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Abstract. It is shown that expansions in similarity solutions provide a quick and economical method for assessing
the large-time asymptotics of the diffusion equation on infinite and certain semi-infinite domains if Dirichlet or
Neumann conditions are imposed. The similarity solutions are shown to form a basis for the Hilbert space
L2(R, elx 12). This implies that initial conditions for the diffusion equation that are square integrable with respect to
the exponentially-growing weight function elI2 can be expanded in a discrete, infinite sum of mutually orthogonal
similarity solutions, each having a different rate of amplitude decay. This leads to a rapid, almost effortless
recognition of the large-time asymptotic behaviour of the solution.

1. Introduction

This paper studies the large-time asymptotic behaviour of solutions of the diffusion equation
on infinite and semi-infinite domains. On finite domains of simple geometry, the large-time
asymptotic structure of the evolving field is usually determined by the eigenfunctions of the
Laplace operator with the smallest eigenvalues that fit in the domain. If initial conditions can
be expanded on a basis of such eigenfunctions, it is the slowest-decaying mode in the
expansion spectrum, the one with the smallest eigenvalue or largest wavelength, that
becomes dominant as time increases. Initial conditions can be classified then by the smallest
eigenvalue occurring in the spectrum. Two initial conditions belonging to such a class will
asymptotically 'look alike'. On infinite and semi-infinite domains no such 'longest wave-
length' exists - a continuous spectrum is found in such cases (if an expansion is sought in
eigenfunctions of the Laplace operator) - and it is not clear at all whether in general two
different initial conditions can be predicted to evolve towards the same decaying spatial
structure or not.

The equation of diffusion in a homogeneous isotropic medium studied here is

dC D d2C= D 2 (n = 1, 2 or 3)
at i=1 dx i

where C is the concentration of the diffusing 'substance' at the point x = (x, .... , x) (in
rectangular coordinates) at time t, and D the diffusion coefficient for the particular case
considered. In kinetic theory the diffusion equation governs the flow of fluid matter in
another medium due to random molecular motion (see [1]), and in fluid mechanics it
describes the evolution of the vorticity of certain vortices with D then being the kinematic
viscosity of the fluid (see [2]). In a conducting solid the local rate of change of temperature is
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also governed by (1) - in that context it is usually called the heat equation. Several other
areas of research in which the diffusion equation has been found important are either listed
or referred to by Carslaw and Jaeger [3].

In the theory of heat conduction a typical problem is the following. Let a solid conductor
occupy a singly connected closed domain If C Rn that is bounded by a regular surface d.
For a given initial temperature distribution C(x; t = 0) C(x) the evolution C(x; t) is asked
to be determined for all t > O0. Some appropriate boundary conditions necessarily supplement
this problem. If the solid is imagined to be surrounded by insulating material say, the
boundary condition is that of zero heat flux across the surface d, i.e. dCl/dn = 0 where n
denotes the outward normal on d (Neumann condition). Another condition could be that
of constant surface temperature, that is C(x; t) = constant for all x E dl (Dirichlet
condition). Both types of boundary conditions make the task of solving (1), which is of
parabolic type, a well-posed problem with a unique solution (see [4]: in the case of a
Neumann problem it is of course unique only up to a constant). The simplest case
imaginable concerns a slab of conducting material between x = 0 and x = 1 with no
dependence on the other coordinates x2 and x3. With some mild restrictions imposed on the
allowed initial conditions, a Fourier-series expansion will be sought. Assuming for example
both ends to be kept at zero temperature, the initial temperature distribution is expanded in
a sine-series (the index 1 is dropped momentarily for convenience)

C°(x) = an sin Anx
n=l

where

2 o'
an = 2 1 C°(x) sin Anx dx

and

hAn= oi (n=1, 2, 3,. .

The solution of (1) that satisfies the boundary condition at all times is

C(x; t)= ~ a e n sin Anx (t > O)
n=1

(see [3] for a rigorous discussion of this example and many others). A convenient way of
writing this result is

C(x; t) = ~ An(t) sin AnX
n=l

with

An(t) = an e - Dt'

It is seen that for each n the amplitude An(t) in the point-spectrum decays exponentially.
Moreover, an ordening is apparent, that is, if m > n then lim, A, Am/An = 0 (assuming
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An(O) O). The usual norm ' 11, defined by I f - gll = {f0 If- gl2 dx}2, is convenient for
expressing the large-time asymptotic behaviour of the solution. If m is the smallest integer
for which am 0, one has

I C(x; t)- a e-A 2Dt sin Axll e- A+kD' II C(X) - am sin Amxll,

where m + k> m (and Am+k > Am). If this is multiplied by a factor eD' one finds

II C(x; t) e AmDt _ a sin AmxII e(A+k-)Dtll C(x) - am sin AmxII

so,

lim II C(x; t) e m2 D' - am sin xll = O.

It is seen therefore that for increasing time the solution gets closer and closer to an
exponentially decaying, single sinusoidal structure. One could put it as

lim C(x; t) = am e m sin Amx,

although this may look a little strange. In order to discover the large-time asymptotic
behaviour the solution has to be 'blown up' because it is continuously diminishing in
amplitude. Note that from

lim II C(x; t)- am e mDt sin Amxl = 0

nothing can be inferred about the large-time structure of the solution: it merely shows that
the solution asymptotically has a vanishing amplitude. The ordering in decay rates of the
amplitudes in the spectrum corresponds to the well-known feature of diffusive-like processes
that small-scale irregularities in the initial state (corresponding to the higher-wavenumber
components in the Fourier expansion) are 'ironed out' with increasing time.

