ,  R and time dependence in a clear fashion ( R  being the horizontal distance 
to the source point and z the vertical distance). The normal modes sum does not 
yield any clues concerning the overall behaviour thus obtained. The lowest-order 
term in the Poisson-converted expansion corresponds to the response on the infinite 
domain. Close to either the surface or the bottom, image sources are needed to satisfy 
the boundary conditions. These image sources can be thought of as representing the 
reflections of the waves at the upper and lower boundary, where the no-flux condition 
is prescribed (the free surface is replaced by a rigid lid, which eliminates the barotropic 
part from the problem). Finally, we considered the evolution of an initial condition 
which has an isotropic Gaussian amplitude distribution in the horizontal and which 
is confined to a narrow layer at the upper surface. Again a Poisson-converted series 
is used which is very effective for large times and not too large horizontal distances 
from the centre of the Gaussian. The evolution of the initial condition shows the 
following features : 
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(i) The timescale of the evolution of the amplitude is determined by the value of 
the Burger number E. 

(ii) The energy propagates radially outwards. Near the center of the Gaussian 
the energy decreases both in the surface layer and near the bottom but increases 
underneath the step. 

(iii) At large times and radial distances the amplitude and phase fields become 
dominated by the first baroclinic mode. 

(iv) In the intermediate time and space ranges the amplitude slowly penetrates 
into the interior and outward in a bulging way. No simple normal-mode-related 
interpretation is possible for this phase of the evolution. 
Further detailed analysis of this particular case shows that no significant scale sep- 
aration develops between the wavefield and the amplitude envelope and that the 
evolution in the lower layer is insensitive to the exact step thickness as long as it is 
small compared to the total layer depth. 
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Appendix A. Expansions in similarity solutions 
Here we show that there is an alternative to using the Green's function for initial 

value problems as discussed in $3. By putting a,' = e-ita,(x,y;t) in (61) this is 
transformed into 

If we define a complex time variable '2 = if&& we get the two-dimensional diffusion 
equation 

For real '2 a well-known exact solution to (A 2) is 

atan - i;s,Via, = 0. (A 1) 

azan = Via,. (A 2) 

exp (--(x2 + y2)/(2a2 + 4'2)) 
2n(a2 + 29 4% Y ; 2)  = 

In the limit a J. 0 this is the Green's function for the diffusion equation (Morse & 
Feshbach 1953). If we substitute for the complex time and multiply by e-", we get 
the a,' found in 93.3 (see (64)) through use of the Green's function. 

For the two-dimensional diffusion equation (A2) we can use the results of Kloost- 
erziel (1990) and substitute for complex time. In that paper the following results were 
established. Assume that an initial condition for (A2) satisfies (we drop the tilde on 
t for convenience) 

For rectangular coordinates one can then write 
m m  

I=O m=O 

where the Q are given by 

H,, (x/ 4) e-x2/2 d" 
H,(x)  = (-l)"ex2 -ePx2 (n = 0,1,2,. . -). (A 4) (2"n !(2n)1/2)1/2 ' dX" = 

Here H, is a Hermite polynomial of degree n. The functions 52,. are orthonormal with 
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respect to the weight function exp(x2/2), i.e. 

Ql(x)Qm(x)eX2/2dx = 61,. 
J --m 

The expansion coefficients arm in (A3) are calculated according to 

+m +m 

arm = s_, s_, a,(x, y; t = O)Q1(x)Q2,(y)e(x2+y2)/2dx dy. (A 5 )  

It is shown in Kloosterziel (1990) that each Ql provides an exact similarity solution 
of the diffusion equation (A 2), i.e. when Q,(x) is an initial condition to (A 2) then the 
evolution is given by 

Q(x/b(t)), b(t) = (2t + 1 p 2 .  
1 

b( t)l+' 
an(x;t) = - 

In general, when an initial condition is given by (A3), the evolution is given by 

An alternative is to employ polar coordinates. We can expand as follows: 

00 k=+m 

m=O k=-m 

where 

Here L; is an associated Laguerre polynomial defined by 

The @mk form a complete orthonormal set in the Hilbert space L2(R2, er2/2), and satisfy 

@,&@i,k,er2/2rd8 dr = dmm'6kk!. 1°C 
A * here denotes complex conjugate. The expansion coefficients (which are complex) 
are calculated according to 

Each of these @ is again an exact similarity solution of the diffusion equation, that 
is, if a @mk is provided as initial condition, then at later times the solution is 

where b(t) is as in (A6). Therefore, if an initial condition can be written as (A8) 
(that is, if the initial condition is square-integrable with respect to the exponentially 
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growing weight function), the evolution is 
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All these functions are analytic in t however, so this result also applies to (A l), and 
all one needs to do is to replace the real time in the above expressions by purely 
imaginary time. The recipe is thus: project an initial condition on mode n to obtain 
a,(x, y;  t = 0). Expand a, in similarity solutions and substitute t = i&t. Then, a sum 
over all normal modes and multiplication by ecit gives the full evolution. 

