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A current in a homogeneous rotating fluid is subject to simultaneous inertial
and barotropic instabilities. Inertial instability causes rapid mixing of streamwise
absolute linear momentum and alters the vertically averaged velocity profile of the
current. The resulting profile can be predicted by a construction based on absolute-
momentum conservation. The alteration of the mean velocity profile strongly affects
how barotropic instability will subsequently change the flow. If a current with a
symmetric distribution of cyclonic and anticyclonic vorticity undergoes only barotropic
instability, the result will be cyclones and anticyclones of the same shape and
amplitude. Inertial instability breaks this symmetry. The combined effect of inertial
and barotropic instability produces anticyclones that are broader and weaker than the
cyclones. A two-step scheme for predicting the result of the combined inertial and
barotropic instabilities is proposed and tested. This scheme uses the construction for
the redistribution of streamwise absolute linear momentum to predict the mean current
that results from inertial instability and then uses this equilibrated current as the initial
condition for a two-dimensional simulation that predicts the result of the subsequent
barotropic instability. Predictions are made for the evolution of a Gaussian jet and
are compared with three-dimensional simulations for a range of Rossby numbers. It
is demonstrated that the actual redistribution of absolute momentum in the three-
dimensional simulations is well predicted by the construction used here. Predictions
are also made for the final number and size of vortices that result from the combined
inertial and barotropic instabilities.

Key words: geophysical and geological flows, instability, turbulent flows

1. Introduction
In a recent study of the turbulent breakdown and equilibration of unstable vortices

in rotating homogeneous flow, we demonstrated that it is possible to accurately predict
the outcome of the full three-dimensional evolution using only inertial instability
theory and two-dimensional simulations of barotropic flow (Carnevale et al. 2011).
For a barotropic vortex in a homogeneous flow, the primary instabilities are inertial
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and barotropic. Early in the evolution of the unstable vortex, it undergoes an
inertial instability that causes the coherent vortex to degenerate into three-dimensional
turbulent flow. This turbulent phase is followed by a relatively slower two-dimensional
phase dominated by barotropic instability (Kloosterziel & van Heijst 1991; Orlandi &
Carnevale 1999). The final result is a number of interacting cyclones and anticyclones.
For the unstable vortex, predictions based on absolute angular momentum mixing were
able to correctly capture the number of vortices that resulted from the breakup of
the original vortex as well as the distribution of vorticity within these vortices. The
method of prediction is a two-step scheme. The first step uses inertial instability theory
based on mixing of angular momentum (Kloosterziel, Carnevale & Orlandi 2007a) to
predict the equilibrated flow that would result if barotropic instability did not occur.
The second step uses two-dimensional simulation to predict the outcome of barotropic
instability acting on the equilibrated flow given by the first step. This two-step
prediction scheme is justified when the inertial instability is faster than the barotropic
instability, and the larger the difference in the growth rates of the two instabilities, the
more successful the prediction. Encouraged by our results for predicting the evolution
of unstable vortices, we turn here to the question of whether a similar scheme for
predicting the evolution of unstable, initially barotropic, currents in three-dimensional
rotating flow can be successful. Kloosterziel, Orlandi & Carnevale (2007b) provide
the groundwork for making such a scheme. They showed how an absolute-momentum
mixing argument can be used to predict the equilibration of inertial instability acting
alone on unstable planar flows in streamwise-uniform flow. Here we demonstrate
that the predicted redistribution of absolute momentum, which is also referred to as
‘geostrophic momentum’, is also achieved in fully three-dimensional flow. Then we
show how this result can be combined with two-dimensional simulations of barotropic
instability to provide a prediction for the combined effect of inertial and barotropic
instabilities in fully three-dimensional flow.

This work has potential applications for both the atmosphere and the oceans.
Although baroclinic instability is an important ingredient in understanding evolution
of atmospheric and oceanic currents in general, under certain conditions, inertial and
barotropic instabilities are known to dominate. This is the case in the atmosphere
for stably stratified flows in tropical regions where the effect of rotation is not so
strongly felt as at middle latitudes (Winter & Schmitz 1998). For the oceans, it has
been suggested that the occurrence of numerous intense cyclones of 10–25 km scale,
called ‘spiral eddies’, is due to inertial instability of currents in the upper mixed layer
(Shen & Evans 2002). In most locations these eddies are cyclonic (Munk et al. 2000),
although observations off the Norwegian coast suggest that there ∼15 % of the spiral
eddies are anticyclonic and that their diameters tend to be larger than that of their
cyclonic counterparts (Eldevik & Dysthe 2002). Although Munk et al. (2000) and
Eldevik & Dysthe (2002) argue that baroclinic instability is a strong candidate for the
source of these spiral eddies, it is possible that they can be created in the unstratified
mixed layer. Indeed, Shen & Evans (2002) showed that no stratification is needed
to produce spiral eddies and provided three-dimensional simulations that capture the
formation of spiral eddies in a homogeneous flow. Furthermore, Shen & Evans (1998)
found that in numerical simulations the inertial instability has a growth rate about
twice that of the barotropic instability, which suggests that the two-step prediction
scheme that we used in Carnevale et al. (2011) for unstable vortices should also work
in the case of unstable currents that produce spiral eddies.

The coordinate system that we shall use is shown in figure 1. The system is
in uniform rotation around the z-axis with angular rotation rate f /2, where f is
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FIGURE 1. Schematic of the rotating channel showing a barotropic flow u(y) and the vorticity
produced by two types of instabilities (inertial and barotropic). The Coriolis parameter f is
twice the angular velocity of the rotating system. Here it is assumed to be invariant in space
and time. Horizontal vortex tubes (aligned along the x-axis) represent pure inertial instability,
and vertical vortex tubes (aligned along the z-axis) represent pure barotropic horizontal-shear
instability.

the Coriolis parameter, which is taken here to be invariant in space and time. The
velocities in the x, y and z directions are u, v and w and the components of vorticity
are ωx, ωy and ωz. A streamwise-uniform barotropic jet takes the form u= u(y), v = 0
and w = 0. Of the three components of vorticity, only ωz = −du/dy is non-zero. Such
a jet is indicated by the arrows pointing in the x direction in figure 1. The absolute or
geostrophic momentum of this jet is m(y) = u(y) − fy. The term ‘absolute momentum’
is sometimes also used for u(y)− (f /2)y, which would be the momentum measured in
an inertial frame (see Markowski & Richardson 2010, for a discussion of this point).
The absolute or potential vorticity is q = ωz + f . This jet will be inertially unstable
if at any point fm(y) increases with increasing y (Charney 1973; Holton 1979). The
inertial instability transfers energy from the jet into vortical motion oriented in the
streamwise direction, that is into the ωx field. The vortices thus created are illustrated
as rolls parallel to the x-axis in figure 1. Since the basic flow is a jet and thus
has inflection points (i.e. points where d2u/dy2 vanishes), the flow satisfies Rayleigh’s
necessary condition for barotropic instability (Holton 1979). The barotropic instability
produces a meandering of the jet that leads to the formation of vortices oriented along
the z-axis as illustrated by the vertical rolls in figure 1. Thus, in the three-dimensional
flow, the evolution will generally be complicated involving the production of both
ωx and ωz through linear instability and ωy through nonlinear effects. As in the case
of the inertial instability of vortices (see, for example, Kloosterziel & van Heijst
1991), the inertial instability phase of the evolution tends to be turbulent with vertical
velocities reaching, if not exceeding, that of the maximum velocity in the basic state.
Subsequently, the flow tends to two-dimensionalize under the continued influence of
ambient rotation. In this phase, barotropic instability dominates. In the end, we are
left with a number of strong cyclonic vortices and somewhat broader and weaker (in
amplitude) anticyclones or even just a diffuse background of anticyclonic vorticity.
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In what follows, we first review the predictions for equilibration of inertial
instability in § 2. Then, the effect that inertial-instability equilibration has on the fastest
growing barotropic instability modes is examined in § 3. Fully three-dimensional
simulations of the combined inertial and barotropic instability are presented in § 4.
There it is shown that the momentum mixing construction for redistribution of
absolute momentum works very well for predicting the evolution of the vertically
and streamwise averaged profile of velocity during the early evolution of the three-
dimensional flow. In § 5, predictions are made for the combined effect of inertial
and barotropic instabilities and are compared to the results of the three-dimensional
simulations. The comparison shows that our two-step prediction scheme is able
to capture the variation with Rossby number of the mean number of vortices
produced and the asymmetry in the magnitudes of the amplitudes of the cyclones
and anticyclones. The results are summarized in § 6.

2. Nonlinear evolution in streamwise-uniform inertial instability
We focus on a Gaussian jet as a model of a free barotropic current. The streamwise

velocity of the basic state is

U(y)= U0 exp(−y2/`2) (2.1)

with absolute momentum m = M(y) = U(y) − fy. This basic flow has only vertical
relative vorticity ωz =Ω(y)=−dU/dy. In terms of the vorticity, f dM/dy=−f (Ω+ f ).
Thus, inertial instability will occur for anticyclonic vorticity larger in magnitude than
|f |. In terms of the potential vorticity of the basic flow, Q ≡ Ω + f , the instability
occurs for values of y such that fQ< 0 or f dM/dy> 0.

For simplicity, we will take f > 0 and scale all lengths by ` and time by the
advective time scale T = `/U0. Without loss of generality we take U0 > 0. In these
units, the basic flow is U(y)= exp(−y2). We define the Rossby number of the flow as
Ro≡ U0/f ` and the Reynolds number as Re= U0`/ν. Thus,

M(y)= U(y)− y

Ro
, (2.2)

and

dM

dy
= dU

dy
− 1

Ro
=−(Ω(y)+ Ro−1). (2.3)

The flow can only be inertially unstable for Ro such that Q = Ω(y) + Ro−1 is
negative somewhere. This cannot occur if Ro−1 > −minyΩ . Thus, Rocr ≡ −minyΩ

defines a critical value such that for Ro > Rocr there will be instability. For our model
flow we have

Ω(y)=−dU/dy= 2y exp(−y2) (2.4)

and

dΩ/dy= (2− 4y2) exp(−y2), (2.5)

so that the minimum value of Ω occurs at y = −1/
√

2 with minyΩ = −√2/e ≈
−0.858. Thus,

Rocr =
√

e
2
≈ 1.17. (2.6)
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FIGURE 2. (a) A construction for predicting the extent of the equilibration range according to
(2.8) which conserves total absolute momentum m (see the text). (b) The equilibrated velocity
field. (c) The equilibrated potential vorticity q= ωz + 1/Ro. (d) The equilibrated vorticity ωz.
Here yl and yh are the limits on the equilibration range and y− and y+ are the limits on the
linear instability range. Thin lines are the initial profiles based on the Gaussian current (2.1)
for the case Ro = 4. The thick lines are the predicted inviscid equilibrated profiles. The thin
vertical and horizontal dotted lines in (b), (c) and (d) are the zero axes.

