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Abstract. A Green’s function is derived, which can be used to study and predict
the evolution of the velocity and pressure fields associated with the mixed Rossby
gravity wave component of the totality of motions due to forcing on an equatorial 3
plane. Initial value problems can also be solved with the aid of the Green’s function.
Since energy associated with the Rossby gravity mode always travels east, the

Green’s function can be employed to predict what signal should arrive to the east of
a given location if the time history of the fields are known at that position. Various

simple analytical examples are discussed. A numerical ocean general circulation
model is used to demonstrate the usefulness of the Green’s function formalism.

1. Introduction

Equatorially trapped waves are ubiquitous in obser-
vations and solutions to ocean models, and their rela-
tively simple dispersion properties often allow prompt
recognition of the signatures of these waves in various
observed and modeled fields. This is particularly true
for the large-scale, low-frequency equatorial Kelvin and
Rossby waves that have been found to form an impor-
tant part of how the ocean evolves in response to climate
signals. The mixed Rossby gravity, or Yanai, wave has
been observed and modeled on occasion, but this wave
can develop rather complex signals that may prove dif-
ficult to interpret. The present paper provides a for-
malism to define the evolution of the wave fields due to
a particular forcing or initial condition.

The linear theory of equatorially trapped oceanic
waves began with the work of Matsuno [1966] and
Blandford [1966]. Matsuno obtained the dispersion rela-
tion and, for vertically standing modes, demonstrated
the completeness of the horizontal modes, which are
Hermite functions. Thus the initial value problem for
free waves in a horizontally unbounded domain could
be solved. Later work turned to the effects of bound-
aries [Moore, 1968] and forcing by wind [Lighthill, 1969)].
McCreary [1981] produced a steady linear theory for the
undercurrent, with dissipative terms taking the place of
time dependence. Cane and Sarachik [1976, 1977, 1981]
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and McCreary [1976, 1983, 1984, 1985] refined the the-
ory and investigated a number of idealized problems.

Mixed Rossby gravity waves have been observed in
all three equatorial oceans. Ripa and Hayes [1981] ar-
gued that antisymmetric variability from a Galapagos
pressure array was dominated by mixed Rossby grav-
ity waves with periods in the 10-20-day range. Enfield
et al. [1987] supported this conclusion. Weisberg and
Horigan [1981] observed vertically propagating oscilla-
tions of meridional current at depths to 2000 m in the
Gulf of Guinea, which they identified as the signatures
of mixed Rossby gravity waves generated by instabili-
ties of the surface zonal currents. In the introduction
to a paper on a 26-day oscillation, Tsai et al. [1992]
reviewed both the available observations and modeling
efforts with respect to the mixed Rossby gravity wave
in the equatorial Indian Ocean. Luyten and Roemmich
[1982] found a 26-day oscillation in the meridional ve-
locity in the upper 200 m at 55°E. Reverdin andLuyten
[1986] inferred the existence of the mixed Rossby grav-
ity waves from drifter data, and Tsai et al. {1992] found
clear evidence for a 26-day oscillation in satellite sea
surface temperature (SST) measurements.

Several modeling studies have sought to explain these
observations. Kindle and Thompson [1989] drove a non-
linear model with monthly mean winds and found a
26-day oscillation, attributed by them to an instability.
Moore and McCreary [1990] tried a linear model with
sloping coastline to convert the effect of oscillating zonal
winds into waves with meridional flow across the equa-
tor. But with no clear 26-day peak in the wind, it is
not clear that this mechanism is relevant to the Indian
Ocean observations.
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For each vertical normal mode, characterized by a
Kelvin wave speed ¢, the mixed Rossby gravity wave dis-
persion is k = w/c— 3 /w, where k is the horizontal east-
west wavenumber, w is the frequency, and 8 = 2Q/R is
the equatorial value of Rossby’s [1939]) 8 parameter (2
being Earth’s rotation rate and R being Earth’s radius).
Mixed Rossby gravity waves can have a phase velocity
in either direction, but the group velocity ¢, is always
to the east and lies between c; = 0 and ¢, = ¢. Thus
the mixed Rossby gravity wave signal at any location
must have been generated somewhere to the west. The
mixed Rossby gravity wave signal at any longitude plus
the zonal and meridional winds to the east of that longi-
tude are sufficient to predict the wave signal everywhere
to the east of that longitude.

The purpose of the present paper is to cast the the-
ory for the mixed Rossby gravity wave in a form that
is useful for testing this predictability. It provides the
theoretical basis for testing these ideas against a variety
of data sets, both from observations and from models.
In section 2 we briefly discuss the equations governing
linear internal equatorial waves and the projection of
the dynamics on vertical normal modes and Hermite
functions in the north-south direction. Then we derive
the equations governing the mixed Rossby gravity wave
dynamics. We derive the Green’s function for the mixed
Rossby gravity wave in physical (z,t) space (z denotes
longitude, ¢ denotes time) through Laplace transform
methods. Some analytical examples are worked out ex-
plicitly in section 3 to illustrate the effects of mixed
Rossby gravity wave dispersion. In section 3.3 a nu-
merical ocean general circulation model is used to test
the applicability of the Green’s function formalism. Sec-
tion 4 summarizes the main results, while the Appendix
discusses the Green’s function formulation in spectral
form, which can sometimes be useful in solving partic-
ular initial value problems.

2. Equations of Motion

We consider forced linear hydrostatic motions of an
incompressible rotating stratified Boussinesq fluid in
a horizontally unbounded ocean of constant depth H.
Their governing equations are

Ou—fo+0,p = 1, (1)
0w+ fu+0yp 7Y, (2)
8,p = b, (3)
ob+Ni(z)w = 0, (4)
Oru+0yv+0,w = 0. (5)

Here u, v, and w are the zonal, meridional, and vertical
velocity components, respectively; p is the pressure (di-
vided by a constant reference density); f is the Coriolis
frequency; b is the buoyancy; and N2(z) is the Brunt-
Vaisald or buoyancy frequency. The terms on the right-
hand side of (1) and (2) represent body forces acting in
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the z and y direction, respectively. The surface is at
z = 0, and the bottom is at z = —H. In the present
paper we will only consider the internal adjustment pro-
cess due to the dispersion of the relatively slow internal
modes and not the external adjustment due to the dis-
persion of the fast external surface mode. Thus we use
the boundary conditions

z=—H,0. (6)
The present study concerns the dynamics of forced mo-
tion in the equatorial regions, and we will make the
equatorial 8 plane approximation; that is, the Coriolis
parameter in (1) and (2) is f = By with y being the
distance from the equator.