Similar results hold for higher-dimensional domains of simple geometry and finite extent if
initial conditions can be expanded in eigenfunctions of the Laplace operator. With boundary
conditions as mentioned above, due to the finiteness of the domain the eigenvalues that
determine the decay-rate of the corresponding mode take discrete values (the An's in the
one-dimensional example) and the asymptotic time-dependent structure towards which the
initial field will evolve is easily determined. In infinite domains things are different, however.
Instead of a discrete spectrum there will be a continuous spectrum of eigenfunctions of the
Laplace operator. If, for example, one lets l--> while retaining the boundary condition at
x = 0, under some mild restrictions imposed on the initial conditions, a Fourier transform
can be found (see [3])

C(x; t) = 2 f o a(A)e A Dtsin Ax dx

where

a(A) = 4 o C°(x) sin Ax dx.
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In this case an exponentially decaying continuous spectrum AA(t) = a(A) e A2
Dt is found. No

'slowest decaying' mode is recognizable with this representation of the time-dependent
solution of the diffusion equation.

In this paper it will be shown that, if one slightly restricts the allowed initial conditions,
general asymptotics again do exist on infinite domains. One needs a denumerable set of
solutions of the diffusion equation Cn(x; t) that can be ordered according to their rate of
decay

lim Cm(x; t) /C(x; t) = 0

for all m > n, and such that an initial condition can be expanded in a sum of these solutions,
giving the evolution in the form C(x; t) = En,, aC(x; t). Such functions are provided for by a
certain class of similarity solutions of the diffusion equation as will be shown below. Before
proceeding, however, it will be convenient to non-dimensionalize (1). From hereon x and t
will denote the dimensionless position vector x = x/L and time t = DtlL 2 where L is an
arbitrary lengthscale. After substitution the following non-dimensional form of the diffusion
equation is found

dc n 2)
adC = aC (n =1, 2, or 3) (2)
at j=1 dxi

where C has been scaled with an amplitude of appropriate dimension. In the sequel the
diffusion equation will be studied in this form.

The similarity solutions that hold the key to a quick assessment of the large-time
asymptotics, are all of the form (see Section 2)

(2t + 1)-mF(x/V2T 1) (3)

for some m > O0. If this expression is substituted in (2), an ordinary differential equation is
found for the (yet) unknown function F in terms of the similarity variable x//t+ 1. There
are several ways to recognize this reduction possibility. For instance, dimensional analysis of
(1) (see [9]) as well as invariance of (2) under the scaling transformations
(x, t, C)- (Ax, A2t, Am C) for any A>0 (see [5], [6]), shows the existence of a similarity
variable. Once having reached this point, one customarily looks for solutions of the form

t- mF(x/-t) . (4)

An important solution of this kind is the so called 'source' solution which on Rn takes the
canonical form

CS(x; ) = (2 ) exp 4t (5)

The source solution has the property that for all t > 0

fRn C (X; t) d, - dx = 1
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and

lim C (x; t)=0

for all x #0. It can therefore be interpreted as the field due to an instantaneous 'point'
source at x = 0. It does solve (see [41)

V2 C t = -8(Ixl)8(t),

so it is in fact Green's function for the diffusion equation on Rn. For a given arbitrary initial
condition C°(x), the evolution can be expressed in the following concise form:

C(x; t) = (2 C(x') exp{ dx- dxn.

This highly useful solution is only one of an infinite set of similarity solutions. Most others do
not allow for such a simple interpretation as the source solution does, if one lets lim t -- 0 +
(their integral vanishes for example, they have no net content). If time is shifted a little
however, these solutions will have 'spread out' at the shifted time t = 0, and are ordinary
functions by then. The similarity solutions indicated by (3) thus are the same as the ones
given by (4) where in the latter t has been replaced by t + . The similarity solutions of
Section 2, that have the form given by (3), have the nice property of being regular functions
F(x) at t = 0. Moreover, these functions will be shown to form a basis for the Hilbert space
L2 (R n, elx 12 ), with inner product (f, g) = Rn fg* e l x12 dx 1 ... dxn (an asterisk denotes com-
plex conjugate). This means that at t = 0 any initial condition C°(x) in L2 (Rn, e 1"x12) can be
expanded in the set of similarity solutions. It is found that the basis consists of a
denumerable set for which the m's in (3) take discrete values. Since each function, if it
serves as an initial condition for the diffusion equation, has its own unique decay-rate (the
factor (2t + 1)-m), as soon as one knows the smallest m occurring in the expansion, the
large-time asymptotic structure can be predicted. Or, in other words, as on finite domains
point spectra are found that allow for an ordering in decay-rates: this makes it possible to
pin-point a slowest decaying mode.

In Section 2 the one-dimensional similarity solutions of the diffusion equation are derived
that prove to be the key to an assessment of the large-time behaviour, as is shown in Section
3, where expansions in these similarity solutions are shown to be possible in the above
mentioned weighted L 2-space with n = 1. Generalizations to higher-dimensional problems
and several examples are finally given in Section 4. The properties of the one-dimensional
similarity solutions that are of interest, are discussed at some length in Section 2 since they
prove to be basic also in all higher-dimensional cases. Instead of directly substituting (3) in
(2) in order to determine the possible F's, a geometrical approach has been chosen for, in
which the idea of self-similarity is extended to be the property of solutions that remain a
mere copy of themselves as time increases, that is, any solution that simply scales in
amplitude, in spatial extent, or both (the last being of the form given by (3)). This approach
was inspired by the observational evidence of self-similarity of certain vortices in a rotating
fluid (see [7]). The observations described in this reference initiated the present study. It is
for this reason too that the examples in Section 4 have a distinct fluid-mechanical character,
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but all results are general results concerning just the diffusion equation, irrespective of the
diffusing property.