Since the vorticity distribution in the Gaussian jet is antisymmetric about y = 0, the
maximum and minimum values of the vorticity in the basic flow occur at y = ±1/

√
2

and maxy ωz =−miny ωz = 1/Rocr ≈ 0.858.
For Ro > Rocr there will be a range of y of non-vanishing length for which

Q = Ω + Ro−1 is negative. This defines the linear instability region. The endpoints
of this region, where the absolute vorticity Q vanishes, are given by

Ω(y)= 2ye−y2 =− 1
Ro
. (2.7)

There are only two solutions to (2.7), both of which are negative and so lie in the
region of negative vorticity. We denote these solutions as y− and y+ with y− < y+. In
the limit of Ro→∞ we have y− = −∞ and y+ = 0. Figure 2(a) shows the graph of
M(y) (thin line) along with the positions of y− and y+ for the case of Ro = 4, a case
that we will examine in some detail.

2.1. Predicted equilibrium from pure inertial instability
Inertial instability begins in the region bounded by y− and y+ and acts to redistribute
absolute angular momentum in such a way as to create a new velocity profile such
that dm/dy is no longer positive anywhere or, equivalently, that q > 0 everywhere. In
other words, the evolution drives the flow to a new, inertially stable state. There are



122 G. F. Carnevale, R. C. Kloosterziel and P. Orlandi

many ways to change m to accomplish this even while conserving the total absolute
momentum.

In Kloosterziel et al. (2007b), we demonstrated that at high Reynolds number
the equilibrated profile approximates the Re = ∞ prediction based on a simple
mathematical construction that conserves total absolute momentum. This construction
is illustrated in figure 2(a). The predicted equilibrated m(y) is drawn as a thick
curve (which covers M(y) where they coincide at high and low values of y). Note
that M(y) ∼ −y/Ro for |y| →∞. In figure 2(a), we see that in our construction the
absolute momentum has been redistributed in such a way that the deficit of momentum
(mc − M(y)) from the range of y surrounding y− is filled with excess momentum
from the range surrounding y+. This is done in such a way that the total absolute
momentum is unchanged. The value of mc and the limits of the mixing range yl and yh

are defined by solving the conservation condition:∫ yh

yl

(M(y)− mc) dy= 0. (2.8)

To solve this equation in practice, we first choose a value of mc. Solving M(y)= mc

defines tentative values of yl and yh. The value of the integral in (2.8) is tested, and
depending on its sign, a new guess is made for mc that is correspondingly higher or
lower than the original choice. The process is iterated in an efficient manner to quickly
converge to the value that makes the integral vanish (to within some preassigned
tolerance).

Note from figure 2 that the predicted equilibration range may extend far beyond
the inertial instability range. In particular, note that the values of yh may be positive.
Although the linear instability regime [y−, y+] is always confined to negative values of
y where initially ωz < 0 and q= (ωz+1/Rocr) < 0 (see figure 2c,d), mixing can extend
into the region y> 0 where initially there was only cyclonic vorticity ωz > 0.

The predicted final equilibrated m(y) is given by

m(y) = mc for y ∈ [yl, yh]
=M(y) for y 6∈ [yl, yh]. (2.9)

From this equilibrated momentum m(y), we can construct the equilibrated velocity
profile u(y). This is shown in figure 2(b). Note that the original symmetry of the
Gaussian jet has been lost. This will have important consequences on the types of
vortices produced by the meandering of the jet, as will be seen below.

Figure 2(c) shows the potential vorticity q of the basic state and the equilibrated
vorticity. Note that the basic state has q < 0 for y ∈ (y−, y+). Equilibration to an
inertially stable state clearly requires an adjustment so that q > 0 everywhere, but that
alone does not determine the range over which the profile will be changed. That range
is determined uniquely by our construction, which demands that q be reduced to zero
between yl and yh.

Figure 2(d) shows the relative vertical vorticity ωz of the basic state and the
equilibrated state. These are the same as the corresponding absolute vorticity graphs
save for a shift in amplitude by 1/Ro (=1/4 in this case). Originally, in the Gaussian
jet, ωz was antisymmetric about y = 0. As noted above, the maximum and minimum
values of the vorticity in the Gaussian jet are maxy ωz = −miny ωz = Ro−1

cr ≈ 0.858.
In the equilibrated state, the minimum vorticity becomes −1/Ro, which can be much
smaller in magnitude than the maximum vorticity depending on the value of Ro.
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FIGURE 3. (a) The predicted limits of the inertial instability equilibration range, yl and
yh as functions of Ro. (b) The predicted maxy ωz (solid), |minωz| = 1/Ro (long dash) and
max u= Γ+/Lx (short dash) as a functions of Ro.

2.2. Asymmetry of the equilibrium vorticity distribution

Since barotropic instability cannot change vorticity amplitudes, the asymmetry in
vorticity introduced by the inertial instability will prove crucial in determining the
types of vortices that emerge from the combined instabilities in fully three-dimensional
evolution of the jet. It is important to understand how the profile of equilibrated ωz

changes with increasing Ro. The range of positive and negative vorticity and their peak
values are determined by yl and yh.

In figure 3(a), we show how the limits on the equilibration region [yl, yh] vary
with Ro. Note that although both yl and yh are negative for Ro ≈ Rocr, yh is positive
for Ro ' 1.75. As Ro→∞, we have yl →−∞ and yh →+∞. The range where
ωz = −1/Ro (i.e. where q = 0) for the predicted equilibrium is given by y ∈ (yl, yh).
This range grows monotonically with Ro for Ro > Rocr. The region of positive
vorticity only changes when Ro is sufficiently large so that yh > 0. The range of
positive vorticity is (0,∞) for Ro / 1.75. For Ro ' 1.75, the range of positive
vorticity decreases as (yh,∞) with increasing Ro.

The graphs of maxy ωz and |miny ωz| are shown in figure 3(b). The maximum value
of the positive vorticity remains nearly constant over the full range of Ro shown. In
contrast, miny ωz = −1/Ro changes rapidly as Ro increases. The behaviour of maxy ωz

can be deduced from figure 2(d). As Ro increases, maxy ωz remains constant until
yh reaches y = 1/

√
2 where the basic state has its peak vorticity. This occurs for

Ro ≈ 8.23. Although it is not obvious from figure 3(b), beyond this value of Ro,
maxy ωz decreases monotonically with Ro.

Even though the vorticity distribution becomes very asymmetric with increasing
Ro, the total positive vorticity remains equal to the magnitude of the total negative
vorticity. This follows from the condition that u vanishes for |y| → ∞ and that the
flow is uniform in x. These conditions require that the total circulation vanish. In a
domain of arbitrarily length Lx in the x direction, the magnitude of the total positive
circulation Γ+ must be just the negative of the total negative circulation Γ−, with these
defined by

Γ± =
∫ Lx

0
dx

∫ +∞

−∞
ωzθ(±ωz) dy, (2.10)
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where θ is the Heaviside step function. Since in the equilibrated flow ωz = −du/dy,
Γ+/Lx is equivalent to maxy u as can be seen by integrating ωz from the beginning
of the range of positive vorticity, where u(y) = maxy u, to y = ∞. The behaviour
of maxy u as a function of Ro can be understood from figure 2(b). As long as
yh < 0, maxy u = U(y = 0) = 1. With Ro ' 1.75, yh > 0 and hence maxy u = U(yh).
The behaviour of maxy u is shown in figure 3(b). Note that, even though the peak
velocity in the equilibrated current decreases with increasing Ro (for Ro ' 1.75), the
net flow

∫
u dy is independent of Ro. This follows from the fact that our construction

for calculating the equilibrated flow does not change the total absolute momentum of
the flow and, hence, cannot change the net flow, which for all Ro has the value

√
π.

2.3. Numerical simulation of pure inertial instability

The redistribution of absolute momentum in inertial instability is accomplished by
the streamwise vortices that are created by the instability. In order to make a direct
comparison between how this mixing works in the streamwise invariant flow and the
fully three-dimensional flow, we examine here the evolution of the flow for the case
Ro = 4 with a simulation that allows no variation in the streamwise direction. The
comparison to the fully three-dimensional case will be made in § 4. In the streamwise
invariant simulation, we see the effects of inertial instability alone since there can
be no barotropic instability. In the vertical (z) direction, the boundary conditions are
periodic, and in the spanwise (y) direction there are free-slip boundaries. The initial
state is taken as the basic Gaussian jet plus a perturbation u′(y, z) added at each grid
point. Here u′ is a random number generated from a uniform distribution with root
mean square (r.m.s.) value 10−4. There is no flow initially in the y or z directions,
thus the ωx field is initially zero. The instability begins with the creation of streamwise
vortices with ωx of alternating sign stacked in the vertical z direction. The vortices
are found within the initial instability region as shown in figure 4(a). They create
overturning motions typically associated with inertial instability. They grow in strength
and develop nonlinear interactions with their neighbours. On the side near y−, each
positive vortex pairs with the negative vortex just above it, forming a dipolar head
that propagates in the negative y direction. On the side near y+, each positive vortex
pairs with the negative vortex below it, forming a dipolar head that propagates in the
positive y direction. In this way, the disturbance caused by the instability moves out of
the initial instability region (see figure 4b). The distance that the disturbance spreads
is mostly limited to the range [yl, yh] as defined by our construction (see figure 4c).
Some dipole heads do go beyond the limits prescribed by our construction, but they
then weaken and tend to turn around and sometimes return to the predicted mixing
region (see figure 4d). The net effect of the dipoles that escape from the predicted
limits is small, as we shall see in the next figure, and that effect diminishes with
increasing Reynolds number as shown in Kloosterziel et al. (2007a,b).

During this evolution, the action of the streamwise vortices is to mix the absolute
momentum m = u − y/Ro laterally, changing the profile of the vertically averaged m
according to our construction. Figure 5(a) shows how the vertically averaged profile
of absolute momentum m(y) changes with time. From t = 0 until about t = 40 the
profile changes little. In that period, there is just slow decay due to viscous dissipation.
Around t = 45 there is a rapid evolution in which the local high and low of m
are equalized resulting, by t = 60, in a profile that approximates the constant mc

predicted by our construction. After this there is again just slow viscous dissipation.
The evolution of the vertically averaged velocity field is shown in figure 5(b). There is
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FIGURE 4. Contour plots of ωx from an x-independent simulation with Ro = 4 and
Re = 2500 at times (a) t = 30, (b) 45, (c) 60 and (d) 75. The initial instability region, where
Q< 0 or dM/dy> 0, is bounded by the vertical thin dashed lines, at y− and y+. The predicted
limits of the inertial instability equilibration range, yl and yh, are indicated by the thin vertical
solid lines. Only a portion of the full computational domain y ∈ [−5, 5] and z ∈ [0, 4π] is
shown. The resolution for this simulation was 256× 512 gridpoints. Positive/negative contour
values are represented by solid/dashed curves. The zero contour level is not drawn. The
contour level increment in (a) is 1ωx = 0.1, and in (b–d) is 1ωx = 0.5.

a rapid collapse of u onto the linear profile in the equilibration range, just as predicted
by our construction. After this there is just slow viscous decay.