We expand the fields in usual vertical normal modes
dn(2) [see, e.g., Gill, 1982)

w =0,

(U,’vav 7_177_y) = Z(un, vnapnaTrf»Tr?{)qbn(z))
T o g (7)

=1

w =

where the ¢, are eigenfunctions (with eigenvalues c,;?)
of the Sturm-Liouville problem

d 1 d 1

* with boundary conditions

don

. =0.

z=-H,0

The gravity wave speed ¢, for the nth vertical nor-
mal mode is often written as ¢, = v/ghn, where h, is
the equivalent depth for the nth baroclinic mode. The
magnitude of ¢, decreases monotonically with increas-
ing mode number n. Substitution of the expansions in
(1)-(5) leads, after projection on mode n and elimina-
tion of the buoyancy and vertical velocity between the
equations, to the set of shallow water equations

Ostin, — Byvn + Ozpn = Ty, (8)
Ovn + Byun + 8ypn =74, 9)
C;28tpn + Oz + 8yvn = 0. _— (10)

It will be convenient to nondimensionalize (8)-(10). We
choose a length scale L,, for z,y and a timescale T, for
t defined by

R
B’ n ,_ﬁcn’

and some velocity scale U for u,v. Pressure is scaled
with Ucp, and the forcing is scaled with U/T,. The
nondimensional equations are then the same as (8)-(10)
but with ¢, = 8 = 1. In what follows we will for the
sake of convenience drop the index n. Note that since
the ¢, decrease with increasing n, the timescale T,, in-
creases with n. Thus the evolution associated with the
first baroclinic mode n = 1 is the fastest.

L,=

(11)
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2.1. Mixed anqbv Cravﬂ'v Waves

The following equatlon for v alone can be derived

Faran FQY_ 71N +hansigh an~ca Tt ind s man
11OIL \O} \.I.U} uuuugu LlUbb“UlllClCllbldblUll

04(02 — y¥) + (802 + 8,)v — B3v =
— 8,0,)T" — (8} — 82)rY. (12)

obtain senarable solutions to f]_')\ ﬂ\n 2y de-

SUPGL QLT SUIRLIVIIS o &y ol oy

5
(y0

In aorder to n
in order 1o optain

pendence of solutions is resolved in terms of eigenfunc-
tions of the [(d/dy)? — y?]-operator. They are Hermite
functions ¥, (y) which satisfy

2
4" Ym —2 = —(9m + 1),
dy2 g ¥m \ VA #1135

2 (13)
=Y /2brm(,y)

Qpm(y) - 2mm'\/—7F (’ITL = 0, 17 2, )
The 1, are orthonormal functions; that is, fj:: Ui
Pndy = 1 for n = m and zero otherwise. For even

index m the 1, are symmetric in y while for odd m
they are antisymmetric. For example,

¥?/2
iy =2

-y*/2
Yo(y) = i
Assuming the fields are bounded in the y direction, they
can be expanded to

wmnﬂv%@m)#

Z{um,vm»pma T%}(:C; t)"abm(y) (14)

T 1:176; 1V1LC7"€(27‘2}, 1980]
In order to 1dent1f h varlety of free waves that can
be supported by the system the right-hand side of (12)
is set equal to zero (no forcing). For plane waves of
the form vy, (z;t) o eXk*=%!) substitution in (12) then
shows

2 1.2 1. /. s (o

W' =K —N/w—\z'ln—r— )f (15)

This can be solved for k in the form

1 1
k:—z—(;:i:\/w2+—2—(2m+1).

4w
For m = 0 the two solutions are ¥ = —w and k =
w—w™1. The first root, a nondispersive westward trav-

eling wave, is disallowed on the unbounded equatorial 8
plane because the corresponding u and p fields become
exponentially large as y increases. The second root pro-
vides the dispersion relation for the mixed Rossby grav-
ity wave. There are two branches (see Figure 1) given
by

k k2
wy(k) = 5:{: 1+7f (16)
The horizontal group velocity is
dv 1 k/4
“= 2T Ty an
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dotted line indicates the asymptotic nondispersive be-
havior at very high wavenumbers, with the maximum
group velocity (nondimensionally) ¢, = 1.

which is positive for any k, i.e., toward the east (pos-
itive = direction). For both branches the maximum
group velocity is ¢; = 1 and the minimum is ¢; = 0.
Therefore, if we are given an initial disturbance (at time
t = o) at position x = xg, that disturbance will at time
t > to be found to the east of the initial position, i.e.,
at z — o > 0, but within the region in z space defined
by (t — to) — (x — o) > 0 because the finite maximum
group velocity implies that in a nondimensional time
interval At the disturbance can at most have traveled
a nondimensional distance Az = At to the east. Note
that both the maximum and minimum group velocity

are associated with the very high wavenumbers.
The forced mixed Rossby gravity wave meridional ve-
locity field v is obtained by projecting (12) on 9o(y).

Using the relations | Wiener, 1933]
Yom =

m+1 m
T¢m+1 +4/ —2—7/)m—17
dm,

m+1 m »
- 5 Yme1 Ty 5 ¥mo1—

8?1;0 + 0i0,v0 + 19 = (at + 83:)7'(?)! - Tf/\/i

we find
(18)

where 7§ and 7 are the components that occur in the
expansions (14). We note that (18) implies that if the
zonal forcing 7% is symmetric in y and the meridional
forcing 7Y is antisymmetric, no mixed Rossby gravity
wave will be excited because then 7¥ = 7§ = 0.

The u and p fields associated with the mixed Rossby
gravity wave are u = p = u1(z;t)¥:1(y) with

uy = (1§ — 8yv0)/V2 (19)
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and
(8 + Oz )ur = vo/V2+ TF/2. (20)
Elimination of vy between (19) and (20) yields
Ofur + 88,u1 +uy = 87¥ /2 4+ 18 JV2. (21)

For a more complete discussion of these derivations, see
Gill [1982, section 11.4].

