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A method for predicting the outcome of vortex breakup in a rotating flow is
introduced. The vortices dealt with here are subject to both centrifugal and barotropic
instabilities. The prediction of the aftermath of the breakup relies on knowing
how both centrifugal and barotropic instabilities would equilibrate separately. A
theoretical model for non-linear equilibration in centrifugal instability is wedded
to two-dimensional simulation of barotropic instability to predict the final vortices
that emerge from the debris of the original vortex. This prediction method is tested
against three-dimensional Navier–Stokes simulations. For vortices in which a rapid
centrifugal instability triggers a slower barotropic instability, the method is successful
both qualitatively and quantitatively. The skill of the prediction method decreases as
the time scales of the two instabilities become comparable.
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1. Introduction
Vortex breakup is a complicated process that often involves multiple instabilities.

Nevertheless, in a rotating flow, the result of breakup and re-equilibration is usually
a combination of simple vortex structures. Vortex monopoles, dipoles and tripoles,
with their axes aligned along the ambient rotation axis, emerge out of the debris of
the original vortex. Here, we consider the possibility of predicting the aftermath of
vortex breakup based on our knowledge of the tendencies of the different instabilities
involved.

Van Heijst & Kloosterziel (1989) and Kloosterziel & van Heijst (1991) investigated
vortex breakup and re-equilibration in rotating tank experiments. The tank was filled
with water with uniform density and then placed in rotation about a vertical axis.
The fluid was allowed to reach a state of solid-body rotation. Then, an open-ended
thin-walled hollow cylinder was placed vertically in the fluid. A vortex was created
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Figure 1. Breakup of an anticyclone leading to double dipoles in a laboratory experiment.
The evolution takes place in 30 cm of water in a rotating tank. The photographs are taken
from above with a camera in the rotating frame mounted on the axis of rotation. The leftmost
photograph was taken shortly after the release of the dipole.

within the cylinder by stirring. An axially symmetric vortex was thus produced with
azimuthal cyclonic or anticyclonic flow depending on the direction of the stirring. Dye
was introduced in the confining cylinder to permit subsequent visualization of the flow.
The vortex was then released by lifting the hollow cylinder vertically. Cyclones and
anticyclones behaved rather differently from each other in these experiments. Just after
release, the cyclones exhibited some three-dimensional motion on the periphery of
the vortex, but the main flow remained predominantly two-dimensional (i.e. lacking
vertical motion). The cyclones smoothly transitioned from the axisymmetric state
into a tripole consisting of a central cyclone and two anticyclonic satellites. The
anticyclones, in contrast, after release exhibited violent three-dimensional motions
that persisted, and the horizontal structure became asymmetric. The flow then tended
towards two-dimensionality while the vortex was torn apart horizontally, resulting
in two vortex dipoles propagating away from each other, as shown in figure 1. The
view in this figure is from above the flow, looking along the axis of rotation of the
tank. The sequence of images from left to right shows the creation and evolution of
the double-dipole state. The first image on the left of this figure shows the vortex
shortly after release from the confining cylinder, and the last image shows two dipoles
propagating away from each other.

Kloosterziel & van Heijst (1991) hypothesized that the evolution in these
experiments could be understood as a combination of the effects of barotropic
and centrifugal instabilities. The cyclones were initially centrifugally stable, or nearly
so, and once released remained mainly two-dimensional, undergoing a barotropic
instability leading to a tripolar state. The anticyclones were initially centrifugally
unstable and the subsequent overturning motions led to strong horizontal vorticity
gradients that triggered a stronger barotropic instability, which tore the anticyclone
apart, leading to the formation of double dipoles.

Through three-dimensional numerical simulations, Orlandi & Carnevale (1999)
reproduced the observed phenomenon and verified that, in fact, centrifugal instability
in anticyclones does sharpen vorticity gradients, triggering the barotropic instabilities
observed in the anticyclonic laboratory experiments. They also predicted that, for a
certain range of Rossby number, the centrifugal instability of an anticyclone would
not steepen the velocity profile sufficiently to result in double dipoles, but rather a
tripole would form. Although rare in the type of experiment described above, this
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Figure 2. Breakup of an anticyclone leading to a tripole in a laboratory experiment. The
evolution takes place in 30 cm of water in a rotating tank. The photographs are taken from
above with a camera in the rotating frame mounted on the axis of rotation.

prediction was later verified in the laboratory. An example of tripole formation from
an anticyclone is shown in figure 2.