2.4. Wavenumber and growth rate of the fastest growing mode
As discussed in the introduction, the ability to predict the outcome of the three-
dimensional evolution of the jet in rotating flow will depend on the ability to separate
the effects of inertial and barotropic instabilities. This will be possible when the
inertial instability occurs on a shorter time scale than that of the barotropic instability.
Thus, quantitative information about the growth rates of both instabilities is relevant.
The important quantity for our purposes at this point is the growth rate of the
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FIGURE 5. The evolution of the vertically averaged streamwise velocity u and absolute
momentum m from an x-independent simulation with Ro = 4 and Re = 2500. (a) The
vertically averaged m at four times along with the unperturbed initial profile (thin solid
curve) and the predicted equilibrated profile (thick solid curve). (b) The vertically averaged
u at the same times as shown in (a). The dashed patterns are the same as defined in the key
of (a).

fastest growing mode of the inertial instability for given Ro and Re. This can be
obtained by standard methods for solving the linearized stability eigenvalue problem
for perturbations about the basic flow u = U(y), assuming no variation in x, the
streamwise direction. The details on how to solve for the eigenmode that has the
greatest growth rate γmax are given in the appendix.

The vertical wavenumber kz of the fastest growing mode obtained by solving the
eigenvalue problem is shown as a function of Re and Ro in figure 6(a) (thick solid and
dashed curves). The curve for Ro= 2 lies above that for Ro= 4, and both curves show
that kz increases monotonically with Re. The variation of kz with Re, at least for large
Re, can be obtained analytically by asymptotic methods as shown in Kloosterziel &
Carnevale (2008, Appendix B by S. Griffiths). In our non-dimensional formulation, the
result to leading order is

kz ∼ 2−1/2Ro−1/6
cr Ro−1/6Re1/3. (2.11)

Thus, kz scales with Re1/3 for large Re. This scaling was also found in the inertial
instability of barotropic vortices (Kloosterziel et al. 2007a). Formula (2.11) is graphed
as a thin dashed line for Ro = 2 and a thin solid line for Ro = 4 in figure 6(a).
Comparison of the thick and thin lines show that they converge well for Re& 2 × 104.
Formula (2.11) also shows that for fixed Re, kz decreases with increasing Ro as
verified by the comparison of the results for Ro = 2 and Ro = 4 shown in figure 6(a).
This figure also includes the results of estimating kz of the fastest growing mode from
direct numerical simulations. A small amplitude perturbation with a given vertical
wavenumber is prescribed initially, and then the subsequent exponential growth of its
amplitude is measured. By varying the vertical wavenumber of the initial perturbation,
an estimate can be made for the wavenumber of the fastest growing mode. The results
are shown as open circles © for Ro = 2 and open squares � for Ro = 4, and they
show reasonable agreement with the theoretical predictions.

The growth rate for the fastest growing mode as a function of Ro and Re is shown
in figure 6(b). The thick solid curve is the theoretical result for maximum growth rate
for Re→∞, in which limit the maximum growth rate is achieved in the limit kz→∞.
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FIGURE 6. (a) The most unstable wavenumber kz as a function of Re for Ro = 2 and 4. The
thick lines are the results from solving the eigenvalue problem as discussed in the appendix.
The thin lines (dashed and solid) are the asymptotic large Re predictions according to (2.11).
Results from simulations on a grid of 129 × 129 on the domain (y, z) ∈ [−10, 10] × [0, 4π]
are shown as points: Ro = 2 (©) and Ro = 4 (�). (b) Inertial instability growth rates. The
thick solid line represents the theoretical growth rate for Re = ∞ according to (2.12) or
equivalently (2.14). The thick dashed lines are the results for Re = 2500 and Re = 1250
from the eigenvalue calculation discussed in the appendix. The thin dashed lines represent
the corresponding approximations according to (2.13). Results from simulations on a grid of
129 × 129 points covering the domain y ∈ [−10, 10] and z ∈ [0, 4π] are shown as points: (�)
Re= 2500; (©) Re= 1250.

Analytically, in the inviscid limit, we have

γmax =
√
−miny Ro

−1Q, (2.12)

or, in the more familiar dimensional form, γmax =
√−miny fQ when miny fQ < 0.

The thick dashed curves are the growth rates obtained by solving the eigenvalue
problem as discussed in the appendix. Only results for Re = 1250 and Re = 2500
are shown since these are the Reynolds numbers relevant to our three-dimensional
simulations, which are limited to relatively low Re due to constraints on resolution and
computational time.

The asymptotic estimate for large Re for the square of the maximum growth rate
γmax is given by Kloosterziel & Carnevale (2008, Appendix B by S. Griffiths). In our
non-dimensional units, the result to the first two leading orders is

γ 2
max ∼ Ro−2Rocr(Ro− Rocr)− 3Re−1/3Ro−4/3Ro−5/6

cr (Ro− Rocr)
1/2 . (2.13)

In the limit Re→∞ this reduces to

γmax ∼ Ro−1Ro1/2
cr (Ro− Rocr)

1/2 . (2.14)

Formulae (2.13) and (2.14) are valid when Ro > Rocr, that is when there is inertial
instability. The inviscid limit (2.14) is equivalent to (2.12) given above.

Graphs of the asymptotic formula (2.13) for γmax for Re = 1250 and Re = 2500
are drawn as thin dashed curves in figure 6(b). There is some quantitative difference
when compared with the results of the eigenvalue problem, as should be expected
since these values of Re are significantly lower than the value 2 × 104, above which
we found good agreement between the asymptotic results and the eigenvalue analysis
as shown in figure 6(a). The asymptotic result falls short of the eigenvalue problem
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result at, for example, Ro = 4 by ∼4.5 % for Re = 1250, but only by about 3 % at
the higher value Re = 2500. Streamwise-uniform numerical simulations of the inertial
instability were performed to compare with the theoretical predictions. The resolution
of these simulations was just sufficient to resolve the fastest growing modes of the
linear instability. The growth rates from the numerical simulations are added as points:
� for Re = 2500 and © for Re = 1250. The numerical simulation results fall short of
the eigenvalue analysis, for example for Re= 2500 at Ro= 2.6, where the curves peak,
by ∼6 %. Among the possible sources of error for the growth rates in the numerical
simulations is the fact that the values of the vertical wavenumber kz are quantized for
the finite height of the domain used in these simulations, making the result typically
an underestimate if the fastest growing mode is not one of these quantized values. The
resolution is another suspect source of error, but grid refinement tests indicate that
the data points are accurate to better than 3 %, so that the accuracy displayed here is
sufficient for present purposes.

In the next section, we consider the barotropic instability of the Gaussian jet
and its inertially equilibrated profile U(y). Whereas the growing modes of pure
inertial instability have the streamwise (along-flow) wavenumber kx = 0 and vertical
wavenumber kz 6= 0, the growing modes of the barotropic instability have kz = 0 and
kx 6= 0. These two types of instabilities are at opposite extremes of the possible
fully three-dimensional instability: for inertial instability the perturbed flow remains
invariant in the streamwise (x) direction (hence, the occasional use of the word
‘symmetric instability’ to describe inertial instability), while for barotropic instability
the flow remains invariant in the vertical direction, which is perpendicular to the flow
direction. Little can be said analytically about the stability of a parallel shear flow
U(y) when subjected to fully three-dimensional perturbations, that is, perturbations
with both kx 6= 0 and kz 6= 0. But Griffiths (2008) showed analytically that, in a
continuously rotating stratified fluid for large vertical wavenumbers kz and small but
non-zero streamwise wavenumbers kx, the growth rate of the ensuing ‘asymmetric
inertial instability’ is generally lower than for the pure inertial instability (kx = 0). His
conclusions were corroborated through numerical stability analysis. For circular flows
(vortices) with or without stratification and rotation, Billant & Gallaire (2005) reached
the same conclusion: the symmetric inertial instability at large vertical wavenumbers kz

has a larger growth rate than the asymmetric instability, the modes of which vary in
the along-flow direction (perturbations with a non-zero azimuthal wavenumber). This
was already observed in an earlier numerical study by Smyth & McWilliams (1998).
Interestingly, Bouchut, Ribstein & Zeitlin (2011), who studied elements of inertial and
asymmetric inertial instability of a jet in a two-layer model with a free surface,
found that the asymmetric inertial instability can have higher growth rates than
the (symmetric) inertial instability. Although there are signs of absolute momentum
homogenization in their simulations, the essential character of inertial instability is
absent: the overturning motions or streamwise vortices as seen in figure 4, for example,
which lead to the momentum mixing or homogenization, cannot occur in such a model
because it is layer-wise columnar. Also in their model, the symmetric instability is
absent if the density ratio for the two layers is small, whereas in a continuously
stratified fluid it will always occur when miny fQ < 0 provided the Reynolds number
is large enough. Thus it seemed that for the homogeneous flow problem studied here
we can suppose that the findings of Griffiths (2008) and Billant & Gallaire (2005) that
the pure inertial instability will be faster than slightly asymmetric instability (small kx)
are more relevant. But it has come to our attention that in a recent study of the same
jet considered by Bouchut et al. (2011) in a continuously stratified model it was again
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found that slightly asymmetric instability is faster than symmetric instability (Ribstein,
Plougonven & Zeitlin 2013, and private communication). How this can be reconciled
with the predictions of Billant & Gallaire (2005) and Griffiths (2008) is not clear at
the moment. Our interest here is focused on the question whether we can predict the
outcome of the fully three-dimensional evolution if the perturbation growth rate at one
extreme, i.e. pure inertial instability, exceeds the growth rate at the other extreme, i.e.
pure barotropic instability (for either the original jet or predicted equilibrated jet).

3. Barotropic instability of the inertially equilibrated current
Next, we consider the barotropic instability of the inertially equilibrated current

profile predicted by our construction in § 2. Barotropic flow in a homogeneous
fluid is equivalent to pure two-dimensional flow. The equations of evolution of two-
dimensional flow do not involve the Rossby number. However, dependence on Ro is
introduced into the problem when we take the inertially equilibrated profile as the
initial condition of the flow, because the form of that profile does depend on Ro. Thus,
we can talk about how barotropic instability (after inertial equilibration) varies with
Ro. We illustrate the main effects on barotropic instability of increasing Ro through
a series of simulations in § 3.1. Then in § 3.2, we calculate the barotropic instability
growth rates as a function of Ro.