2.2. Solutions on an Infinite Domain

Solutions to (18) and (21) can formally be expressed
through the use of a Green’s function (see the appendix)
or with Laplace transform methods. Both techniques
lead to the same form of solution. Consider (21) for
instance. Assuming that at time ¢ = ¢3 we know u; and
whichever derivatives of u; are needed, and the forcing
is given for ¢ > tp, the natural way to proceed is to
employ the Laplace transform. If we define

oo

i1(z;8) = /e““ul(m; t)dt,
to
oo
5 i) eis) = [ et )0,
to

then the Laplace transform of (21) leads to the equation

Oz tiy(z; 8) + (s‘l + S) d1(z;8) =

vo(z; to) T (z;5)
O\ 07 -1 59
[ sv2 o (@ito) + 2
=y
To (.CE; 3) —st
L St Bt A 0, 22
= 0E (22)
The solution to (22) is

@y (x;8) = e 5t / [~--]e_(s_1+s)(“‘z°)dxo, (23)

—co

where [---] stands for all the terms occurring within
the square brackets on the right-hand side of (22) as a
function of the variable g instead of z. We have used
the boundary condition @;(z = —00;s) = 0 in deriving
(23). This makes physical sense since the group velocity
is always toward the positive z direction, and no signal
will propagate towards £ = —oo. The inverse Laplace
transform is given by [Morse and Feshbach, 1953]

c+100

27

c—100

uy(z;t) = U1 (w3 8)e"ds,

where the constant ¢ is such that singular points of
@1 (x;s) in the complex s plane lie to the left of the
contour and ¢ > 3. Interchanging the order of integra-
tion, we get
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) xo,to
u(z3t) = /2m / [

(a;O’ ) Tg(xo;s)
uy(xo;t + +
+ u1(xo; to) 5 o3
. es(t_t")‘(“'s_1)(w_“°)dsdm0. (24)
The first integral
z c+ico
. s(t—to)—(s+s~ ) a—z0)
/ —_vo(zo,to)il / c dsdxg
V2 2mi s

—00 c—100

is easily determined.” For (¢t — ¢9) — (z — zo) < 0 we
close the contour in the right hand side of the complex
s plane, and since the only singularity is at s = 0, the
integral is zero. For (¢ —tg) — (x — xp) > 0 we can close
the contour in the left-hand side of the complex plane.
Expanding the essential singularity in the exponent, we
find that the integral with respect to s is equal to

D™z -z
2772% Z - )n's"+1 =
Z )™(x — 20)" [(t — to) —

nin!
which is recognized as the expansion of the Bessel func-

tion Jp [2\/:v—zm/(t—t0)—(:z:—mo)], where [Watson,

1966]

s(t—to)—s(w—zo)ds —

(z — o))"

y

m 1 n 2n
Im(22) = 2 zrf'(n+m)‘

Introducing the Heaviside stepfunction U(z), with
U(z < 0) =0 and U(z > 0) = 1, the integral involving

(25)

vo(z;to) in (24) is equal to

vo(zo; to)

+o0
—/ G(z; t|zo; to) 7 dxg,
where
G(z;tlzo;to) = U(z — zo)U [(t — to) — (@ — zo0)
o [2/F =m0 T o) — @~ 70)] -
(26)

The integral representation for G is

G(.’L‘; t|a:0; t()) =

ct+ico -
Uz — o) es(t=to)=(s+s™1)(z—o) dsdzo,

S
c—ioo

(@)

The second integral involving u, (x; to) in (24) is seen to
be equal to
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+o0
/ w1 (zo; t0)0: G{z; t|zo; to)dxo.

-0

Because 7¥ and 7§ in (24) are functions of s, it fol-
lows with the well-known convolution theory for Laplace
transforms [Morse and Feshbach, 1953] that the inte-
grals involving 7¥(x; s) and 7Y (z; s) are equal to a con-
volution in time with G. Putting everything together,
we find that for t > g

+o0

ui(z;t) = / [G(z;ﬂmo;to)vo(f/o%to)

—00

+ 8tG(x;t|zo;to)U1(wo;to)] dzo

T (a0;t)
78 (zo;
/ / [G(x t|zo; )2 \/0_
tp —o0
x o
+ 8:,G(z;t|zo; t’)Tl—(Q;QZ—Q] dxodt’.
(28)
In the same fashion it is found that
vo(z; ) =
+00 ,
/ {G(w;tlwo;to) [3zovo($o;to) - \/§u1($o;to)]

+ 8:G(z; t|zo; to)vo(o; to)} dxo

t 40
+/ / {G(x;tlwo;t') [Gxng(wo;t’)—

to —o0

+ 8,G(z; t)zo; t') 78 (203 t’)} dzodt'.

)

(29)

Note that in both (28) and (29) the first space integral
contains the initial data for the u; and vy field, while
the second space-time integral is over the forcing.

We have given the kernel appearing in these integrals
the symbol G because it is in fact the Green’s function
for (18) and (21) (see the appendix). The two step-
functions U(z — zo) and U [(t — tp) — (z ~ 20)] in (26)
contain the physics derivable from group velocity con-
siderations. No signal travels west; that is, an observer
at position z does not receive a signal coming from zo
if o > z, and no signal in a time interval ¢t — £y can
reach position.« coming from zg if z — 29 >t — .

In Figure 2 the Green’s function is shown at vari-
ous times ¢t — tg > 0. It is symmetric about the point
‘'z — g = (t — to)/2 where the amplitude is Jy(t — o).
The front is at £ — o = t — tg. As {ime increases,
more and more oscillations get packed in a narrow z
region behind the propagating front, while the inner
region has an almost flat amplitude profile, which for
large time tends to zero. A same region of rapid oscil-
lations for large times is also found close to the right
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of the source origin z — g = 0. This behavior can be
understood through a consideration of the dispersion
relation (16), which shows that both the maximum and
minimum group velocity (1 and 0, respectively) are at
the very high wavenumbers, and the very short scales
thus both propagate fastest and stay put as well.