Early in the development of this subject, there was a good theoretical understanding
of barotropic instability and the end states that resulted due to nonlinear effects (cf.
Dritschel 1986; Flierl 1988; Carton & McWilliams 1989; Carton, Fierl & Polvani
1989; Kloosterziel & Carnevale 1992; Carnevale & Kloosterziel 1994). Until recently,
however, a comparable understanding of the nonlinear saturation of the centrifugal
instability in unconfined vortices was lacking, even though there had been several
detailed studies (e.g. Carnevale et al. 1997; Smyth & McWilliams 1998). Thus, no
theoretical prediction could be made of the final result of the combined effect
of the two instabilities. The missing piece of the puzzle has now been provided
by Kloosterziel, Carnevale & Orlandi (2007a), who deduce a rule for the infinite-
Reynolds-number equilibration of centrifugal instability. We will show how this rule
can be combined with what is known of barotropic instability to make predictions
about the combined effects of centrifugal and barotropic instabilities without resorting
to costly three-dimensional simulations.

This work is motivated in part by the many oceanic examples of anticyclones
that are marginally stable to centrifugal instability. These strong anticyclones are
thought to be generated by frictional torques on strong currents passing coasts and
islands (D’Asaro 1988). Some specific examples of these anticyclones are found in
the wake of the island of Hawaii (Flament et al. 2001), in the wake of the Canary
islands (Aristegui et al. 1994), and in the Beaufort Sea, where they have been created
by flow through Barrow Canyon (D’Asaro 1988). All these vortices were probably
centrifugally unstable when they were formed and then went through an adjustment
that brought them to marginal stability. The work presented here is a contribution
towards understanding that adjustment process. Our results could be the basis for
parametrizing the effects of centrifugal instability in general circulation models with
resolution too coarse to permit centrifugal instability.

The method of prediction developed here may be generalizable to systems other
than vortices. A straightforward extension of this work would be to the prediction
of the outcome of inertial instability in parallel shear flows. In the atmosphere, such
instability is believed to cause phenomena like clear air turbulence (Knox 1997), rain
bands or squall lines (Bennetts & Hoskins 1979), the banded structure of Jupiter’s
atmosphere (Stone 1967) and the vertically stacked temperature extrema near the
equatorial stratopause (Hayashi, Shiotani & Gille 1998). In the equatorial pacific
ocean, it may cause the observed ‘interleaving’ of alternately saltier and fresher layers
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Figure 3. (a) Schematic diagram showing the cylindrical coordinate system. (b) A schematic
representation of ‘rib’ vortices. The signs refer to the sign of the azimuthal vorticity ωθ . The
linear instability creates a stack of rings of azimuthal vorticity of alternating sign (rib vortices)
centred on the axis of the primary vortex (r = 0). Note that f = 2Ω is the Coriolis parameter
and Ω is the angular rotation rate of the ambient flow into which the vortex is introduced.

(Richards & Edwards 2003). We have already taken the first step towards developing
a method for predicting the outcome of inertial instability on parallel shear flow in
Kloosterziel, Orlandi & Carnevale (2007b), and further development analogous to
that for vortices presented here will be the subject of future work.

The plan of this paper is as follows. In § 2, we briefly review the new theory of
nonlinear equilibration of centrifugal instability and then outline relevant aspects of
what is known about the nonlinear equilibration of barotropic instability. Then, in
§ 3 a scheme for combining the two theories of equilibration to make predictions of
the outcome of the combined instabilities is given. In § 4, we test this theory in the
most favourable situation, in which the centrifugal instability is much faster than
the barotropic instability. To test the limits of this kind of prediction, in § 5 a less
favourable case is explored for which the time scales of the two instabilities are
similar. Conclusions are presented in § 6.

2. The basic instabilities
Both centrifugal and barotropic instabilities in their ideal form are not fully

three-dimensional. Centrifugal instability is ideally an axisymmetric instability, while
barotropic instability can be treated as a pure two-dimensional flow problem. In this
section we will discuss basic characteristics of these two instabilities, focusing on how
nonlinearities saturate these instabilities and lead to characteristic final stable states.
We will begin with centrifugal instability and place special emphasis on the recent
advances that allow the prediction of the equilibrated state in the high-Reynolds-
number limit. The discussion of the barotropic instability will be a review of earlier
work with emphasis on points relevant to this paper.