3.1. An example of how barotropic instability varies with Ro

We wish to illustrate some of the most important effects that inertial equilibration of a
current has upon the subsequent barotropic instability of the flow. We will present here
three numerical simulations: one corresponding to Ro < Rocr, for which the Gaussian
jet profile is unaltered by inertial instability, and two with Ro > Rocr, in which the
initial velocity profiles are as we predicted in § 2 based on absolute linear momentum
redistribution in the Gaussian jet. Some perturbation is needed to initiate the evolution
in all of these cases because the basic profiles are independent of x, the streamwise
coordinate, and are, hence, stationary even though unstable. In the three examples that
we will examine, the basic profiles are given a perturbation that is sinusoidal in x. The
simulations were performed on a horizontal computational grid of 256 × 512 points
representing x ∈ [0, 4π] by y ∈ [−10, 10], with Re= 2500.

3.1.1. Case Ro< Rocr: the Gaussian jet
For Ro < Rocr there is no inertial instability in the three-dimensional flow. Thus,

our prediction from § 2 for such Ro is that the Gaussian profile is not altered.
The perturbation that we use to initiate the flow can conveniently be written as a
perturbation to the streamfunction:

δψ = ae−y2
sin(kxx), (3.1)

where a is the amplitude of the perturbation and kx the wavenumber in the streamwise
direction. An example of the evolution of the Gaussian jet subjected to this initial
perturbation with a= 10−4 and kx = 1 is illustrated in the first column of figure 7. The
sequence in time is from top to bottom (a–d). The initial perturbation gives a sinuous
character to the initial flow, that is the extremes of positive and negative vorticity are
out of phase considering their location in the streamwise direction. It turns out that the
fastest growing barotropic mode is this sinuous mode. There is also a growing varicose
(also called ‘sausage’) mode for the Gaussian profile, but this turns out to grow more
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FIGURE 7. Contour plots of the evolving vorticity field ωz from two-dimensional simulations
with Re = 2500. Three cases are represented: Ro < Rocr (first column), Ro = 2 (second
column) and Ro = 4 (third column). The panels shown in each column correspond to
increasing time: according to Ro < Rocr, (a) t = 50, (b) t = 70, (c) t = 85, (d) t = 165;
according to Ro = 2, (e) t = 65, (f ) t = 80, (g) t = 95, (h) t = 200; or according to
Ro = 4: (i) t = 65, (j) t = 80, (k) t = 105, (l) t = 200. Solid/dashed lines correspond to
positive/negative values of ωz. The contour interval is 0.15 (the zero contour is not shown).
The computational grid was 256 × 512 points representing x ∈ [0, 4π] by y ∈ [−10, 10].
Although the full range is shown in the x-direction, only the part y ∈ [−5, 5] in the y direction
is displayed. For Ro < Rocr the unperturbed current is the Gaussian jet. For Ro = 2, 4 the
unperturbed flows are the inertially equilibrated currents. Barotropic instability was initiated
with a perturbation (3.1) with kx = 1 and amplitude a= 10−4.
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slowly than the sinuous mode, as discussed by Flierl, Malanotte-Rizzoli & Zabusky
(1987). In the varicose mode the positions of the extremes of positive and negative
vorticity are in phase.

In the final panel for this case, figure 7(d), we see that the evolution results in
a vortex street where the vortices on each side of the ‘street’ are of opposite sign
but of equal shape and strength. The initial extrema of the vorticity are given by
ωz = ±Ro−1

cr ≈ 0.858 as discussed in § 2. The final values would be unchanged from
these in inviscid flow; however, here with Re = 2500, they are somewhat reduced in
magnitude as a result of viscous dissipation. The important thing is that in figure 7(d)
the magnitude of the maximum vorticity in the cyclones equals that in the anticyclones.
This reflects the same symmetry as in the initial vorticity field. Figure 7(d) represents
a long-term quasi-stationary state of the flow. In this simulation, this vortex street
persisted until t = 350 after which it broke down when pairs of opposite-signed
vortices formed dipoles that propagated away from the original jet axis.

3.1.2. Case Ro> Rocr: the inertial-instability equilibrated jet
For cases with Ro > Rocr, the equilibration by inertial instability breaks the

symmetry of the initial condition. As shown in § 2, the magnitude of the amplitude
of the anticyclonic vorticity in the equilibrated jet is less than that of the cyclonic jet
(see figure 2 for the case Ro= 4). This leads to asymmetry in the barotropic instability.
To illustrate how this affects the evolution of the jet, we performed simulations as
just described above for the Gaussian jet, but here taking the basic profile to be that
predicted by our absolute momentum mixing construction for the cases Ro = 2 and
Ro = 4. We use exactly the same perturbation as was used in the Gaussian jet case,
that is (3.1) with a= 10−4 and kx = 1.

Our numerical simulations cannot completely capture the effect of the discontinuities
in the vertical vorticity field ωz at y = yl and y = yh predicted by our construction
(see figure 2d). In the vorticity evolution equation, the vorticity is differentiated with
respect to y converting these step discontinuities into delta functions which cannot
be properly represented in numerical simulations. In the two-dimensional simulations
presented here, we have just calculated ωz and its derivatives with finite differences on
our discrete grid and ignored this problem. In a sense, this provides a one grid mesh
space filter of the discontinuities. We have not seen any significant differences for the
results when changing the resolution of the grid.

The evolution of ωz in the case Ro = 2 is illustrated in the second column in
figure 7. The initial minimum vorticity in this case is −1/Ro =−0.5, while the initial
maximum vorticity is 1/Rocr ≈ 0.858 as explained in § 2. Because the growth rate
of the instability is different for the two cases, Ro < Rocr and Ro = 2, the times
represented by the panels in the first two columns are not the same: they have been
chosen to give a good representation of the phases of the evolution in each case.
Comparing the panels in the second column for Ro = 2 with those in the first column
for Ro < Rocr, we note the cyclone–anticyclone symmetry that we see in the first
column is lost in the second column. By the time of the last figure 7(h), in the second
column, the Ro = 2 column, we see that the major difference with the Ro < Rocr case
shown in figure 7(d) is the asymmetry of the vorticity distributions of the cyclones
and anticyclones in the Ro = 2 case. In the anticyclones the vorticity distribution is
‘flatter’ than that in the cyclones, and the shape of the anticyclones is somewhat more
‘angular’ than that of the cyclones. Note that the low-amplitude, small, secondary
vortices visible at the top and bottom of figure 7(d) for Ro< Rocr have counterparts in
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the Ro = 2 flow; however, their amplitudes are just too weak to be evident with this
contour interval.

The Ro= 4 column in figure 7 contrasts very strongly with the symmetric Gaussian
jet, the Ro < Rocr case. For Ro = 4, the effect of the inertial instability equilibration
has made the anticyclonic vorticity much weaker in amplitude and much more diffuse
than the cyclonic vorticity. The initial amplitude of the anticyclonic vorticity is
−Ro−1 = −0.25, while as we can see from figure 2(d), the initial peak cyclonic
vorticity is the same as the peak vorticity in the Gaussian jet: Ro−1

cr ≈ 0.858. The very
angular structure of the anticyclonic field in figure 7(j) results from the advection of
the diffuse anticyclonic vorticity around the much more concentrated cyclonic vorticity.
Although the total positive and negative circulations are identical, as discussed in § 2,
this striking geometric effect is due to the contrast in the degree of localization of the
positive and negative vorticity fields. This strong contrast persists into the quasi-steady
state shown in figure 7(l).

In summary, inertial instability destroys the symmetry of the vorticity distribution
of the Gaussian jet. For moderate, yet supercritical Ro, the subsequent barotropic
instability results in cyclones that are of higher amplitude than the anticyclones. At
sufficiently high Ro, the anticyclonic vorticity remains diffuse while the cyclonic
vorticity still forms intense coherent vortices.

3.2. Variation of barotropic instability growth rates with Ro

If the growth rate for the barotropic instability is larger than that of the inertial
instability, then the barotropic instability will compete strongly with the inertial
instability and perhaps prevent the inertial instability from redistributing absolute
momentum as in our construction. Thus, whether the evolution shown in figure 7
for either Ro = 2 or Ro = 4 is relevant to the evolution of the Gaussian jet in
three-dimensional flow depends on whether the growth rate of the inertial instability is
indeed higher than that for the barotropic instability.

We have calculated the barotropic instability growth rate for the Gaussian jet
(our Ro < Rocr case) as a function of zonal perturbation wavenumber kx through
consideration of perturbations of the form

δψ = eikx(x−ct)φ(y). (3.2)

The governing equation which follows from the inviscid two-dimensional vorticity
equation is the Rayleigh instability equation (Drazin & Reid 1981):

(U − c)(φ′′ − k2
xφ)− U′′φ = 0 (3.3)

where U′′ ≡ d2U/dy2 (with U(y) the Gaussian profile) and φ′′ ≡ d2φ/dy2. The
equation can be solved by writing φ(y) as a Fourier series of a finite number of terms,
substituting this into the Rayleigh equation, and then solving the resulting matrix
eigenvalue problem. Alternatively, one can skip the transformation to a Fourier series
and simply evaluate (3.3) on a regular discrete grid of points. This second method
also gives a matrix eigenvalue problem. We used both methods and found essentially
the same results. The growth rates for the barotropic instability of the Gaussian are
shown as the thick solid curve in figure 8. This curve represents the growth rate
γ = kxImc (where Imc is the imaginary part of c) for the fastest growing mode of
the Rayleigh equation as a function of kx. Using a grid of 512 points, we find that
the fastest growing mode occurs for kx ≈ 0.9. Alternatively, we used a Fourier cosine
representation with 512 terms. These two calculations agree very well near the peak at
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FIGURE 8. Barotropic growth rates as predicted (lines) from the Rayleigh equation (3.3)
and as observed in inviscid two-dimensional simulations (symbols). The grid resolution was
512 × 512 gridpoints with x ∈ [0, 2π/kx] and y ∈ [−5, 5]. For Ro < Rocr, the basic profile is
the Gaussian jet, while for Ro = 2 and Ro = 4 the basic profiles are those predicted by our
momentum mixing construction given in § 2.

kx ≈ 0.9 with small differences occurring for much higher and smaller kx. Using just
64 Fourier modes Flierl et al. (1987) found that the fastest growing mode occurred for
kx ≈ 0.8, but otherwise the agreement with their result is very good over all.