2.3. Solutions on a Semi-Infinite Domain

The above formulas were obtained by integrating (22)
from zg = —o0 to z and using the boundary condition
ui(z = —oo;t) = 0. It will also be useful to consider
a semi-infinite domain; that is, z € [0,00). When we
integrate (22) from zo = 0 to z, we get (23) again but
with the lower limit of integration at o = 0 plus an
additional term

e*0 g (z = 0; s)e~ (T )z,
The inverse Laplace transform of (23) leads to the same
expression as (28) but with integration from z¢ = 0 to
2o = z. The inverse Laplace transform of the above
additional boundary term is

c+i00
- ~ — 0 s(t—to)—(s+s~ 1)z —
5 1 (z = 0;8)e ds

c—100
t

/ul(a: = 0;¢)8;G(z; t|0;t')dt’.

to

(30)

. This expression needs to be added to (28) if a semi-

infinite domain is considered. The total solution for u,
is then, as before, determined by the initial conditions
in the domain and the time history of the forcing plus
the time history of u; data on the boundary z = 0. If
we are interested in the case where at x = 0, vy data
are prescribed, we find that a term

i

/vo(x = 0;t)0,G(z; t]0; ' )dt’

to

needs to be added to (29), while all the spatial 1ntegra1s
run from zo = 0 onward. —

3. Examples

3.1. Case of Zero Initial Data Plus
Time-Dependent Forcing

Here we consider the case where at ¢ = 0 both u;
and vy are zero, and the forcing 7§ is started. We take

- the case where the forcing is concentrated in a narrow

z strip, which we approximate by a § function; that is,
we take 7¢ to be of the form 7§ (z;t) = 6(z) f(t). The
simplest case is where f(t) = U(t); that is, the forcing is
switched on at t = 0 and is constant in time afterward.
In this case the Laplace transform of 7§ is 7§ = d(z)/s.
According to (24) the solution for ¢,z > 0 is
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Figure 2. The Green’s function (26) at four different times as indicated. Without loss of

generality, we have put zg = o = 0.

etioo st (s"l+s)m
V2u1(z;t) / ——ds.  (31)

The integrals are similar to (27) with a higher power of
s in the divisor. For £ — z > 0 one gets

oo a7 n+1
NP S G i Unk.) Ma
Veui(z;t) 2Tl (n 1 1)
t—
=, J1(2fvt—$) (32)

where we have used (25). The vg response to the switch-
on forcing is most rapidly determined by observing that
(19) implies that the Laplace transform of vg(z;t), de-
noted by ¥p(z; 8), is related to the Laplace transform of
uy according to

to(x; s) = _\/iul(x; ) + 5(:1:)’ (33)
s s
where (1 4e)
- e“" s s}
\/5’11,1 (17; 8) = —82——

When we calculate (27i)~! [ e%t(z; s)ds, we now find
that the second term in (33) simply leads to a contribu-
tion §(x)t, while the first term is similar to the integral
(31) but with s~3 instead of s=2 in it. The series result-
ing from the expansion about the essential singularity
at s = 0 is then recognized as a term involving a Bessel
function J, instead of J,. We find

vo(t) = — =L hoVavETT) + 6@t (34)

The second term is zero for any x # 0.

The leading edge of the 31gnal is in both the u; and
the vy response at z/t = 1 (first term in (32) and (34));
that is, it travels at the maximum group velocity. No
signal travels to the left of the pulse location; that is,
vg = u; = 0 when z < 0. Close to z = 0, we find
that u; =~ t/v/2 and vy ~ —t2/2; that is, the u; field
grows linearly in time, and the vg field grows quadrat-
ically. Close to the front (f — z small) and at large
times, the amplitudes get very small because of the
1/y/x and 1/z factor multiplying J; and J, in (32) and
(34), respectively. Unlike in the case of the Green’s
function, there is no discontinuity at the front; that is,
vo(z = t;t) = ui(z = t;t) = 0. Thus low-amplitude
motions propagate east, while near the region of forc-
ing the amplitudes keep increasing. More complicated
examples where f(t) is, say, piecewise linear in time
can also be solved exactly. But, basically, the same
results are found: no discontinuity at the front, low-
amplitude propagation to the east, and high-amplitude
motion near the forcing region. Similar exact solutions
with a simultaneously nonzero 7§ of the form §(x)g(t)
can easily be found. For forcing of finite size in z, things
get more complicated, and one has to resort to numer-
ical integration.

The above results can be used to solve the case where
the forcing is switched on at ¢ = 0 and then switched
off at a later time ¢ = At; that is, 73 (z;t) = 8(z)f(¢)
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with
f@) =1,
&) =0,

All one has to do is subtract a time-delayed version from
(32) and (34), i.e., the expressions given there but with
t replaced by t — At. Thus, for u;, one gets

0 <t <At
(35)
t > At

t- xJ1(2\/5\/t —z)

xz

A NNy~

(36)

V2uy(z;t) =

with the understanding that these terms vanish for z <
0 and when £ — z < 0 or t — At — x < 0. Similarly,
x

= J2(2vaVE— )
+L——A—wt__—“’J2(2\/5\/t —At=72). 37)

t—

vo(z;t) = —

For small z and t > At we find u; ~ At/\/§, and
in this case, when the constant forcing is switched off
at some point, the amplitude becomes constant near
z = 0. Near z = 0, the vy field behaves like vg =
(At)?/2 — (At)t, and the amplitude near the forcing
region grows linearly in time instead of quadratically
when the forcing is switched off.

In Figure 3 we show contours of vy (Figure 3a) and
of u; (Figure 3b) for the case At = 2. Time runs from
t=0tot =20, and we took 0 < z < 20. We find
the highest amplitudes in both panels near z = 0, and
we find vanishingly small amplitudes near z = ¢ (the
propagating fronts). These graphs show that the hori-
zontal length scales decrease near x = 0 with increasing
time. This is the same behavior found for the Green’s
function (26) shown in Figure 2 near z = 0. This is
due to the argument 2./z+/t — z, which occurs in the
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Bessel functions J; and Js. For small z the argument is
proportional to v/zt, and for large ¢ this argument can
cross many zeros of the Bessel functions as x increases.
For larger ¢ a smaller interval of x values provides an
equal number of zeros.

3.2. An Initial Value Problem

As another example, we consider the case where at
t =0, u; = 0 and vo(z;t = 0) are given, while the
forcing remains zero at all subsequent times. According
to (28), then

Q)Q(.CCQ; t= O)

V2

+oo
u{z;t) = /G(x;tlxo;O) dzg,

and with (20)
+oo
vo(z;t) = (O + Or) / G(z; t|zo; 0)vo(zo; t = 0)dzo.