2. One-dimensional similarity solutions

In this section an important set of solutions of (2) is constructed for the one-dimensional case
(n = 1) on R and R+ (or R-) that consists of the so-called similarity solutions of the diffusion
equation. These particular solutions form a subset of the set of solutions generated by the
general symmetry group of the diffusion equation, but for our purposes here there is no need
to go into this in any detail (as extensive treatment on how to exploit local Lie groups of
symmetries for finding solutions of particular partial or ordinary differential equations is
given by Bluman and Cole [5] and Olver [6]). It is merely noted that similarity solutions will
be called those solutions that have the property of being at all times a scaled version of
themselves, that is for all t > 0 one has

with a(O) = b(0) = 1 and C°(x) = C(x; t = 0). The trigonometric functions discussed in the
previous section are a special case of self-similar solutions with b(t) = constant. Without
invoking the machinery explained in the above mentioned treatises, the ansatz of self-
similarity is directly used in (2) in order to determine what possible C°(x), a(t) and b(t) one
can have. After some algebraic manipulations, one finds

d2 C° db dC0 b2 dao 0 (6)
ds2 +b s d + a dt(6)

where s = xlb(t) is the similarity variable. This equation can only be identically satisfied for
all t and s if

b2 da db
-= a; b - = (7)

a dt dt

where aand / are constants, and

d2C° dC0

ds2 +s + aC = 0. (8)

It is illuminating to discern the following three possibilities: A) a # 0, / = 0, B) a = 0, /3 0,
C) a 0, /3 # 0. In the first case (A), for a > 0 the exponentially-decaying trigonometric
functions are recovered with, as alternative, for a < 0, exponentially-exploding cosh and sinh
functions. In the second case (B) a solution of constant amplitude is found (a(t) = constant)
that can be expressed in terms of the error function for / > 0, CO(s) = Jf e-½ u2 du, whereas
for / < 0 unbounded solutions are found. The third possibility provides us with the similarity
solutions that do have both a time-dependent amplitude as well as shifting maxima and
minima, as opposed to the trigonometric functions that have b(t) = constant. The solutions
of (7) with a(O) = b(O) = 1 are

b(t) = (2/3t + 1)1 / 2a(t) = b"(t ; (9)
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It is seen that for / < 0 singular behaviour of the solutions occurs at t = 1 /3 1. Such solutions
are of no interest here and attention is focused on solutions of equation (8) with 3 > 0 only.
Without loss of generality /3 can be put equal to one in (8). Therefore, if Ca (x) solves

d2 C dC
dx2 + x -+aC=O (10)

and one has as initial condition, at time t = O, C°(x) = C. (x), then the subsequent evolution
is simply

C(x; t)= b--) Ca( ) . (11)

Note that - since b'(t) $ 0 - these solutions cannot solve any initial-value problem on a finite
interval with fixed boundary conditions at both ends. The only fixed point under the
stretching x -- xlb(t) is x = 0, so either the whole R or R+(or R-) axis has to be considered
as domain for solutions of this type with appropriate boundary conditions for x -* +o and, if
semi-infinite intervals are considered, at x = 0. It may also be noted that solutions of (10)
decay algebraically for a > 0, which is in marked contrast with the exponential decay of the
trigonometric functions that are found if /3 is put equal to zero in (8).

A few properties of solutions of (10) can be derived without knowing exact expressions for
them. Assuming that Ca has a Fourier-series representation, put

1 ik
Ca(X)= I e F (k) dk. (12)

If this expression is substituted in (10), the following equations for the spectrum of the
similarity solutions is obtained,

d (kF) = (a-k 2 )F (13)dk

which is solved by

F,(k) = k - '1 e- lk 2 (14)

(a multiplicative integration constant that determines the amplitude of the solution has been
left out here). With the Fourier-series expansion the evolution can be expressed as

C(x; t)= 1 r eikx e-k2 tF(k) dk (15)

Substitution of (14) in this expression then shows that, although each Fourier component
decays exponentially, indeed algebraically-decaying solutions as in (11) are found,

C(x; t) = 1 J_ + ei x e-k 2
(21+1)k- dk

(t)1 e
i x / b( t )e-z2l " - l dl ( b(t)k)

b(t) a (t). (16)
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A glance at (12), with F (k) given by (14), suffices to infer that if a is an odd integer, C is

an even function of x, whereas for a an even integer it is an odd function.
By casting (10) in the well-known Sturm-Liouville form

d 1X2 dC + It eX2C = O (17)
d dC - _+ae e 2 C=(17)
dx dx

it is seen that if the Ca's are integrable with respect to the exponentially-growing weight-
function w(x) = e 2 , orthogonality follows

f- C.(x)C, (x)w(x) dx = 0 (v /). (18)

For integer a( > 0) exact solutions of (10) are easily found. By putting C e -'2H(x) and
introducing a variable y x/<V, after substitution in (10) the standard Hermite equation is
found for H

d2H dH
d _ 2y + 2(a - 1)H = 0. (19)
dy2 dy

Solutions of this equation are Hermite polynomials Hn if a - 1 n is a positive integer or
zero (see [4]),

dy

One has Ho = 1, H1 = 2y, H2 = 4y2 - 2 and so on. A particular set of similarity solutions thus
is

'n(x) 
= Hn( ) e x (n = 1,2,. (20)

For general a solutions of (10) can be expressed in terms of parabolic cylinder functions that
reduce to the above derived Hermite functions for positive integer a. This is by no means a
new result (see [5], [6]), but what seems to have escaped recognition is that this particular set
of similarity solutions - given by (20) - holds the clue to the large-time asymptotics of a large
class of initial conditions for the diffusion equation on infinite domains.