As an additional check of our theoretical calculations of the growth rates, we also
performed a series of inviscid simulations of the two-dimensional vorticity evolution
equation in the x–y plane. Our two-dimensional numerical code is semi-conservative
in energy and enstrophy, that is energy and enstrophy can be conserved to within
a prescribed tolerance given a sufficiently small time step. Thus the code can be
run inviscidly without numerical instability. The initial condition was taken as the
Gaussian jet plus the sinusoidal perturbation (3.1). Theoretically, the amplitude of the
perturbation could be chosen to be sufficiently small so that we could measure the
growth of modes with a given kx before nonlinear effects became significant. As a
practical matter this can be difficult especially since there are growing modes of other
wavenumbers that can compete with the mode that we are interested in. This problem
can be avoided by linearizing the equations around the basic flow. As an alternative
to explicit linearization, we achieved the same result by allowing only the growth of
the single wavenumber of interest kx. This was done by choosing the length of the
computational domain in x to be 2π/kx, thus fitting only one complete wavelength of
mode kx and effectively filtering out all lower wavenumbers. Modes of wavenumber
higher than kx in the Fourier transform in the x-direction were eliminated by spectral
truncation. The simulation then allowed only the growth of the kx Fourier mode. The
results from these simulations are shown in figure 8 as the filled circles, labelled
Ro < Rocr in the key, overlaying the corresponding solid curve from the Rayleigh
equation analysis. The agreement confirms the accuracy of the eigenvalue analysis of
the Rayleigh equation.

The maximum of the growth rate for all wavenumbers for the barotropic instability
of the Gaussian jet is γ ≈ 0.186. In figure 6, the growth rate for the inertial instability
exceeds this value for a wide range of Ro. This is true of the finite Re cases as well
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as for the inviscid limit. In the case of the inviscid limit the inertial instability is faster
than the barotropic instability from Ro ≈ 1.23 to Ro ≈ 23.6. Recall that Rocr ≈ 1.17
(see (2.6)). Thus, the inertial instability is faster than the barotropic from Ro close to
Rocr to extremely high values of Ro, high at least in an oceanographic or atmospheric
context. From the data in figure 6, we see that even for the Re = 1250 case, the
inertial instability is faster than the inviscid barotropic instability from Ro ≈ 1.6 to
some value much above Ro= 5. Thus the idea of separating the effects of inertial and
barotropic instabilities in predicting the full three-dimensional flow evolution is well
founded.

We must also consider the possibility that the effect of the inertial instability in
changing the basic jet profile may induce a barotropic instability that is faster than
that of the Gaussian jet. To check whether this is the case, we calculated the growth
rates for the most unstable modes of the inertial instability equilibrated jet profiles for
Ro = 2 and Ro = 4 (see figure 2). We used the same method to solve the Rayleigh
equation (3.3) on a discrete grid as in the case for the Gaussian jet. Let u0(y) denote
the inertial instability equilibrated velocity profile that our absolute-momentum mixing
construction predicts for Ro > Rocr. Then u0(y) replaces the Gaussian profile U(y) in
(3.3) for the calculation of the growth rates for Ro > Rocr. As in the two-dimensional
numerical simulations of the equilibrated profile, we have ignored the issue of the
singularities in u′′0(y) = −dωz/dy and have simply calculated u′′0 with finite differences
on the grid. The resulting growth-rate curves for Ro = 2 and Ro = 4 are shown in
figure 8 as long and short dashed curves, respectively. We have also tested these
results from the Rayleigh equation against inviscid numerical simulations as in the
Gaussian jet case. The growth rates from the simulations are shown as points in the
form of open triangles and filled squares. The agreement between the simulations
and the calculations based on the Rayleigh equation is very good. The result is that
the peaks of both the Ro = 2 and Ro = 4 curve are ∼25 % lower than that for
Ro < Rocr. For both Ro = 2 and Ro = 4, the inertially equilibrated u0(y) profile is
even more stable to barotropic instability than the Gaussian profile (Ro < Rocr). Thus,
the equilibration by inertial instability does not make the flow more barotropically
unstable.

All three curves in figure 8 are peaked near kx = 1, which is the mode that we
used to initiate the flow in the simulations shown in figure 7. The curves for Ro = 2
and Ro = 4 are even flatter at the top than the curve for Ro < Rocr. The flatter
the curve, the more modes we might expect to see competing for dominance if
the initial condition had a randomly generated perturbation rather than being of a
single wavenumber. This suggests that in the three-dimensional problem, the inertial
equilibration will lead to conditions favourable for the growth of many competing
barotropic modes of wavenumber near kx = 1. Further, we note that the curve for
Ro = 2 is skewed somewhat to smaller kx and the Ro = 4 curve is skewed toward
higher kx with respect to the Gaussian jet case. This suggests that inertial instability
will set up conditions that will favour growth of barotropic modes of lower kx for
Ro = 2 and for higher kx for Ro = 4 compared with inertially stable flows with
Ro< Rocr. We will see that this is the case in §§ 4 and 5.

4. Three-dimensional simulations
We have performed a series of three-dimensional numerical simulations of the

incompressible Navier–Stokes equations for flow with constant Coriolis parameter f .
The initial condition for each run was taken as the Gaussian jet u(x, y, z) = U(y)
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from (2.1) plus random uncorrelated noise of r.m.s. amplitude 10−3 added to each
component of the velocity at each point in the domain. After performing a series of
low-resolution three-dimensional simulations to test how results vary with Re, Ro and
numerical resolution, we decided that, given the limits of our computational resources,
we would perform three high-resolution simulations with Re= 1250 and Ro= 1, 2 and
4. The dimensions of the domain were x ∈ [0, 8π], y ∈ [−10, 10] and z ∈ [0, 2π] on a
grid of 512×360×128 points. Comparison with simulations of lower resolution, shows
that these simulations are well resolved. Before making a comparison in § 5 between
our predictions and these three-dimensional simulations, we shall examine the results
of these simulations to see how well the effects of inertial and barotropic instability
can be seen separately in the evolution of the flow.

4.1. Simultaneous inertial and barotropic instability in three dimensions

In figure 9, we see the evolution of the three-dimensional flow for the cases Ro = 2
and Ro = 4, as visualized through the evolution of the streamwise vorticity field ωx.
The Ro = 1 case is not shown since it is inertially stable and there is no strong
production of ωx.

During the early evolution (see figure 9a,e at t = 50), vortices aligned along the
flow direction form at all levels within the linearly inertially unstable region. Unlike
the case of pure inertial instability, these vortices are not x-independent. The early
appearance of variation of the vortex tubes in the direction of the mean flow should
not be confused with the effect of barotropic instability. In the case of the three-
dimensional instability of a vortex, it has been found that the rib vortices, which
are analogous to the streamwise vortices shown here, that develop due to inertial
instability vary in the flow direction even if the initial profile of velocity does not
support barotropic instability (Gallaire & Chomaz 2003; Carnevale et al. 2011). Such
variation is inherent in some of the inertial instability modes of the three-dimensional
problem. Here the problem is more complicated because the flow is both inertially and
barotropically unstable at t = 0, and so it is not possible to completely disentangle
the two instabilities. Nevertheless, the barotropic instability develops slowly while
the faster inertial instability produces the rapidly growing x-dependent modes seen in
figure 9(a,e). The fact that the inertial instability modes in three-dimensional are not
x-independent, leads us to ask whether their effect on the flow will be the same as that
of the pure inertial instability, that is will absolute momentum be mixed in the same
way? We will return to this point in § 4.2.

By time t = 60 (see figure 9b,f ), the interactions between the streamwise vortices
have become strongly nonlinear. By t = 80 (see figure 9c,g), we see that the
development of the barotropic instability in that the streamwise vortices begin to
display large displacements in the spanwise (y) direction. In the Ro = 2 case, the
streamwise vortices take on a clearly sinuous pattern similar to that shown in the
ωz field in the pure barotropic instability case shown in two-dimensional simulations
(see figure 7e). The modes of the barotropic instability in the three-dimensional case
become even more evident in the vertical average of ωz, which will be examined in § 5.
Although the barotropic instability mode is somewhat less evident in the Ro = 4 case
at time t = 80 (figure 9g), we can see that the vortex structures are less symmetrically
distributed about y= 0 than in the Ro= 2 case. This is similar to the situation seen in
the pure two-dimensional barotropic instability simulations (see figure 7e,i comparing
the Ro = 2 and Ro = 4 cases at early times) where the Ro = 4 flow is much less
symmetric than the Ro= 2 flow.
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FIGURE 9. Isosurfaces of ωx from simulations at Re = 1250 with Ro = 2 (a–d) and Ro = 4
(e–h), over time: (a,e) t = 50; (b,f ) t = 60; (c,g) t = 80; (d,h) t = 100. Isosurface levels
are +max |ωx|/6 (red) and −max |ωx|/6 (blue). Only the range y ∈ [−5, 5] of the full
computational range y ∈ [−10, 10] is shown. The simulations were performed on a grid of
512×360×128 points. For Ro= 2, (a) max |ωx| = 3.1, (b) max |ωx| = 3.3, (c) max |ωx| = 2.2,
(d) max |ωx| = 0.67; for Ro = 4, (e) max |ωx| = 4.2, (f ) max |ωx| = 6.6, (g) max |ωx| = 5.9,
(h) max |ωx| = 4.1.
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By t = 100, the barotropic instability is strongly developed and showing signs of
nonlinear saturation. In fact, in § 5, we will see that by t = 100, the barotropic
instability has resulted in the formation of coherent vortices as will be clearly seen
in the vertically averaged vertical vorticity field. In figure 9(d) (Ro = 2 at t = 100),
the streamwise vortices show clear signs of a tendency toward two-dimensionality (i.e.
the variation in the z direction is becoming weaker) as one would expect from the
Taylor–Proudman theorem. From the maximum magnitudes of ωx given in the figure
caption, we see that ωx is decaying more rapidly in the Ro= 2 case than in the Ro= 4
case. From t = 60 to t = 100 the decrease is 80 % in the Ro= 2 case and only 40 % in
the Ro = 4 case. The Taylor–Proudman theorem demands that these amplitudes must
eventually fall to zero; however, it is reasonable that this process will be slower the
higher the value of Ro (which, all else being equal, means slower ambient rotation, i.e.
smaller f ).

Although we do not show three-dimensional visualizations of the ωz field, it is
important to note that fluctuations in ωz are just as strong as those in ωx. During
the evolution, values of ωz are reached that far exceed the initial values of ωz in the
initial jet. For the Gaussian jet maxy ωz = 1/Rocr ≈ 0.858, while during the evolution
of the jet with Ro = 2, maxωz reaches 2.88, with the maximum taken over the entire
three-dimensional domain, and for Ro = 4, it reaches 6.98. By t = 100, these values
come down to 0.899 for Ro= 2 and 2.76 for Ro= 4.

4.2. Absolute-momentum mixing in three dimensions
As discussed above, the streamwise vortices that arise in the early inertial instability
phase as seen in figure 9(a,e) are different from those in the pure inertial instability in
that they show significant variation in the x direction. The next question to examine
is whether these x-dependent streamwise vortices mix the absolute momentum in the
same way and with the same effect as do the x-independent streamwise vortices of
pure inertial instability.