If we denote the Fourier spectrum of vo(z;t = 0) by
Oo(k;t = 0), then the solution can be written as (see
the appendix)

o0
volz;t) = \/——1577{_ / to(k;t = 0)F(k;t)e*=dk, - (38)

with F given by (A12). For instance, consider the Gaus-

sian initial condition
vo(z;t = 0) = e H(e/o), (39)

where « determines the width of the Gaussian. Since z
was nondimensionalized by L,, as given by (11), dimen-
sionally, this Gaussian has an e-folding scale of al,,.
The Fourier spectrum is

to(k;t =0) = ae= (k)2

Substitution of this and (A12) in (38) gives

15

X

Figure 3.

20 O 5 10 15 20

(a) The vp field and (b) the u; field in a time versus distance plot with forcing

¢ (z;t) = 6(z) f(t) with f(t) given by (35). The forcing is switched on at ¢ = 0 and switched
off at t = At = 2. Contour levels for vy in Figure 3a run from —1.0 with steps of 0.2 to 1.0. In
Figure 3b the contour levels run from —0.5 with steps of 0.1 to 0.5. The zero contours are not

shown.
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o
vo(z; t) = Wor
+oo . .
/ wipeTwW-t oy et —(ak)?/2+ikz gp.
Wy —w- ’
—o0
(40)

with wy given by (16). This cannot be evaluated in
closed form, but some salient features of the behavior of
the solution can be found as follows. Since the exponent
with —k? in it effectively kills all contributions from
high |k| values, we will expand the terms with wy in
powers of k£ and retain only the lowest-order ones. Thus
with (16) we approximate

= [1————+O(k4)]
Wi — W
w— 1 k k? 4
ol 773 z[l“—”)(’“ >]
wizil+§i%+0(k4).

Substitution in (40) gives

dke—(ak)2/2+ik(m—t/2)

vo(z;t) =

[83
2v2r J
k3 1 .
e +O(k5)] o itlk? /8+0(k*)]

K S\ | it[k? /8+O(k%)]
16 + Ok )] e } .

(41)

Every occurrence of & is now identified with an x deriva-
tive, and up to O(83), we get

ae—it

242w
+co
./e—kz(a2/2—it/8)+ik(z——t/2)dk

vo(3t) = [H 20+ o +}

- 00

ettt g i
— __|l1-28, -—8+...
+ N2 ': 27 16 2+ :|

+oo
) / ¢~k (02 /2Hit/B)Hikla=t/2) gl (42)

— 00

The k integral is easy to evaluate,

+o00
@ —k2 (02 /24t /8)+ik(z—1/2) j1. _
e dk =
2V 2w /
too
—(z—t/D)?

_—a_e 2((a i;titz/zl) ,
2/a2 £+ it/4

and we finally have
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vo(x;t) = e [1+i6 + Ly ]
T e i-itjda) | 2 167
—(z —t/2)*
exp (2(a2 Yy + c.c., (43)
where “c.c.” denotes complex conjugate. Note that for

t = 0 the initial condition is satisfied. All higher-order
corrections are odd powers of J,. In a similar fashion,
using the spectral representation for u; as discussed in
the appendix, the approximate solution for u; is

—4t

2i/1 it/ - D) [1 " %82 +]
 exp [M] - ce.
2(a? —it/4)

\/.'LLl CL‘ t)

(44)

For t = 0 the initial condition u; = 0 is satisfied. All
higher-order corrections are even powers of 0;. The
above leading behaviors and its corrections could al-
ternatively have been obtained through the use of the
method of steepest descent.

No matter how many of the corrective terms we
keep, the u; solution (44) is symmetric about the point
z/t = 1/2, but vy according to (43) is not. This is ex-
actly the group velocity at k = 0, around where we ex-
panded the spectral representation. The complex factor
in the exponent means that the Gaussian vy distribu-
tion develops into a wavy field. The prefactor implies
a simultaneous amplitude decay, which is asymptotic
to t~1/2. In Figure 4 we show the evolution of the v,
field (dashed lines) where we have kept only the first
correction O(9;) in (43). In Figure 4a the initial Gaus-
sian is shown, with length scale @ = 1. In Figures 4b,
4c, and 4d, at times ¢ = 5,10, and 15, respectively, we
see the Gaussian disperse into a wavy field, which is
clearly propagating to the right. In the same figure we
show the corresponding u; field (solid lines), correct to
O(82) in (44). In Figure 4a, u; = 0, but at t = 5, u;
has developed an appreciable amplitude. In all subse-
quent panels we see a u field that is symmetric-about
the point z = t/2. Contours of vy and u; are shown
in Figure 5a and Figure 5b, respectively. The center of
each of the innermost ciosed contours corresponds to a
maximum amplitude. For insiance, vy has a maximum
at £ = 0 when ¢t = 0 then a minimum at z ~ 3 when
t = 2.5, etc. Note how the maxima and minima of u,
and vg alternate. The maxima and minima of u; lie
exactly on the line x = ¢/2, while those of vg lie to the
right of this line. Although we kept only the first cor-
rections in the w; and vy field, it has been determined
that around t = 2, there is an error of about 1% in the
amplitudes, but at later times the error is around 0.6%,
so the higher-order corrections that we discarded are
unimportant.
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Figure 4. The evolution of the vy field (dashed lines), which is initially Gaussian (39) and the
uy field (solid lines), which at ¢ = 0 is zero. Times are as indicated. The graphs of v show (43)

only up to the O(3;) correction, while the grap
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3.3. Comparison With a Numerical Model

A numerical model was run to test the usefulness
of the Green’s function formalism presented above, us-
ing a nine-layer version of the Gent and Cane [1989]

sion of another recent application of the same model,
see Kessler et al. 11 097]

ST 3 ool Co Gwe (a0

an “A” grid with horizontal resolution of approximately
one degree in z and one-third degree in y. The time
step is 1 hour. The initial stratification was uniform
in space but representative of the tropical Pacific. The
model was forced by a wind stress acting over a 26°-
wide strip along the western boundary of a rectangular
ocean basin. The wind was uniform in z and y over the
strip, and the integration was started from rest. First,
an eastward stress 77 was turned on impulsively at time
t = 0. The stress was chosen to be so weak (.01 N/m?)
that the model response is almost linear. The equa-
torial response is dominated by a series of baroclinic
Kelvin waves propagating to the east and reflecting off
the eastern boundary as long Rossby waves going back
to the west. Plate 1 shows the results of this exper-
iment. Plate la shows the upper layer u field at the
equator as a function of z and ¢.