3. Similarity solutions and large-time asymptotics

It is a well-established fact that the set

H, (x)e - x 2

X (X)= God(21)

with

f nmdx = nm (n, m = 0,1,2,...) (22)
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is complete in L2 (R) (see [8]). It directly follows that the normalized set of similarity
solutions

Hn( ) e- 2

tn (x= 2n (23)

with

If n(X)im(X)W(X) d = Snm (n, m =0, 1, 2,...) (24)

where w(x) = e , is complete in L2 (R, w). If an initial condition on R is quadratically
integrable with respect to the weight function w(x)

I IC(x)2 eix2 dx < , (25)

then CO can be expanded in a sum of similarity solutions

C(x) = ann(x) (26)
n=O

where

an = C°(x)fn (x)w(x) dx. (27)

The evolution of the field with initial condition C°(x) then is

C(X;t b(t)n+l n b(t) (28)

The set {,n} thus forms a basis for the Hilbert space L2 (R, w) that is endowed with an inner
product ( , ) defined by (f, g) = fR fg*w dx.

As on a finite interval, discussed in the introduction, a point-spectrum is found that allows
for an ordering of decay rates of each contributing 'Fourier mode'. The large-time asymp-
totic behaviour is determined by the first non-zero amplitude an that occurs in the discrete
spectrum calculated according to (27). If an initial condition in L2(R, w) is an even function
of x, an expansion in the subset with n = 0, 2, 4,... is found. This subset suffices also for
problems on R + or R- if at x = 0 the boundary condition dC/ax = 0 is imposed. For initial
value problems that are anti-symmetric around x = 0 or for problems with boundary
condition C = 0 at x = 0, the subset with n = 1, 3, 5,... will do. It may be remarked here
that all functions that fall off to zero faster than Ixl - e-4X2 for x-* +±0 are in L2 (R, w), as
well as all functions that are zero outside any finite interval on R. All such initial conditions
asymptotically tend to one of the similarity profiles.

As an illustration of the foregoing consider the following initial value problem that is
discussed in all treatises on the heat or diffusion equation. Let on R, at t = 0, the initial
condition be: C°(x) = 1 on the interval [-1, +1] and zero everywhere else. Using Green's
function for the diffusion equation on R, the solution can be expressed as
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C(x; t) = {erf I2 + erf 2 J (29)

or, by means of the Fourier transform, as

C(x; t)= sin k eikx -k2 dk. (30)

This expression, nor (29), is very transparent with regard to the large-time behaviour. An
expansion of the initial condition in similarity solutions, however, shows directly towards
what structure the field will evolve. With (27) and (23) it follows that the expansion
spectrum is calculated as follows

_I 0 - I X
a /2n!X :: C (x)Hn()dx. (31)

In the case considered here one easily calculates

2 8 1
a0 = y;, a 1 =0; a 2 = -5 23 a3 =0, (32)

and so on. Generally, if m is the smallest integer for which am $ 0, the similarity solution it is
attached to is the slowest decaying one which therefore survives longest. This can be
elucidated by considering the norm for the Hilbert space L2 (R, eX 2 ). The usual norm 11 11

for this weighted L2 -space is (the extension to Rn is discussed in the next section):

IIf-gII = If-gl2 e2 dx} (33)

It is not hard to derive that the following estimate holds for some k 1:

Ilb(t)m+lC(b(t)x; t)- amflm(x)Il b( II1 CO(x) - amflm(x)Il (34)

This estimate gives an asymptotic expression for C(x; t),

lim IIb(t)m+lC(b(t)x; t) - amm,(x)II = 0, (35)

which will from hereon be expressed in the following - not very apt, but convenient - way

,1 C( ) a , ( x ) (36)

So in the particular case considered, the large-time asymptotic behaviour is

lim C(; t) = 2/ T-i exp 4t + 2 (37)

The large-time asymptotic behaviour of the solution is thus effortlessly deduced, as opposed
to the representations like given by (29) or (30) that in more complicated cases are rather
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cumbersome to work with. In order to reveal the large-time asymptotic behaviour by means
of expansions in similarity solutions of the diffusion equation, the solution needs to be
rescaled in amplitude but also spatially since it is both continuously diminishing in amplitude
as well as spreading out over increasingly larger scales.

The fact that each coefficient an is determined by an integral of the product of the initial
condition with a polynomial of degree n implies the following rather general result. Consider
some initial condition C°(x) with limx,,, C°(x) = C,, where C_, is a constant. Assume that
C°(x) - C is in L2 (R, eX 2). Let there be given that

o (C -C ) dx = 0,..., (Co C. )x dx =

and

i (C O- C . )x n dx 0, (38)

then

constant ( x x 2 }
lim C(x; t )= C+ (2t + 1)2 ( n+ ) n 4 exp 4t+2 

In the next section a few additional examples will be discussed that do show the power of
expansions in similarity solutions if one aims at isolating the large-time asymptotics.

4. Expansions for higher-dimensional problems

The results from the previous section can straightforwardly be generalized to higher
dimensions. For n = 2, for instance, it is directly inferred that if initial conditions C°(x1, x2)
are in L2(R2, e'lx12), where xl2- (x + x2), a double expansion is possible

C°(Xl, X2) = E i anmf'n(X1)fm( 2 ) (39)
n=O m=0

where the expansion coefficients are calculated according to

+co +o

anm = f 0. C0 (xl, X2)Qn(Xl)fm(X 2 )e 1 2i ) dxl dx2 (40)

The evolution then simply is

anm X1 )n X2
C(X1 X2; t) = n _ _ anm) (41)