Appendix B. Evaluation of Poisson sum formula 
First we write the sum in the square brackets in (77) as 

cos(nnz0) cos(n7c.z). (B 1) 
2 W 

n=l n=l  

For t > 0 we write 

1 - - 1 (nn)2 = I + - - -  a / 2  a12 
(nn)2 + ist (nn - a)(nn + a)' (nn)2 + iet nn-a nn+a '  

where 

With this substituted, the sum (B 1) is equal to 

a = @/4(&t)'/2. 

W 

n=l 

with 

Next, we apply (69). We note that the cosine transform of the product f g  is 

+W 

F,(p)  = (:) 1" f(m)g(m) cos(pm)dm = ~ 1 f(rn)g(m)(eipm + e-ipm)dm 

(because f(-m)g(-m) = f(m)g(m)). 
transforms (see Morse & Feshbach 1953) we have 

1 

With the convolution theorem for Fourier- 

F-( l )G-(p  - l)dl, (B 5 )  
+oo 

F + ( l ) G + ( p  - l)dl + ~ 

1 

where 

With (B4) these are 
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Owing to the factors (m f the integrands vanish for m + fa. Thus, whenever 
for instance in F* terms fzo f 1 > 0, we can close the contour in the upper half-plane, 
while when they are negative, we can close in the lower half-plane. For F* there is 
an essential singularity at m = a, which is in the upper half-plane. For +zo + 1 < 0 
we close in the lower half, and the result is zero. When either of these is > 0 
we enclose the singularity in the upper half, and go around it in positive direction 
(anti-clockwise). Expanding 

I (-r2a/4)" co -r2a/4 
ex' (G) = c n=O a (m - a)" 9 

and substituting this in (B 6), we find for the first part of F+ the integral 

Thus, for zo + 1 > 0 when we enclose the singularity at m = a we get (dropping the 
numerical prefactor momentarily) 

where JO is the zeroth-order Bessel function (of complex argument). Introducing the 
Heaviside step function U ( x )  again, we find 

~ ' ( 1 )  = [ ~ ( z o  f l)Jo(r(ia(zo f 1))1/2)eia(zof') 
1/2 ia(-zo+l) + U(-ZO f ~)Jo(r(ia(--zo f 2)) )e ] , (B 8) 

and similarly 

G'(1) = in'/2 [(U(z f 1) - l)Jo(r(-ia(z f 1))'/2)e-ia(zk') 

+(u(-z f 1)  - I)Jo(r(-ia(-z f 1))1/2)e-ia(-zo-lf)] . 

The Heaviside functions make the integration in (B5) only start at such 1 that the 
terms fzo f 1 occurring in F*(I) are positive, while the terms rtz f ( p  - 1) in G*(p - 1) 
are negative. With some effort one finds that for instance the cross-product in the 
convolution integral containing U(zo + 1)( U(z + p - 1) - 1) leads to an integral of type 

eialz+zo+pl 1" Jo(r(ia(z + zo + pI + ias)'/2)JO(r(ias)'/2)e2iasds. 
Keeping carefully track of signs and numerical prefactors we find 

Fc(2P) = -- 1 (-) n 1/2 C elal+z+zo+2pl 1" Jo(r(ia1 f z f z o  f2pl +ias)1/2)Jo(r(ias)1/2)e2iasds, 

(B 9) 
where the sum is over all eight combinations of f z  f zo f 2p. Note that the term 
containing, say, z + zo - 2p is equal to the term containing -z - zo + 2p. For p = 0 
we have to sum over the four combinations of f z  ZO, while for Ip1 = 1,2. . . we sum 

2 2  
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over the eight combinations of f z  f zo f 2p. Taking this into account, we find with 
the Poisson sum formula that with initial condition (75) the evolution is 

&, Y ,  z; tlzo) 

(B 10) 

As s runs from 0 to oc) in the integrals, we see with (B2) that the variable ias runs 
in the complex plane from zero to infinity in the lower left quadrant. Inspection of 
the asymptotic behaviour of the Bessel functions as the complex argument goes to 
infinity with s increasing, shows that the integrands vanish for s -+ a3 and that these 
integrals are convergent. We can rotate the line of integration to one running along 
the real axis from 0 to -a. Introducing the variable x = -ias the integrals become 

lm Jo( .  . .)Jo(r(ias)'/2)e2i"sds = Jo(. * .)Zo(rx'/2)e-2xdx, 
la 

(. . .) = r(ialz f zo - 2pl - x)l/*. (B 11)  

We have used here that Jo(iz) = ZO(Z) (Watson 1966). 
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