In order to diagnose the wave structure of the u field
in Plate la, we sought to decompose it into equatorial
wave modes. This requires an initial decomposition into
vertical modes (equation (7)), characterized by a speed
¢, and vertical eigenvector ¢,(z). It is not straight-
forward to perform this decomposition since the Gent

The comnutation i1 done on
1ne computation 1S done on

hs of u; show (44) up to the O( 6%) correction.

115 Ol Ui SHOW

and Cane [1989] model only resolves the upper ocean.
Therefore an empirical method was used to accomplish
this step, as follows. The equatorial u field in the vicin-
ity of 140°W at day 50 of the calculation was examined
as a function of depth. The vertical structure, nor-
malized by the value in the upper layer, is shown as a
function of layer number in Figure 6. It is the curve

which goes from 1 in layer 1 to 0.2 in layer 9,

bling a quarter period of a cosine. Since the first vertical
mode Kelvin wave is the only signal we expect to see at
140°W at this time, we hypothesize that this vertical
structure is the first baroclinic mcde of the model. To
test this idea, we projected the full model zonal current
field onto this vertical mode. Plate 1 (labeled mode 1)
shows this field along the equator. The expected equa-
torial wave behavior is apparent, including the Kelvin
wave and several reflected Rossby waves. We-estimated
the Kelvin wave speed at 3.02 m/s for this mode. The
meridional structure of the resulting « field at 140°W on
day 50 was Gaussian with the correct meridional scale.

The mode 1 contribution was then subtracted from
the equatorial u field at each point, and the entire pro-
cess was repeated three more times to isolate modes 2—4.
For each mode we chose a time and location in which
we expected no signal other than the Kelvin wave of the
mode in question. The resulting vertical structures and
associated equatorial u fields are also shown in Plate 1
and Figure 6. The Kelvin wave speeds for the other
modes are given in the caption of Plate 1. Plate 1f
is the residual upper layer equatorial u field after the
first four modes have been removed. This analysis pro-

roagom
1 0OT1LI-
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Figure 5. (a) The v field and (b) the u, field in a time versus distance plot. The initial Gaussian
vp field is centered around x = 0. Further details are given in the text. Contour levels in Figure
5a run from —0.9 with steps of 0.2 to 0.9. In Figure 5b the contour levels run from —0.5 with
steps of 0.1 to 0.5. The zero contours are not shown.

~ vided the tools for interpreting a model run forced by a
meridional stress.

The same numerical calculation was then run with a
northward stress 7¥. The resulting horizontal velocity
fields were projected onto the empirical vertical modes
determined in the previous calculation. The resulting
meridional velocity field v was projected onto the Her-
mite function ¥o(y/Ly) given by (13) for each mode,
where L,, is the equatorial Rossby radius for the ver-
tical mode in question on the basis of the empirically
determined Kelvin wave speed for that mode (see (11)).
In this way the mixed Rossby gravity wave response for
each mode was isolated.

Plate 2b shows the (x,t) structure of the meridional
velocity v of the first baroclinic mode mixed Rossby-
gravity wave in the GCM run, as determined above.
Within the forcing region on the left side of the figure
the response shows a series of roughly hyperbolic bands,
which persist for about 150 days and then disappear.
A pronounced signal persists near the two edges of the
forcing region throughout the yearlong integration. To
the east of the forcing region, there is a more compli-
cated banded structure exhibiting some sort of interfer-
ence pattern. Two “null” wedges are apparent in the
graph, one reaching the eastern boundary around day
180 and the other around day 300. The banded struc-
ture changes sign across the null wedges, indicating a
modulation of the spreading wave pattern. Notice that
there are no eastern boundary reflections apparent in
this diagram. The projection of v onto the lowest Her-
mite mode g filters out the Rossby waves that consti-
tute the reflection of the mixed Rossby gravity wave.

For the first baroclinic mode the Kelvin wave speed
¢y is about 3 m/s, so a signal from the eastern edge
of the forcing could cross the basin in 50 days. The
mixed Rossby gravity wave signal appears at the eastern
boundary around day 90, traveling considerably slower
than c; but slightly faster than ¢; /2. During the period
the model was run it appears that for values of = be-

tween the edge of the forcing region and roughly 150°W
the response dies out after some time.

We would like to explain each of these features based
on the linear theory we have outlined above and the
properties of the numerical model used in the simula-
tion. Thus we investigate the vg response to switched-
on forcing with uniform amplitude in a strip of nondi-
mensional width A. We focus our attention here on the
response with respect to the first vertical normal mode.
The numerical model had a 26-degree-wide forcing strip,
which corresponds for the first vertical normal mode to
a forcing strip of width 8L;. Thus, in the linear theory,
we take 7¢ = f(z)U(t) with

fl@) =1,
fz) =0,

with A = 8. The answer can be written in the following
form,

0<z <A,
(45)
x> A,

+i00

/

c—ico

T i) [ et )

2w

vo(z;t) = — dsdzo

s3

0
+ f(z)t

=—{f($o)

- o [2\/5‘—70 t— (& zo)] dao + f(z)t.

(46)

t— (z — zo)

r— Ty

Because of (45) the second term is zero outside the forc-
ing strip, i.e., for x > A, while in that case, the ¢ inte-
gral has as an upper integration limit zg = A. This ex-
pression may be compared with (34), where the switch-
on forcing was concentrated in z; that is, 7§ = §(z)U(¢).
Both in (34) and (46) the second term gives the directly
forced response of the vy field; that is, in both cases
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Vertical modes in the Gent/Cane Model

Zonal current along equator (cm s™'). Ideclized 7* forcing in the western Pacific.
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Plate 1. The u field (cm/s) due to a uniform zonal wind stress acting over a 26°-wide strip
next to the western boundary of a rectangular ocean basin in a nine-layer versic
and Cane [1989] general circulation model. (a) Full surface u field at the equat
equatorial u field for the first four vertical modes, labeled in the lower right corner
The Kelvin wave speeds for these modes are ¢; = 3.02 m/s, ¢z = 0.99 m/s, ¢3 =
cs = 0.30 m/s. (f) Residual surface u field at the equator. For further details, see

these terms correspond to vo(z;t) = fﬂt 78 (z;t')dt’. The
first term of (46) is seen to be equal to an integral over
the oscillatory part of the response due to point-source
forcing.