Such expansions are valid on R2 but with appropriate boundary conditions they will also
suffice on domains as R x R+ or R+x R+. Similar expressions are easily derived for
three-dimensional problems. It will be clear that if initial conditions allow for separation
of variables, that is C(xl, x2) = F(xl)G(x2), or if boundary conditions like, say,
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C(x =0, x2; t) = 0 (x 2, t) are imposed, this type of decomposition in a double series of
one-dimensional similarity solutions is economical for assessing the large-time asymptotic
structure of the solution of the initial value problem. In R2 and R3 alternative sets of
similarity solutions can be found that in certain cases - depending on initial and boundary
conditions - will be preferred instead of expansions as given by (39). The number of
alternatives is very limited, however, if one restricts attention to solutions in orthogonal
coordinate systems that allow for simple separation of the diffusion equation, as is done in
the present study. On unbounded multi-dimensional domains there is no real need for other
sets of similarity solutions than the direct product sets of one-dimensional similarity solutions
(the calculation of expansion coefficients may be less time consuming for certain initial
conditions if an alternative set is used). On semi-infinite domains, with Dirichlet or
Neumann conditions specified on the boundary d, i.e. C =0 or dCdn =0, certain
alternatives are available. There is, however, only a limited class of semi-infinite domains on
which similarity solutions can be used to express the evolution subjected to one of the two
above mentioned types of boundary conditions. This has to do with the fact that the
boundary itself has to be invariant under the stretching transformation x-- xlb(t), that is, if
xE ai then also xlb(t)E d. On R2 such domains are just the 'wedge'-like domains, i.e.
domains bounded by two straight lines emanating from the origin (extending to infinity). A
set of similarity solutions in cylinder coordinates is presented below that forms a basis for
such domains with such boundary conditions. In R3 there are infinitely many invariant,
semi-infinite domains. Only few remain of these if attention is restricted to domains of which
the boundary coincides with coordinate surfaces of some simple separable orthogonal
coordinate system. Simple separable similarity solutions of the diffusion equation have been
found in even fewer systems, namely only in spherical coordinates and in conical coordi-
nates. These two possibilities are also presented in the sequel (there are also quasi
three-dimensional domains on which expansions in similarity solutions are feasible: all
domains with the 'wedge'-structure on some plane and which are further translationally
invariant in the direction perpendicular to this plane).

As a first example, similarity solutions in cylindrical coordinates will be derived here which
provide us with an alternative set of functions that is complete in L 2(R 2, e1112). The diffusion
equation on R2 in cylinder coordinates (r, 0) reads (see [11] where the Laplace operator on
the right hand side of (2) is given for many different coordinate systems)

dC 1 d ( dC) 1 d2C

at r r r r2 do2(4

where r = x +x (0 r < ) and tan 0 = x 21x 1 (0 - 0 < 2T7). In the sequel it will be
convenient to restrict attention to functions with separated angluar dependence, that is of
form C(r) eikO (k = 0, + 1, 2 2,... .). This induces no loss of generality since any reasonable
(say square integrable) function can be Fourier-transformed into a sum of functions of this
type. Self-similar solutions of the diffusion equations now take the form

C(r; t) eike = ) CO( b ) eike (43)
a(t) b(t) )i

where CO(r) is the radius dependent part of the initial condition. As before, a(t) and b(t)
satisfy a(0) = b(0)= 1. It follows by substitution in (42) that CO necessarily solves
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d2CO 1 dC° dCO (a
ds2 - +s s + a- 2 C)=0 (44)-- s ds 's

where a and O are constants (a(t) and b(t) again are solutions of (7)), and s is the similarity
variable s = rb(t). The two possibilities of either a or P being zero will not be considered
since they serve no purpose here (for 63 = 0 the solutions are Bessel functions). With neither
a nor 3 being zero, a(t) and b(t) are as in (9). It may be noted here that (44) is easily cast in
the Sturm-Liouville form, so some set of orthogonal functions can be expected at this point
already. Skipping a few intermediate steps, the result is merely stated that if one substitutes
C0 (y) = ylkl e-YL(y), with y = 2s2, and / is put equal to one, Laguerre's equation is found
for L,

d2L dL
Y dy 2 + (kl + 1 - y) a - 2 + kl)- kl)L = 0. (45)

dy dy

Since k is always an integer, it follows that if (a - 2 + Ikl) = n = 0, 1, 2, ... , solutions of
(45) are associated Laguerre polynomials L l(y) (see [4]). The associated Laguerre
polynomial is defined by

L(y) = dmLn(y)
dy

m

where Ln is the ordinary Laguerre polynomial of degree n

dn yn e
Ln(y)-- e+y dy n Ye -

For instance, L = 1, L = 1-y, L 2 = 2 - 4y + y2 and so on (note that for all m > n,
L = O0). A particular set of similarity solutions is therefore

(r2 )lIklLlk( r2) e- r2 eik (46)

for n = 0, 1, 2,... and k = 0, +1, 2, ... , +n. The fact that the angle-independent solutions
are ordinary Laguerre polynomials was previously noted by Birkhoff [9]. The set

pnm(Y) ¥ (n )! ylm e-YLn(y) (47)

with, for fixed m (O < m < n),

Jo (PnmOpnm dy = nn (48)

can be proved to be complete in L2 (R +) (see [8], for example). Be warned, however, of the
intermixing of the terms 'generalized' and 'associated' Laguerre polynomials. Generalized
Laguerre polynomials, sometimes denoted in the literature by L(k), are related to associated
Laguerre polynomials according to Lk)= (- )k Ln+k, but they are also defined for non-
integer k (an expression is given below by (91)). If one combines completeness of the
functions given by (47) with completeness of the trigonometric functions in L2(0, 27r), and it
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is noted that the functions ,,nm are proportional to the radius dependent part of the similarity
solutions given by (46), it is deduced that the normalized similarity solutions

_ (n - k)! I 2)2kl 1,
2

k112ik
6

nk (r,0)= X(n r2 Ik) e-r2 Ikl( r 2) eik (49)
2r(n!)3 (r) (4

with (an asterisk stands for complex conjugate)

O f -nk(()n'k') *
eir

2 r dO dr = nn' kk'

are complete in L2 (R2 , e'lx 2). If an initial condition C°(r, 0) is in L2 (R2 , e1lx12), it thus can be
expanded according to

o +n

CO(r, 0) = E ank(>,,k(r, 6) (51)
n=O k=-n

where the expansion coefficients are calculated with

ank j CO(r, 0)4'*k(r, 0) e2r r dO dr. (52)

Noting that a = 2n + 2 - Ikl, the evolution is given by

C(r, ; t) =E E 2n+2k Dnk5 )
n=O k=-n b(t) 2n +2 -1 kl ' b(t)' (53)

Subsets of (49) can be used to expand initial conditions on 'wedge'-shaped domains
R+ x [0, (pq) 7r] with boundary conditions C = 0 or dC/dO = 0, if p/q is a rational number.