In figure 10, we show a cross-section of the three-dimensional flow at time t = 50
for: (a) Ro= 2; and (b) Ro= 4. We see that dipolar structures have formed that cause
the vortices to move beyond the instability region just as in the x-independent case
(see, for example, figure 4 for Ro = 4). In a vertical cross-section, the behaviour of
the three-dimensional streamwise vortices does not seem very different from that in the
x-independent case.

We next plot the profiles of the vertical and streamwise average of x-momentum
m(y) and the x-velocity u(y) at several times in figure 11. For both Ro= 2 and Ro= 4,
m evolves slowly at first, but then rapidly transforms to a profile that is very close
to that predicted by our construction (thick solid line) based on x-independent mixing
of absolute momentum. Correspondingly, u also transitions, after a slow initial phase
that stays close to the Gaussian profile, very rapidly to a form close to the predicted
profile. Thus, it appears that the three-dimensional modes that grow out of the inertial
instability are mixing absolute linear momentum in the y direction with the same effect
as achieved by the pure (x-independent) instability. This is particularly remarkable in
the Ro = 4 case. It is amazing that the complicated tangle of streamwise vortices seen
in figure 9(e,f ) for Ro = 4 can produce the mean velocity field shown in figure 11(d)
that is so close to the prediction based on x-independent flow and to the result from
x-independent simulation (figure 5b).

In Kloosterziel et al. (2007b), through simulations of streamwise-uniform flow, we
demonstrated that the match between the mean flow after inertial instability and
the flow predicted by our absolute-momentum mixing construction improves with



138 G. F. Carnevale, R. C. Kloosterziel and P. Orlandi

z

y

0

1

2

3

4

5

6

–4 –3 –2 –1 0 1 2
y

0

1

2

3

4

5

6

–4 –3 –2 –1 0 1 2

(a) (b)

FIGURE 10. Contour plots of ωx in a vertical cross-section of the three-dimensional
flows with Re = 1250 at t = 50: (a) Ro = 2; (b) Ro = 4. Solid/dashed contours represent
positive/negative ωx with contour interval 1ωx = 0.4. The dashed vertical lines are the bounds
of the inertial instability range given by the linear instability criterion Q < 0. The solid
vertical lines are the bounds of the equilibration range according to our construction (see
figure 2 for the Ro = 4 case). Only a portion of the full computational range y ∈ [−10, 10]
is shown. Similar cross-sections for pure inertial (x-independent) instability are shown in
figure 4.

increasing Re. In figure 12, we show the vertical and streamwise average of absolute
x momentum m(y) and x velocity u(y) for the three-dimensional evolution with two
different values of Re. The variation with Re is not very strong, but it is systematic:
the higher the value of Re, the closer the results are to the predicted profiles.
These simulations were run with coarser resolution than in our three high-resolution
simulations. Nevertheless, this resolution appears adequate for this demonstration that
even in three-dimensional, the fit with the predicted inertial-instability equilibrium
improves with increasing Re.

We have seen, in this section, that in the three-dimensional flow there is rapid
development of x-dependent inertial modes in the early phase of the evolution (t / 60).
This phase of the flow results in mixing of the absolute momentum such that the effect
on the vertically and streamwise-averaged absolute momentum and streamwise velocity
are as predicted by our construction, just as in the x-independent flow simulation.
The evolution of the vertically and streamwise-averaged absolute momentum and
streamwise velocity show no significant effect of the barotropic instability in this
phase of the flow. The effects of the more slowly developing barotropic instability
are not significantly felt until the second phase of the flow (t ' 60). The effects of
barotropic instability can be seen in the strong bending of the streamwise vortices
away from the x-direction in the three-dimensional isosurface plots (figure 9). The full
effect of the barotropic instability will be seen more clearly in plots of the vertical
average of the vertical vorticity ωz in the next section.

5. Three-dimensional evolution versus prediction
All of the ingredients necessary to predict the outcome of the evolution of a

jet in homogeneous rotating flow have been given in §§ 2 and 3. The prediction
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FIGURE 11. Evolution of profiles of the absolute-momentum and velocity averaged over x
and z from three-dimensional simulations with Re = 1250 for the cases Ro = 2 and Ro = 4.
(a,c) After an initial slow viscous evolution, the absolute momentum m(y)= u−y/Ro changes
rapidly to approximate our prediction based on angular momentum conservation. (b,d) After
an initial slow viscous evolution, the velocity u(y) changes rapidly to achieve the linear profile
in the regime predicted by the absolute momentum construction. The curve for t = 60 in (b) is
almost coincident with the prediction and may be difficult to discern. Only a portion of the
full computational range y ∈ [−10, 10] is shown.

scheme is now straightforward. It is a two-step scheme. In the first step, we use our
momentum-mixing construction, as illustrated in figure 2, to provide the profile that
would result due to inertial instability acting alone on a jet of a given profile and
given Ro, all in the context of x-independent flow. In the second step, we use the
profile obtained in step one to represent the whole effect of inertial instability on the
three-dimensional evolution of the jet. The equilibrated profile, for the appropriate Ro,
is used as the basis for the initial condition of a pure two-dimensional simulation
that is used to capture the subsequent barotropic instability. These two-dimensional
simulations are similar to those of § 3 above (see figure 7), but with a very different
kind of initial perturbation. In § 3 we used a perturbation (3.1) that initially excited
only a single wavenumber kx, near the wavenumber of maximum growth. The choice
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FIGURE 12. Profiles of the absolute momentum and velocity averaged over x and z at
t = 60 from three-dimensional simulations at Ro = 4 with Re = 500 and Re = 2500. (a) The
absolute momentum m(y)= u− y/Ro approaches our prediction based on angular momentum
conservation more closely as Re increases. (b) The higher Re, the more closely the average
velocity u(y) approaches a linear profile in the regime predicted by the absolute-momentum
construction. The computational domain for these simulations was x ∈ [0, 8π], y ∈ [−16, 16]
and z ∈ [0, 2π] on a grid of 256× 193× 65 points.

of this wavenumber determined the number of vortices that would emerge from the
evolution. Since we are now trying to predict the evolution that would evolve in a
three-dimensional flow with a small-scale randomly generated initial perturbation, it is
natural to add a small-scale random initial perturbation to our initial two-dimensional
profile in the two-dimensional simulations in the second step of the prediction scheme.
This presumably excites all possible growing barotropic modes and the dynamics of
the evolution will choose the final state, just as in the three-dimensional flow.

5.1. The need for an ensemble of two-dimensional simulations
Predicting the three-dimensional flow is complicated by the fact that the graphs for
the barotropic instability growth rate as a function of kx, shown in figure 8 for
the Gaussian jet and for the Ro = 2, 4 inertially equilibrated flows, are all rather
broad. This means that in simulations (both two-dimensional and three-dimensional)
with random initial conditions, there will be strong competition between modes with
different kx to dominate the flow. If there were no nonlinear interactions, the fastest
growing mode would eventually dominate and this would be easy to predict. However,
in these simulations, as the unstable modes grow nonlinear effects eventually take
over creating the vortices that are observed as the current breaks up. Which mode is
dominant when nonlinear effects take over depends on the amplitude of each mode
initially as well as the accumulated effects of the nonlinear interactions that grow in
strength during the instability. The formation of the vortices is also affected by the
presence of non-vanishing viscosity. Thus, we cannot predict with certainty the number
of cyclones/anticyclones that will emerge from random initial conditions. However,
a statistical prediction can be made. This is done by creating an ensemble of two-
dimensional simulations for each value of Ro of interest. This involves running many
simulations which differ only in the seed for the random number generator that is used
to create the initial random perturbation for the initial condition in step 2. We have
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created ensembles for each of the three Ro that correspond to the Ro of the three high-
resolution numerical simulations that we have performed, that is Ro= 1, 2 and 4. Note
that the basic profile for the Ro = 1 case is just the Gaussian profile since 1 < Rocr

and, hence, the Gaussian profile is not changed by inertial instability. For Ro = 2
and 4, the modified profiles predicted by our absolute-momentum-mixing construction
are used. The domain for the two-dimensional simulations was chosen to have the
same horizontal dimensions as in the three-dimensional simulation (x ∈ [0, 8π] and
y ∈ [−10, 10]) and the same resolution (512 × 360 gridpoints). From these ensembles
of two-dimensional simulations, we accumulate statistics to predict the outcome of the
three-dimensional simulations.

Our prediction scheme can be used to predict the mean number of vortices that
will emerge from the three-dimensional evolution of the Gaussian jet. The number
of vortices that emerge from a three-dimensional simulation depends on the value of
Ro, the Reynolds number of the flow, the length of the domain, and the amplitude
and seed of the randomly generated perturbations. These variables will also effect
the outcome of our two-dimensional simulations in the second step of our prediction
scheme, with the effect of Ro being felt through the choice of the initial basic profile.
We have seen that for high values of Ro (e.g. Ro = 4 as illustrated in the rightmost
column of figure 7) the result can be expected to have strong cyclones but anticyclones
that are so weak as to be difficult to differentiate from the wide background of
anticyclonic vorticity. Thus, in this discussion we will focus on predicting only the
number of cyclones produced by the combined inertial and barotropic instabilities.

Given the length of the domain in these three-dimensional and two-dimensional
simulations, only wavelengths λ = 8π/n are possible for n some integer. Thus, only
modes kx = 2π/λ = n/4 may contribute to the barotropic instability. If one of these
dominates at the time when nonlinear effects become significant, it should produce
n cyclones. Then, however, as the flow evolves, like-signed vortices merge, through
nonlinear interaction, resulting in fewer vortices (Melander, Zabusky & McWilliams
1988; Carnevale et al. 1991). Thus, once the vortices are formed, their number decays
with time. In a finite domain, the number of vortices will continue to decrease until we
are left with a single cyclone and a single anticyclone, but that is the very long-term
result (Carnevale et al. 1991, 1992; Matthaeus et al. 1991; Montgomery et al. 1992).