The integral over zp was numerically determined.
The result is shown in Plate 2a. It has been plotted for
a nondimensional time period of 250, which corresponds
for the first vertical mode to 348 days. The length of
vertical axis in Plate 2a has been made slightly shorter
than in Plate 2b to account for the difference with the
360-day period used in the numerical model. The size
of the domain to the right of the forcing strip is 37.2
units, which corresponds to the longitude band of 122°
wide used in the numerical model. As in the GCM re-

sults, this solution shows the presence of null wedges in
the region east of the forcing. Referring to (46), we see
that the field outside the forcing strip shown in Plate 2a
can be interpreted as an interference pattern resulting
from the superposition of the wave fields due to sources
continuously distributed over the length of the strip.
The wedges seen in Plate 2 can be accounted for with
asymptotic analysis. For z > A (outside the forcing
strip) we perform the zg integral first in (46) and find

c+1i0o
'Uﬂ(;]:;t.):—% f g(s)e"—(3+5’1)(-"—A/2)ds, (47)
c—1i00
where
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Figure 6. Vertical structure of the first four baroclinic modes of the Gent and Cane [1989] model.
The modes were determined empirically by diagnosing the vertical profile of zonal current in
regions where the variability consisted solely of a single-mode Kelvin wave (see text). The modes
are normalized by the surface amplitude and plotted as a function of layer number. The total

thickness of layers 1 through 9 is about 400 m.

e(s+s_1)A/2 - e—(s+s'l)A/2
s2(s?+1)

For ¢t > z — A the s contour can be deformed into the
left-hand side of the complex s plane. It would appear
that in the process of doing so, two poles at s+ i occur-
ring in g(s) are enclosed, but further analysis shows that
these give no contribution to the integral. By defining

'l g z—A/2

(48)

g(s) =

s=as, = (49)
Vit—(z—A/2)
(47) becomes
volz;t) =
ctico
ot [ gV s gy,
(50)

where g(s') is as in (48) but with (49) substituted. The
substitution (49) is a mere stretching of the s plane, and
the contour in the s’ plane is as the original s contour.
Assuming that ‘

A=z —A/2\/t—(x—A/2) (51)

is large, we can apply the method of steepest descent
to get approximations to (50) [see Bleistein and Han-

delsman, 1975]. The stationary phase points in the s
plane are at s’ = +i. The function g(s’) does not van-
ish at these points, except for special values of z and
t. In order to avoid a discussion of any unnecessary
details we remark merely that the original contour can
be deformed to run in the directions of steepest descent
at the stationary phase points. It takes a deformation
into the left half plane of the complex s’ plane. To the
leading order in the large parameter A (51) we find

2sin [(a — a~1)A/2]

;1) = sin(2A — 3w /4). (52
vo(; t) ma(a2 D ( /4. ( )
This leading order behavior vanishes when -
2
(@a—a~l) = —Zﬂ, (53)
or when
t 2,2 2
nw n’w
—_— 14 14+ ——— =0.1.2. ...
Y7 +<A 1+ 3 ) ,.lnl 0,1,2,
(54)

The right-hand side defines for every n a slope of a
straight line in the zt plane (with an apparent origin in
the middle of the forcing region z = A/2) along which
for large argument A the leading order term vanishes.
For n = 1 we find this slope to be 3.15, and for n = 2 the
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slope is 5.23. These values correctly predict the slope
of the wedges seen in Plates 2a and 2b.

An interesting difference between the numerical and
analytic results is seen near the edges of the forcing
region in Plate 2. Since the strength of the forcing
changes discontinuously across the edge of the strip,
the resulting vo field has a discontinuity as well, and
the size of this discontinuity grows linearly with time.
Thus we find in the analytic solution a vy field that is
large-and discontinuous in z. The numerical model of
Gent and Cane [1989] uses a Shapiro filter in space to
smooth the various fields. This primarily damps out
short-scale waves. Near the edges of the forcing region
this produces a vy field, which becomes steady in time,
rather than growing and oscillating as the linear the-
ory predicts. Furthermore, the effect of this smoothing
near the edges of the forcing propagates eastward. This
accounts for the fact that in the numerical model calcu-
lation after a finite time the vy field at each z dies out,
except near the edges of the forcing. This may also ac-
count for the fact that in Plate 2b, only two of the null
wedges are visible, while in Plate 2a, six null wedges
can be seen. To get a comparable effect in the analytic
model, some explicit frictional process would have to be
included. Otherwise, the inviscid solution continues to
grow and develop shorter and shorter z scales near the
boundary, just as discussed at the end of section 3.1.
(Also see Lighthill [1969)].)

4. Summary and Discussion

We have derived a Green’s function (26) with which
the mixed Rossby gravity wave response due to arbi-
trary forcing can be determined. With respect to a
given vertical mode the evolutions of the zonal and
meridional velocity are determined by their initial val-
ues and the time history of the forcing. On a domain
of infinite extent in the zonal direction z the exact ex-
pressions are (28) and (29). In the presence of a west-
ern boundary these expressions are modified by addi-
tional terms given in section 2.3. In that case, in order
to uniquely determine the eastward propagating mixed
Rossby gravity wave signal, the time history of the zonal
and meridional velocity at the boundary needs to be
provided. In section 3 a few analytical examples have
been given, which show that the discontinuous behav-
ior of the Green’s function at the leading edge, which
propagates with the maximum group velocity, disap-
pears when switched-on forcing or an initial condition
of finite size is used. In section 3.3 we have shown that
the Green’s function representation for the solution of
forced mixed Rossby gravity waves enables us to make
predictions about the ocean response that compare well
with the results of an oceanic general circulation numer-
ical model.

The analytic solutions help account for features of the
general circulation model output which would be diffi-
cult to interpret by less complete descriptions of the
physics. The agreement between the analytic and nu-
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merical results is quite good over most of the (z,t) do-
main. Jn the regions where they do not agree, there are
plausible explanations for the disagreement.