Consider for the moment the class of initial conditions with no angular dependence, say
C°(r). For such initial conditions the restricted set of similarity solutions

C (r)- 1 Ln(r 2) er (54)

with

fo C(r)Cm(r) e2 r dr = nm (55)

can be used as an expansion basis. The expansion coefficients are calculated with

an =f C°(r)Cn(r) e2 r dr = -.f C(r)L(r 2 )rdr. (56)

The corresponding evolution is

C(r; t) = O b(t)2n+2 Cn b(t)(57)

In fluid mechanics initial conditions of this type can be thought of as describing initial
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vorticity distributions w°(r) of radially-symmetric, planar vortices. The vorticity of such a
vortex is related to its azimuthal velocity v(r) according to

1 d
-= - - (rv). (58)r dr

The evolution of vorticity of an unbounded radially-symmetric, planar vortex in a viscous
fluid is governed by (see [2])

r -J . (59)
At r dr (59)r

By comparing this equation with (42) it is seen that expansions in the restricted set C"(r) are
appropriate for vorticity distributions that are square-integrable

0I l2 e 2 r dr < x (60)

A well-known model vortex often encountered in the literature is the Rankine vortex, which
consists of a core in solid body rotation, surrounded by irrotational (potential) flow (see
Fig. 1)

VRa(r) = ½r (0 r 1),

-= (1 r < o). (61)
2r

The prefactor is used to get the following simple expression for the vorticity distribution of
the Rankine vortex

(Ra(r) = 1 (O < r < 1),

=0 (1<r<o). (62)

V

r

w

r
Fig. 1. Velocity (a) and vorticity (b) of a Rankine vortex.
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The expansion coefficients for this case are, according to (56),

an =! Ln( r 2)rdr, (63)

which yields a= , a1 = , a2 = 3 and so on. Therefore, asymptotically,

1 1 r1 r2
/

lim Rr; ) 2 2t+ 1exp 2 2t+ ' (64)

by which is meant that

lim 11(2t + 1)WRa(vT -lr; t)- e-r 2 1l = 0. (66)

The precise details of the evolution can be obtained numerically by either considering the
Fourier-Bessel transform or by invoking Green's function for the diffusion equation on R2.
The Fourier-Bessel transform of an initial condition to°(r) is (see [4])

o 2(r) = f g(k)J(kr)k dk (67)

with

g(k) = fj o(r)Jo(kr)r dr. (68)

Here JO is the zero-order ordinary Bessel function. Ordinary square-integrability is sufficient
for such a transform to exist (see [4]). Because the Bessel functions are eigenfunctions of the
Laplacian on the right-hand side of (59), with eigenvalue -k 2, the evolution is simply

(r; t) = -k2tg(k)J(kr)k dk . (69)

The Fourier-Bessel transforms of the radially-symmetric similarity solutions Cn(r), for
instance, are

k2n e lk2

gn(k) = J Cn(r)J(kr)r dr = 2nn! (70)

For the Rankine vortex the Fourier-Bessel transform is quite simple

gRa(k) = J(kr)r dr = k, (71)

where a standard identity for Bessel functions has been used (see [10]), and J is an ordinary
Bessel function of order 1. The evolution of the Rankine vortex is therefore in integral form

WRa(r; t) = e-k 2'Jl(k)J(kr) dk .

In order to show the approach to the simple Gaussian shape as given by (64), this integral
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has been evaluated numerically at three consecutive moments, and the result is compared at
each moment with the function f(R) =e - R in Fig. 2. Since wRa(r; t) is continuously
diminishing in amplitude and spreading out, in order to make this comparison oRa(r; t) is
rescaled with scaling factors A and B such that wt*(R; t) = AwRa(BR; t) (R = rB), coincides
with f(R) at R = 0 and R = 2. The latter could have been any point # 0: it merely serves as
an additional point where at any instant the two functions already coincide. It is seen that,
with increasing time, the form of the vorticity distribution of the diffusing Rankine vortex
rapidly approaches the Gaussian function as predicted by the analysis in terms of similarity
solutions: for t > 1 the difference is hardly discernable. In the case of a Rankine vortex with
a core radius of 10 cm in water with a temperature of about 20 degrees Celsius, for which
the kinematic viscosity is approximately 1.10 - 2 cm2/s, dimensionally t = 1 corresponds to

L2D = 10000 seconds (so it may take a while!).
In general, since L = 1, the first expansion coefficient a of a vorticity distribution is

proportional to the circulation F(-) of the vortex at infinity. The velocity circulation r(C)

W

R

w w

R R
Fig. 2. Graphs showing the evolution of the diffusing vorticity distribution of a Rankine vortex (solid line) towards
the similarity solution given by (54), with n = 0 (dashed line). Times are (a) t = 0.1, (b) t = 0.5 and (c) t = 1.0.
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round a closed contour C is defined by (see [2])

(C)- u dlF(C) = u.d

where u denotes the two-dimensional velocity field. If Stokes' theorem is invoked here, the
circulation is seen to be equal to the area integral of vorticity