In order to make a comparison with the three-dimensional simulations, we ran a
series of 100 two-dimensional simulations for each Ro(=1, 2, 4). Within each series,
only the seed of the random number generator for the initial perturbation was varied.
The r.m.s. amplitude of the initial perturbation velocity was taken to be 10−3, as
in the three-dimensional simulations. Also, in these two-dimensional simulations, as
in the three-dimensional simulations, we set Re = 1250. From the two-dimensional
simulations, we created a census of the maximum number of cyclones that emerge in
each simulation. It is important to emphasize that the number of cyclones recorded
for each simulation is the maximum number of observed cyclones because the total
number of cyclones will decay in time through merger. Various methods of making
this census were considered. Just counting ‘by eye’ the maximum number of coherent
cyclones observed in the ωz contour plots seemed adequate in most cases; however,
there were some cases that were ambiguous. To make the counting systematic,
after some experimentation, we decided on using the (9/10)maxωz contour as a
guide. After the linear instability phase, this contour breaks into rings and sometimes
crescent-shaped filaments. The maximum number of rings (not including the filaments)
observed at any time during the run defines the number of cyclones n for that run.
The results are reported in table 1 as percentages of occurrence for each n. The
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Ro n= 3 n= 4 n= 5 〈kx〉
1 7 86 7 1
2 24 76 0 0.94
4 0 55 45 1.11

TABLE 1. Statistics for the ensembles of two-dimensional simulations used in predicting
the outcome of the three-dimensional simulations. The value n is the number of cyclones
that emerge from the barotropic instability. The columns under each value of n give the
frequency of occurrence of that number of cyclones as a percentage. The ensemble average
〈kx〉 is given by 〈kx〉 = 〈n〉/4 where 〈n〉 is the percentage weighted mean of n.

ensemble average 〈n〉 for each Ro is a percentage weighted mean. The ensemble mean
wavenumber 〈kx〉 is computed from 〈n〉. Explicitly, we have 〈kx〉 = 〈n〉/4 (the factor of
4 comes from the fact that the domain is 4× 2π long).

From table 1, we see that for Ro = 1, the Gaussian profile case, the dominant
barotropic mode creates four cyclones, corresponding to growth of the kx = 1 mode.
The cases n = 3 and n = 4 are equally represented, each with 7 % of the runs. The
average wavenumber for Ro = 1 then is 〈kx〉 = 1. For Ro = 2 the distribution shifts
toward lower n. The n = 3 state then represents 24 % of the runs and there are no
n = 5 runs. The average kx is shifted to the lower value 〈kx〉 = 0.94. For Ro = 4 the
distribution of the values of n has shifted toward higher values. There are in this case
no instances with n = 3 and 45 % of the runs have n = 5. This gives 〈kx〉 = 1.11, the
highest value of 〈kx〉 for the three values of Ro tested.

The variation of the distribution of n with the change in Ro follows from the shift in
the barotropic instability growth rates shown in figure 8. The correspondence between
n and kx in that figure is simply kx = n/4. The growth-rate curve for Ro < Rocr (the
Gaussian jet case) is centred near kx = 0.9 as discussed in § 3. The growth-rate curve
is shifted in the direction of low kx in going from Ro = 1 to Ro = 2, and toward high
kx in going from Ro= 1 to Ro= 4.

We have attempted to create a simple model to predict the mean kx just based
on competition between randomly excited growing modes with growth rates a given
function of kx. This, however, fails to predict the ensemble results for at least two
reasons. One is that the process of merger of like-signed vorticity is operating during
a significant period of the evolution and not just after the emergence of coherent
vortices. The second is the presence of viscosity which has two effects: it changes the
distribution of growth rates and it broadens vortex structures. In the final analysis it
seemed that the ensemble prediction was the safest way to proceed.

5.2. Direct comparison of three-dimensional results with predictions
We can now turn to making a direct comparison between our three-dimensional
simulations represented in figure 9 and our predictions. It would be ideal to have
an ensemble of high-resolution three-dimensional simulations to compare with our
two-dimensional ensembles, but due to limitations in time and computer facilities,
we are limited to the three three-dimensional simulations discussed above. Given
that limitation, we compare each three-dimensional simulation, with a member of the
two-dimensional ensemble (of the appropriate Ro) chosen to have the same number
of cyclones and a vorticity distribution reasonably close to the vertical average of the
three-dimensional simulation.
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FIGURE 13. Comparison of a two-dimensional prediction of ωz with ωz, the vertically
averaged ωz, from a three-dimensional simulation for the case Ro = 1 where there is no
inertial instability. (a) The prediction at time τ = 115 is the result of a two-dimensional
simulation of the Gaussian jet with a small-scale random initial perturbation. (b) Three-
dimensional simulation result at t = 100. In both cases Re = 1250. Only a portion of the full
computational range y ∈ [−10, 10] is shown. Here the sinuous kx = 1 barotropic instability
mode dominates producing n= 4 cyclones.

5.2.1. Case Ro= 1: inertially stable
We start with the case Ro = 1. Here there is no inertial instability. The three-

dimensional flow initially has an added vertical velocity perturbation, but this remains
small and slowly decays. Since there is no inertial instability, the flow is always
primarily barotropic, and the evolution is dominated by barotropic instability just
as in two-dimensional flow. Figure 13 shows the comparison between: (a) ωz in a
two-dimensional simulation of the Gaussian jet; and (b) the vertically averaged ωz

in a three-dimensional simulation of the Gaussian jet. We denote time in the two-
dimensional simulation by τ instead of t to emphasize that they are very different
types of simulations, and we do not expect the time scales to match up.

In this three-dimensional simulation, the wavenumber kx = 1 (four wavelengths on
an 8π domain) dominates yielding four cyclones (n = 4). Thus, a simulation with
n = 4 was chosen from the ensemble of two-dimensional simulations for comparison.
The two-dimensional simulation captures all of the features of the vertically averaged
three-dimensional flow very well. Note that the symmetry in the shapes and vorticity
amplitudes of the cyclones and anticyclones is also found in the three-dimensional
flow. There is nothing in the physics of the three-dimensional flow at Ro = 1 to break
that symmetry other than the randomness of the initial conditions.

5.2.2. Case Ro= 2
A comparison between the three-dimensional flow and our prediction for Ro = 2

is made in figure 14. Here the jet profile used in the two-dimensional simulation
is the inertial instability equilibrated flow predicted for Re =∞ by our construction.
The initial profile for the three-dimensional flow is just as in the three-dimensional
simulation for Ro = 1, that is the Gaussian jet. In this three-dimensional simulation,
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FIGURE 14. Comparison of ωz from the prediction based on a two-dimensional simulation
with ωz, the vertically averaged ωz, from a three-dimensional simulation for the case Ro = 2.
(a) Prediction based our construction and the two-dimensional simulation result at τ = 125.
(b) Three-dimensional simulation result at t = 100. Comparison of three-dimensional
simulations and two-dimensional predictions for Ro = 2. In both cases Re = 1250 is used.
Only a portion of the full computational range y ∈ [−10, 10] is shown. Here the sinuous
kx = 3/4 barotropic instability mode dominates producing n= 3 cyclones.

with Ro= 2, a kx = 3/4 mode dominated, as can be seen even in the three-dimensional
field of ωx shown in figure 9(c,d). Thus, as discussed above, it is appropriate
to compare the vertically averaged ωz from the three-dimensional run to a two-
dimensional simulation (from the Ro = 2 ensemble) in which the kx = 3/4 mode
dominates. Again the correspondence between the prediction in figure 14(a) and
the averaged three-dimensional flow in figure 14(b) is very good in all aspects. In
particular, note the similarity in vortex shapes and the fact that the vorticity range of
the anticyclones has been reduced by the same amounts in the two-dimensional and
three-dimensional cases. The asymmetry in the shape and vorticity amplitudes of the
cyclones and anticyclones in the two-dimensional simulation can be directly traced
to the asymmetry in the initial condition (which comes from our momentum-mixing
construction for Ro = 2). The same asymmetry in the three-dimensional flow comes
from the three-dimensional inertial instability that occurs somewhat faster than, but
simultaneously with, the barotropic instability.

5.2.3. Case Ro= 4
Finally, we examine the Ro = 4 case. This is the most challenging case because

there are strong three-dimensional motions that persist well into the barotropic
instability phase of the flow as can be seen in figure 9(g,h). It is rotation that
suppresses motion along the z-direction according to the Taylor–Proudman theorem.
Hence, the higher the value of Ro the longer the three-dimensional motions tend to
persist. Nevertheless, we see here that the comparison in terms of the vortex structures
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FIGURE 15. Comparison of three-dimensional simulations and two-dimensional predictions
for ωz for the case Ro = 4. (a,c) Predictions based on our construction and two-dimensional
simulations at times τ = 118 and τ = 140. (b,d) Predictions of ωz, the vertically averaged ωz,
from the three-dimensional simulation of the Gaussian jet at times t = 80 and t = 100. Only
a portion of the full computational range y ∈ [−10, 10] is shown. Here the sinuous kx = 5/4
barotropic instability mode dominates producing n= 5 cyclones.

is remarkably good even for Ro = 4. In figure 15(a,b), we show the two-dimensional
prediction and the three-dimensional vertically averaged flows at an early stage of the
flow. In both panels there is a broad relatively weak anticyclonic band on the negative
y side of the jet that extends slightly into the positive y side, just as expected from
the construction shown in figure 2(d). The jet is bounded on the positive y side by a
thinner, more intense layer of cyclonic vorticity that is already tending to roll up into
vortices.

In figure 15(a), although the flow is clearly a mix of modes, with five vortices
forming on the cyclonic side of the jet (n = 5), the flow appears to be dominated by
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a kx = 5/4 mode. In the three-dimensional case, figure 15(b), the flow also appears
dominated by a kx = 5/4 mode. By the later times shown in figure 15(c,d), for both
the two-dimensional prediction and the three-dimensional vertically averaged field,
mergers have occurred leaving basically a kx = 3/4 mode dominant. Note that in both
figure 15(c,d) the middle cyclonic vortex is still in an active state of merging. The
nonlinear process of merger of like-signed vortices will continue in a confined domain
until there is only a single cyclone and a single anticyclone left as mentioned above in
the context of the two-dimensional simulations.

The important difference between our predictions based on two-dimensional
simulations and the evolution of the vertically averaged ωz of the three-dimensional
simulation is the presence of the small-scale fluctuations seen in figure 15(b,d). In
the two-dimensional case, figure 15(a,c), the anticyclonic band of vorticity remains
as smooth as it is in the initial condition, while in the three-dimensional case,
stretching and tilting of absolute vorticity in the inertial instability phase of the flow
has produced lots of intense small-scale fluctuations that are very pronounced. In
addition, we see that the ranges of both cyclonic and anticyclonic vorticity in the flow
are different for the two-dimensional predictions and the three-dimensional flow. The
extrema of the vertically averaged ωz, in the three-dimensional flow are roughly double
that in the two-dimensional prediction. In the two-dimensional simulation, due to the
lack of vortex stretching and the presence of viscous diffusion, the maximum vorticity
must be less than the initial value, maxωz = 1/Rocr ≈ 0.858, and the minimum value
must be less negative than its initial value, minωz =−1/Ro=−0.25.