An additional numerical model experiment was run
with the forcing confined to a strip in the middle of
the basin. The results in the forcing region and to the
east of it were virtually unchanged. Thus we conclude
that for this particular example, very little energy goes
into long Rossby waves propagating westward. Such
long Rossby waves reflecting from the western bound-
ary could in theory generate additional mixed Rossby
gravity waves but did not appear to do so in our year-
long integration.

A word of caution may be in order. Analysis in terms
of equatorial wave theory is fairly straightforward when
all the fields are available. In particular, the meridional
velocity provides the basic description of the various
waves that can occur, through (12), by which any v field
can be uniquely decomposed into meridional modes 1y,.
The Kelvin wave must of course be discussed separately
since it has no v field (at least on the equatorial beta
plane). On the other hand, the pressure and zonal cur-
rent fields by themselves are more difficult to analyze.
Projecting onto vertical modes ¢, (z) and then project-
ing onto Hermite functions does not directly provide an
unambiguous result. A p field or u field proportional to
the Hermite function of order m can be associated with
v fields of order m + 1 or order m — 1. One needs the
projection of Uy, + pn/crn and Un — Pn/Cn 00 Y, (y/Ly)
to sort this out completely {Gill and Clarke, 1974; Gill,
1982, section 11.4]. If one has p but not u or v, the
problem is harder. In particular, application of these
ideas to the analysis of altimeter data may not be easy.

Appendix: Green’s Function

Solutions to (18) and (21) can be expressed in a gen-
eral fashion with the use of an appropriate Green’s func-
tion. The conjugate equations of (18) and (21) for the
Green’s function G is

82 G + 04,05,G + G = 6(t — to)d(z — z0), (A1)
where the 4 values are Dirac delta functions. The
Green’s function is a function of two sets of*indepen-
dent variables G = G(z;t|zo;t0), where the space-time
variables with an index 0 are “source coordinates” and
the ones without are “observer coordinates.” Causality
is ensured by imposing that G and its derivatives are
zero for tg > t. Also, on the infinite domain, we want
G to vanish for |z — zg] — co. There are various ways
to solve (A1l). We employ the following method here,
which is useful when solving an initial value problem
like the one presented in section 3.2. We look for a
spectral representation of G of the form

1 +o00 400 ) '
G(Zt;tl.’bg;to):% /j/ g(k, w)etkE—z0)—wwlt=to) gr.q,,

-—00 ~~ 00
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Plate 2. The mixed Rossby gravity vy field associated with the first vertical mode (due to a
forcing 7¥ that is uniform in a strip of 26° longitude or 8L, wide) on the western side of the ocean
basin (forcing edge shown by vertical line). The forcing is switched on at day 0 or t = 0 and—
remains constant thereafter. (a) Theoretical solution (equation (46)) where the units of distance
and time are L; and 7} (equation (11)), respectively; (b) General circulation model (GCM)
solution, with corresponding units of degrees longitude and days. The model solution is shown
for the first 360 days, while the theoretical solution is shown for 25077, which corresponds to
about 348 days; Plate 2a is slightly shorter to account for this difference. The zonal extent of both
fields are the same. The model values are in cm/s. The theoretical solution is nondimensional; for
the unit forcing we used, the values coincidentally have similar amplitude to the model solution.
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(A2)
Furthermore, we use the well-known Fourier represen-
tation for delta functions [Morse and Feshbach, 1953]

+oo

1 y
5 . - ik(z—xo)
(z - z0) 5 / e dk,
1 o
8t~ to) = o / ewlt=to) g, (A3)
—00
Substitution in (A1) shows that
(kyw) = :
gl ) = 2m(—w? + kw + 1)
-1
(A4)

T 2w —w)w—w_)’

where w4 are the two solutions given by the dispersion
relation (16) for a given k. If we want to perform the w
or k integral, we run into the usual situation that there
is some ambiguity as to how to evaluate the integrals
because there are poles on the real w axis for fixed k
and vice versa. This is often circumvented by intro-
ducing either a small dissipative term to the system,
which moves poles off the real axis [Lighthill, 1978], or
by suitably defining the delta functions as a limit of
a well-behaved function. For instance, if we add some
Rayleigh damping to the right-hand side of (8)-(10),
ie., terms —eu,, —ev,, and —ep,, respectively, then
the dispersion relation becomes

2
wi(k)=—i€+ﬁﬂ: 1+/_{,‘_

5 1 (A5)

Now the w integral for fixed & is easily determined. The
poles at w = wy lie in the lower half of the complex
plane. Substituting (A4) in (A2) and performing the w
integral, we find that the integral is zero for (£ —t9) < 0
by closing the contour in the upper half plane, and for
t — tg > 0 the integral is evaluated by closing in the
lower half plane. This encircles the poles in negative
direction, and we get

G(.’I);tl.’l)o;to) = U(t*-to) / G(k;t—to)eik(x—-’b‘o)dk,

— 00

(A6)

with
—iw_(k)t _

s (B —w_(B)]

e e——iw+ (k)t

G(k;t) = (A7)

with wy as in (A5). The causality is enforced by the
damping term. It kills all waves due to sources at time
t — to = —oo; that is, all the waves that are solutions
to the homogeneous part of (Al). The limit € | 0 can
now be taken in (A7). With some elementary transfor-
mations, (A6) can next be brought to the form (26).
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The spectral form of G in (A7) is useful for initial
value problems where the k spectrum of u; and vq is
given. For instance, if u(z;t = 0) = 0 and vo(z;t =
0) # 0, then for £ > 0 we find with (28) and subsequent
use of the convolution theorem for Fourier transforms

ui(z;t) = /G x;t|zo;to = 0) (930\,/155— 0) Zo
_ B0kit =0) s tyeibear, (AS)
VE ] T
where
+00
o(k;t=0) = % / volz;t = 0)e~*%dg. (A9)

More generally, if we denote the Fourier transforms (in
z) of uy(x;t) and vo(z;t) by G1(k;t) and Oo(k;t), re-
spectively, we get

a1 (k;t) = (ks t = 0)F(k; t)
+ [Bo(kst = 0)/v2 = kit (ks t = 0)] Glks ),
(A10)
do(k;t) = do(k;t = 0)F(k;1)
— V24, (k; t = 0)G(k; 1), (A11)

where
wy (k)e—iw_ (k)t __ w_(k.)e—iw+(k)t
wy (k) —w-(k)

F(k;t)=(ik+0;)G=
(A12)
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