F(C)= owdA

where A is the area bounded by the closed contour C. The circulation round a circle of
radius r, of which the centre coincides with that of a radially-symmetric vortex, is

r(r) = 2rv ,

and therefore

ao = lim °(s)s ds v = lim r = im (72)
0 ax o r E 27r

It can therefore be concluded that any radially-symmetric vortex that has non-zero net
vorticity, which means non-vanishing circulation, with increasing time will asymptotically
'look like' the simple two-dimensional source solution, irrespective of the finer details of the
initial distribution. Vortices on R2 with non-zero circulation are from a physical point of view
often less interesting since asymptotically, that is, for limr,, v(r)-->1 r, which makes
important integrals as energy E = 2rr J'o v2r dr diverge. A simple model of an isolated
vortex, i.e. a vortex with vanishing circulation and finite energy, is the following. Let the
vorticity initially be given by (see Fig. 3a)

a) f

Fig. 3. Any initial vorticity distribution that has vanishing circulation, like the two profiles shown in (a), will
asymptotically tend to a scaled version of the function f(R) = (1 - R2) exp(- 12R

2) that is shown in (b).

(a)
1

1 cl d
r 

-q
-q
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tO(r) = 1 (O r< 1)

=-q (l<r<d), (73)

=0 (d< r<oo).

It can be pictured as a vortex consisting of a constant vorticity core surrounded by a ring of
oppositely-signed vorticity. Integration shows that the first expansion coefficient, which is
equal to the circulation, has the value

ao = fW(s)s ds= ½ (1 + q) - qd2 (74)

So if one chooses

d = q or = d2 ' (75)

the circulation is zero. The second coefficient is non-zero for any choice of a pair (q, d) that
satisfies this relation. It is given by (note that L1 (x) = 1 - x)

a1 = f (1 - s2 )w°(s)s ds = ao + qd 4 - (1 + q)= d4 . (76)

Therefore, any vortex initially of this type asymptotically tends to

lim (r; t) al C( bt ))

- (2t+1)(1 4 t 2 )exp{ t r2 (77)(2t + 1) 4t+ 2 4t + (77)

or, in other words, asymptotically becomes a scaled version of the function f(R)=
(1- R 2 ) exp(- R2 ) (see Fig. 3b). From the fact that the L's in (56) are simple
polynomials of degree n, the following general result is inferred. Let some initial vorticity
distribution be in L2(R2 , elIxl ) and have the property

fo 0 (r)r dr = 0, . . . 0(r)r2n- dr= 0, fo 0 (r)r2n+l dr O,

then

constant ( 2
_____

lim w(r; t) c n2 exp l-l. (78)
lim (r;t) !(2t + ) n+ l Ln4t + 2 p 4t+2J (78)

A double expansion in one-dimensional similarity solutions should also work on R2 and
one may wonder therefore at this point how expansions based on similarity solutions in
cylindrical coordinates are related to the double expansions presented earlier in this section
(both should yield the same results of course). The easiest way to find out is as follows. Any
initial condition in L2 (R2, e lxl 2) can either be expanded according to (39) or (51). By
equating the expressions for the evolution in these two different forms, given by (41) and

231



232 R. C. Kloosterziel

(53) respectively,

X7nm X1 X2 alk (D "( r (79)
n=O rn- b(t)= 0~ /=0) mb(t) 1= k=-lI b(t)21+ 2- lk l (b(t)') (79)nom b(t)-7~+m 1nb(t)- m b(t) = ak

terms on the left-hand side can be identified with terms on the right-hand side by equating
powers of b(t). For instance, in the case of the Rankine vortex discussed above, the lowest
power is b(t)- 2 (1 = k = 0). This implies that the first term in the expansion derived for the
Rankine vortex should be equal to the term in the double expansion with n = m =0.
Therefore one necessarily has

aooa( x1 \___ X2 exp_ 1 _b(t) b(t) b(t)2

(remember, the first expansion coefficient was aoo = ao = 2 and r2 = x2 + x). With (23) one
sees

aoo o( x2 exp_ I__1 1! -
a o b(t) o b(t = exp 2 b(t)2exp 2 b(t)2

where use has been made of the fact that Ho(x) = 1. So all that remains to be checked is
whether a' 0 = \-/. This indeed is verified with the elementary calculation of a' 0 according
to (40)

f1 + 2 H0(Xl/Vr) HO(x2/v)
a00 = J 'F J dxl dx2

__ 2 1'/2v~= - 2VT- x2 dx2 = 

Compatibility of the higher-order terms can also be checked, with considerable more effort
however. One has, for instance,

Ho( )H2( ) + H2( )Ho( )c L(l r2)

and

HI(xk )Ho( ) rL l ( r2) cos 0,

Ho(X )Hl( X2c xrLl(l r2) sin ,

and so on. An interesting set of relations between products of Hermite polynomials and
functions of type rmL, ( 2 r2) · (cos mO, sin mO) can be based on the correspondence expressed
by (79).

As a second example, similarity solutions in spherical coordinates will briefly be discussed

here. The set of orthogonal functions derived below is complete in L2 (R3 , e l xl ) and will
therefore be useful for problems in which the initial conditions or the particular geometry of
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the domain have simple expressions in spherical coordinates. First of all it is noted that the
diffusion equation in spherical coordinates is given by

c 1 a 2 dC 1 fl 1 2C1
-- (rsinO + 2 (80)at r2 rr dr2 r sin dda2 a2+s , (80) 

where the spherical coordinates (r, O, p) are related to the rectangular coordinates
(x l , x2 , x 3) according to:

r2 = x+x 2+ x3 (O r<c),

tan i= (x )I + x2)/x 3 (0 1 e T ), (81)

tan p = x2/x 1 (0 6 < 2) ).