By examining the three-dimensional vorticity field, we find that the difference
between the ranges of vorticity in the two-dimensional and three-dimensional flows
is due to isolated extreme values of vorticity embedded in the three-dimensional
flow. These extreme values of vorticity must level out as time proceeds since the
flow must eventually become two-dimensional in accord with the Taylor–Proudman
theorem. However, in terms of predicting vortex structure and the evolution of the
barotropic instability, we cannot wait for complete two-dimensionalization because
the phase shown here is perhaps the most interesting phase of the flow. Thus, we
are forced to consider the flow before complete two-dimensionalization has occurred.
Given that the circulation of vortices determine the strength of their interactions in
the evolution of the barotropic instability, the mean positive and negative circulations
are probably more relevant to our comparison than extreme isolated values of relative
vorticity. If the vertically averaged vorticity shown in figure 15(b,d) is used in formula
(2.10), then the result for the positive circulation per unit length is Γ+/Lx = 0.694
at t = 80 and Γ+/Lx = 0.636 at t = 100. These values compare well with the results
for the two-dimensional flow shown in figure 15(a,c): Γ+/Lx = 0.666 at τ = 105 and
Γ+/Lx = 0.663 at t = 125.

6. Conclusion
We have explored the possibility of predicting the result of the three-dimensional

instability of an initially barotropic current using the Gaussian jet as a model. We have
found that for a large range of Ro, the inertial instability is faster than the barotropic
instability (see figures 6 and 8). Based on this we have proposed and tested a method
to predict the outcome of the three-dimensional instability.

Our prediction scheme has two steps. In the first step, illustrated in figure 2, the
outcome of the inertial instability of the jet is predicted by using a construction
based on mixing of the absolute linear momentum of the jet subject to conservation
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of total momentum. It had been previously shown in Kloosterziel et al. (2007b)
that this construction predicts very well the redistribution of absolute momentum in
streamwise independent flow, as was demonstrated again here in figure 5. Now, we
have demonstrated here that this construction predicts very well the redistribution of
momentum in the fully three-dimensional evolution of the jet as shown in figure 11.
It had also been previously shown that the match between our construction and
mixing in streamwise-independent simulations improves with increasing Re. Here
we have further demonstrated that the match between our construction and the
vertically averaged three-dimensional flow also improves with increasing Re (see
figure 12). It is remarkable that this construction, originally based on simulations
of streamwise-independent flow (Kloosterziel et al. 2007b), does so well in capturing
the effect of inertial instability in a highly three-dimensional flow. In particular, for
the high-Rossby-number case that we showed, Ro = 4, it is impressive that the three-
dimensional flow illustrated in figure 9(f ), on vertical averaging, corresponds so well
to our construction (see figure 11d).

In the second step of our prediction scheme, the inviscid predictions of our
momentum-mixing construction are used as the initial conditions for two-dimensional
simulations. An ensemble of such two-dimensional simulations was used to predict the
statistics of the full three-dimensional flow. Table 1 gives the ensemble predictions for
how the number of vortices produced by the combined centrifugal and barotropic
instabilities should vary with Ro. An average over the ensemble results (see
〈kx〉 = 〈n〉/4 in table 1) leads to the prediction that, with respect to the inertially
stable case Ro = 1, the mean number of cyclones 〈n〉 should be higher for Ro = 4
and lower for Ro= 2. This prediction is nicely reflected in the three three-dimensional
simulations that we performed which produced four vortices at Ro= 1, three at Ro= 2
and five at Ro= 4.

We have also shown that the details of the vertical average of the flows from the
three three-dimensional simulations compare very well with particular members of the
two-dimensional ensembles, chosen to agree in Ro and n. For moderately high Ro (e.g.
Ro = 2), we were able to predict quite accurately the shape and vorticity amplitudes
of the vortices that emerge from the full three-dimensional instability. One of the key
differences between the evolution of the inertially stable jet (e.g. at Ro = 1) and the
inertially unstable jet (Ro > Rocr ≈ 1.17) is that the anticyclonic vorticity amplitude
in the final vortices can be much smaller than that in the cyclonic vortices in the
inertially unstable case. We were able to correctly predict this difference quantitatively
in the Ro = 2 case. Qualitatively the same effect was reproduced in the Ro = 4 case,
although quantitatively the peak magnitudes of both cyclonic and anticyclonic vorticity
were larger than anticipated in that case. We argued that the differences in extreme
values in the vertically averaged three-dimensional vorticity field could be traced to
isolated extrema of vorticity in the three-dimensional field. Furthermore, we suggested
that these extrema may not play a significant role in the barotropic instability that
determines the number of vortices that are born from the evolution of the jet. This
is verified by the fact that the net positive and negative circulations in the three-
dimensional flows are well predicted by the two-dimensional flows and the fact that
the vertically averaged ωz field matches the two-dimensional predictions well except
for small-scale fluctuations.

A natural extension of the work presented here would be to take into account
the effect of a stable density stratification in the vertical direction. In the problem
of inertial instability of a vortex with its axis aligned along the axis of ambient
rotation, Kloosterziel et al. (2007a) found that, for Re→∞, the effect of mixing



148 G. F. Carnevale, R. C. Kloosterziel and P. Orlandi

angular momentum could be predicted by a construction similar to that used here for
mixing absolute linear momentum. In the vortex problem, the vortices that arise due
to inertial instability are aligned in the azimuthal direction, that is along the basic flow
direction, and are sometimes called rib vortices. In the case with stratification, if the
ambient rotation axis, the axis of the vortex and the vertical direction all coincide,
then the thickness of these rib vortices in the vertical direction is strongly affected
by stratification. The stronger the stratification of the flow, the flatter are rib vortices.
However, with increasing Re, for any degree of stratification, the trend is toward the
same equilibrium state predicted by our angular momentum mixing construction for
the unstratified case (Kloosterziel et al. 2007a). The situation should be the same if
stratification is added to the planar shear flows studied in Kloosterziel et al. (2007b)
and we expect that stratification will not affect the final equilibrium state by much in
the limit Re→∞.

One effect that the presence of stratification adds is the possibility to lose energy
to internal wave radiation. For the vortex, this loss is minor being less than 1 %
of the total energy loss during equilibration. We may expect similar results for an
x-independent simulation of the jet in stratified flow. On the other hand, in stratified
simulations of a horizontal shear constrained to be independent of variation in the
flow direction, Plougonven & Zeitlin (2009) found that in addition to the barotropic
component of the flow, which is well predicted by our construction, there is a residual
baroclinic component that involves strong density gradients at small scales, and these
only disappear slowly through diffusion. In addition, Plougonven & Zeitlin (2009)
found that there are subinertial waves that become trapped in the region of strong
anticyclonic vorticity. These effects may complicate the analysis of the evolution of the
jet in stratified three-dimensional flow.

Finally, we note that physical mechanisms other than inertial instability can break
the symmetry between cyclones and anticyclones in the evolution of an initially
symmetric jet. For example, Poulin & Flierl (2003) examined the barotropic instability
of a Gaussian jet in a shallow-water model with a free surface. They show that,
depending on the values of the Rossby and Froude (Fr) numbers, the vorticity
amplitudes may be found to be higher in either the cyclones or the anticyclones.
In particular, for high Ro and small Fr , they find a pattern similar to our figure 7(j);
however, in their case, the anticyclonic vorticity dominates and it is the cyclonic
vorticity that develops the triangular shape. Such patterns may be expected to form
whenever one sign of vorticity is suppressed relative to the other by whatever
mechanism breaks the symmetry.
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Appendix. Inertial instability eigenvalue problem
We begin by linearizing the Navier–Stokes equations about the basic state with

u = U(y) and v = w = 0. We assume further that no variation is allowed in the x
direction. The result, written in dimensional form, is (see, for example, Kloosterziel &
Carnevale 2008)

Dνu
′ − Qv′ = 0 (A 1a)
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Dνv
′ + fu′ =−ρ−1

0 ∂yp
′ (A 1b)

Dνw
′ =−ρ−1

0 ∂zp
′ (A 1c)

∂yv
′ + ∂zw

′ = 0 (A 1d)

where the primed variables are the perturbation variables (u, v,w the velocity
components, p pressure and ρ0 the constant density), Q = f − dU/dy and Dν =
∂t − ν(∂2

y + ∂2
z ).

Cross-differentiating and subtracting the second and third equations in (A 1) yields

Dνu
′ − Qv′ = 0, (A 2a)

Dν(∂yw
′ − ∂zv

′)− f ∂zu
′ = 0. (A 2b)

The incompressibility condition (last line of (A 1)) allows us to write v′ =−∂zψ and
w′ = ∂yψ with ψ the streamfunction for the meridional motions. Thus, we have

Dνu
′ + Q∂zψ = 0 (A 3a)

Dν(∂
2
y + ∂2

z )ψ − f ∂zu
′ = 0. (A 3b)

Normal modes for this problem take the form: [u′, ψ] = Re{[ũ(y), ψ̃(y)]est+ikzz}.
Thus, for normal modes (A 3) becomes

(s− ν(∂2
y − k2

z ))ũ+ ikzQψ̃ = 0 (A 4a)

(s− ν(∂2
y − k2

z ))(∂
2
y − k2

z )ψ̃ − ikzf ũ= 0. (A 4b)

In order to achieve the normal eigenvalue equation form, we operate on the second
line of (A 4) with (∂2

y − k2
z )
−1. Thus, we obtain

(s− ν(∂2
y − k2

z ))ũ+ ikzQψ̃ = 0 (A 5a)

(s− ν(∂2
y − k2

z ))ψ̃ − ikzf (∂
2
y − k2

z )
−1

ũ= 0. (A 5b)

With a simple rearrangement of terms this can be put into the standard eigenvalue
form:

sφ = Aφ (A 6)

where φ is the vector (ũ, ψ̃)
T

(‘T’ indicating the transpose) and A is the matrix

A=
[
ν(∂2

y − k2
z ) −ikzQ

ikzf (∂
2
y − k2

z )
−1

ν(∂2
y − k2

z )

]
. (A 7)

We can rewrite φ and the independent variables in non-dimensional form. Thus, in
non-dimensional form the problem reduces to finding the eigenvalues of

A=
[
Re−1(∂2

y − k2
z ) −ikzQ

ikzRo
−1 (∂2

y − k2
z )
−1

Re−1(∂2
y − k2

z )

]
. (A 8)

Solving the eigenvalue problem first involves discretizing y and writing the second
derivative ∂2

y as a matrix. This was done with N gridpoints for y ∈ [−Ly,Ly] with free
slip boundary conditions assumed. Then the eigenvalues of A, a matrix of dimensions
2N × 2N, are conveniently determined with some efficient eigenvalue solver (in this
case we used eig(A) in Matlab). A sequence of values of kz is chosen to determine
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which one, to some desired accuracy, produces the highest value of the real part of s,
Re(s), i.e. the highest growth rate γmax for given values of Ro and Re. We compared
the results that we obtained for various values of N and various Ly. The results do
not vary significantly for Ly > 5. The results shown in figure 6 were calculated with
Ly = 10, which is the same value that was used in the numerical simulations that are
also represented in that figure. For Ly = 10, variation of N showed that the values of
γmax converged for N > 200 with accuracy better than three significant figures. The
results presented in figure 6 were calculated with N = 513.
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