The similarity ansatz is

C(r, O, p; t) = t) C b(t))k()Dk(p) (82)

where )k(P) is a normalized trigonometric function

4V(O) = i eikp (k = 0, +1, 2,...) (83)

and oek(O) a normalized associated Legendre polynomial (for a definition, see [4])

elk(2) = 2 (I +- kl)! }P(cos a) (= Ik, kl + 1, .) (84)

which has the property

O0k(O)lk(O) sin , de f 0 ,k(Z) 0 ,,k(Z) dz = (85)

where z = cos 0. The set Ok(z) (with fixed k) is known to be complete in L 2 (-1, +1) (see
[8]). In conjunction with completeness of the trigonometric functions, it follows that the
product set

Plk(Th, ) = Olk0 1 k()k() (86)

with

fo fo k(0,1k,) * sin d d = 3llkk, (87)

is complete for functions that are square-integrable on a sphere (remember that a surface
element on a sphere is equal to r2 sin d d). One may also use 'spherical harmonics'
instead of these functions, in which case the notation slightly simplifies but by which nothing
is gained here. No generality has been lost therefore by putting possible similarity solutions
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in the form given by (82) since any square-integrable function can be written as a sum of
functions with separated dependence on the angular coordinates e and So is this way. Since in
most standard text books on mathematical physics or quantum mechanics the properties of
associated Legendre polynomials are discussed, it will merely be noted here that if (82) is
substituted in (80), and if a(t) and b(t) are again as in (9) (with f3 = 1), after separation the
following equation for CO is obtained

d2 C 2 dC 1(1+ 1) +s dC
+ - = l It0 - s2 J C + s(88)

ds2 ds I S ds

where the similarity variable s rlb(t) has been introduced. The factor 1(1 + 1) is the
separation constant that comes from the separated equation for the associated Legendre
polynomial. By putting

CO = y"l e-YL(y) (89)

with y = s2 , again, as in the cylindrical case, a Laguerre equation is found for the remaining
unknown part of the possible similarity solutions

d2L +( 1 \ dL 1
Y dy 2 + +2 -Y) dy 2 )L=0.

This equation has polynomial solutions only for (a - 3 - 1) = m = 0, 1, 2,... ., in which case
L is a generalised Laguerre polynomial (see [4])

L(y)= Lt)(y)= eY dm (ym+l+l e). (91)
m!yl+ dy

A particular set of similarity solutions in spherical coordinates thus has a radial structure
given by (remember that (89) was substituted)

(itr2)e-r2L(+)(½r2)

Completeness of the set

Yj(y) = r(n + +1) y 2½ e YL()(y)Y ( (n + Y) + n'+)

with

Y Y( "I dy = nmY Y dy=Sm

in L2(R+ ) (see [8]), together with completeness of the set given by (86) on surfaces
r = constant, proves that the normalized similarity solutions

1 (m + 1) (1r2)( r )MA (92)
tk- V Vr(m+ I + 1+ )2
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with

fo f fIo Itmlk('mIk)* e2r sin e dp dO dr = Smm',1,,'kk' (93)

are complete in L2 (R3 , ei lxl2 ) and thus form a basis. If an initial condition C°(r, O, 4p) is in

L2 (R3, e1
1x1

2 ), it can be expanded in a sum of similarity solutions

CO(r, , o) = E E anlktmlk(r, , p). (94)
m=O 1=0 k=-I

The expansion coefficients are calculated with

amlk = f f f CItm*lk e2 r2sin dp dO dr. (95)

By definition one has a = 2m + 3 + 1, so the evolution is given by

C(r, , o; t)= mkb() (96)
m=O 1=0 k=-1 b(t)2

m
+3

+
1 b(t)

An alternative set that forms a basis for L2(R3 , e' lx 12 ) is, of course, the product set of the
one-dimensional similarity solutions fln - of Section 3 - with the cylindrical similarity solu-
tions nk of this section.

All possibilities encountered so far have been solutions in coordinate systems that allow
for simple separation of the equation that is derived by substituting the similarity ansatz in
the diffusion equation. A necessary condition for such simple separable solutions to exist, is
that the Helmholtz equation in the particular coordinates can be separated. The list of
coordinate systems with this property is quite impressive (see [11]), but of all these very few
remain if additionally separability of similarity solutions is imposed. The author has found
one more possibility, in addition to the examples already discussed, namely in conical
coordinates (r, 0, A) (see [11] for an extensive discussion of this probably unfamiliar
coordinate system). In these coordinates similarity solutions are products of generalized
Laguerre polynomials (in the similarity variable rlb(t)) with Lam6 polynomials in and A.
Completeness etc. can straightforwardly be deduced from classical results concerning these
polynomials. These similarity solutions form a basis too for semi-infinite domains that are
bounded by elliptic cones. With this briefly-mentioned final example, all simple separable
possibilities seem to have been touched upon. It may be possible that other highly exotic
ones can be found, but for most practical purposes the sets of orthogonal similarity solutions
presented will suffice.

5. Discussion

It has been hown that the similarity solutions of the diffusion equation form a basis for the
Hilbert space L 2(R, el 12). As a consequence, the large-time asymptotic behaviour of initial
value problems on infinite and certain semi-infinite domains could be uncovered without
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much effort. This result could prove to be quite useful, since for many practical purposes it is
often of considerable interest to have a knowledge of the large-time structure of the evolving
field. The examples discussed in this paper, i.e. sets of similarity solutions in rectangular,
cylindrical, spherical and conical coordinates, appear to cover all possible coordinate systems
that allow for expansions on semi-infinite domains if Dirichlet or Neumann conditions are
imposed on coordinate surfaces. In a more general context these orthogonal functions are of
quite some interest too. For instance, computational strain may considerably be lessened if
they are used for discrete spectral representations of fields where otherwise some continuous
Fourier transform would be calculated. As a final remark it is noted here that the
one-dimensional similarity solutions as well as the angle-independent cylindrical similarity
solutions have been known for a while, whereas all other ones appear not to have been
reported thus far.
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