2.1. Nonlinear equilibration in axisymmetric centrifugal instability

In the breakup of anticyclones described in the Introduction, there is a vigorous three-
dimensional instability during the early evolution. This three-dimensional phase is the
result of centrifugal instability. To describe the evolution of the vortex, it is convenient
to use a cylindrical coordinate system (r, θ, z) where the z-axis corresponds to the
vertical direction (see figure 3a). The velocities (u, v, w) correspond to the radial,
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azimuthal and vertical directions. The components of vorticity in this coordinate
system are given by

ωr = r−1∂θw − ∂zv, ωθ = ∂zu − ∂rw, ωz = r−1(∂r (rv) − ∂θu). (2.1)

An axisymmetric barotropic vortex with its axis coincident with the vertical axis is
defined by the azimuthal velocity field V (r). In the initially null field of azimuthal
vorticity ωθ , centrifugal instability creates a stack of vortex rings similar to the
well-known toroidal Taylor–Couette vortices in the flow between concentric rotating
cylinders. This perturbation appears and grows in an annular region of instability (see
figure 3b) that can be defined through the Rayleigh criterion for centrifugal instability
(Rayleigh 1916; Drazin & Reid 1981). The original version of this criterion was derived
for axisymmetric flow in an inertial frame of reference. Subsequently, the criterion
was generalized for vortices in a rotating frame (see Sawyer 1947; Kloosterziel & van
Heijst 1991). Inviscid linear stability is determined by the distribution of the absolute
angular momentum defined by L ≡ r(V + Ωr), where V is the azimuthal velocity of
the flow, Ω is the ambient angular rotation rate and r is the radial distance from the
axis of the vortex. The flow is unstable in an annulus where the magnitude of the
absolute angular momentum decreases, in other words where dL2/dr < 0.

We will base our discussion here on a family of vortices parametrized by a ‘steepness
parameter’ α which controls the strength of the vorticity gradients outside the vortex
core. The advantages of using this family are the following: namely all the vortices
have zero circulation (hence finite energy); it can be used to match velocity profiles
found in laboratory experiments reasonably well; its parameter α controls, to a great
extent, the character of the instability; and it has been the subject of many previous
theoretical and numerical investigations (e.g. Carton & McWilliams 1989; Carton et al.
1989; Orlandi & van Heijst 1992; Carton & Legras 1994; Carnevale & Kloosterziel
1994; Kloosterziel & Carnevale 1999; Orlandi & Carnevale 1999; Gallaire & Chomaz
2003). The velocity profile for this family is given by

V (r) = ± r

2
exp(−rα), (2.2)

where we have non-dimensionalized the velocity by a characteristic velocity U and
radius by a length scale L. The ± sign determines whether the vortex is a cyclone
or anticyclone. The factor of 1/2 normalization of the velocity is chosen to fix the
non-dimensional vorticity at r =0 to be +1 for cyclones and −1 for anticyclones. The
vorticity derived from this velocity profile is aligned along the vertical direction. Its
amplitude is given by

ωz(r) = ±
(
1 − α

2
rα

)
exp(−rα). (2.3)

From the velocity and length scales U and L, we define the Rossby and Reynolds
numbers for this flow as

Ro = ±U/f L and Re = UL/ν, (2.4)

respectively, where f = 2Ω is the Coriolis parameter. The Rossby number is defined so
that the positive/negative sign corresponds to cyclones/anticyclones. In what follows,
we have non-dimensionalized all spatial quantities using the length scale L and time
with the advective time scale L/U.

For the anticyclonic case, figure 4 shows how the velocity V and vorticity ωz profiles
change with α. Note how vorticity gradients increase with increasing α. The graphs in
the cyclonic case would be the same as these save for a sign change for the amplitude.
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Figure 4. (a) Non-dimensional velocity profile from (2.2) for anticyclones. (b) Vertical vorticity
profile corresponding to the velocity profile in (a). Lines: solid, α= 2; dashed, α= 3; dot-dashed,
α= 4.
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Figure 5. (a) The absolute angular momentum squared (L2) for anticyclones with Ro = −4
for three values of α. The centrifugal instability region corresponds to the range of r where
dL2/dr < 0. (b) Zoomed image from (a) showing how the outer edge of the instability region
varies with α for fixed Ro. Lines: solid, α= 2; dashed, α= 3; dot-dashed, α= 3.

According to the Rayleigh criterion for centrifugal instability, a vortex with the profile
(2.2) will be unstable to the formation of rib vortices if Ro < −1 or Ro >Rocr, where

Rocr =
1

α
exp

(
α + 2

α

)
(2.5)

(Orlandi & Carnevale 1999).
For values of α and Ro for which this vortex is unstable, there is an annulus

(r− < r < r+) in which the magnitude of angular momentum is decreasing. In
figure 5(a), the behaviour of L2 is shown for the case of the anticyclones shown
in figure 4. Figure 5(b) shows how the outer edge of the instability region (that is,
the point where L =0) given by r+ = (ln|Ro|)1/α moves inwards as α increases. We do
not have a closed analytic formula for the position of the inner edge of the instability
region r−, which occurs at the local maximum of L2. It is not a monotonic function
of α, but from figure 5(a) we see that it is relatively insensitive to changes in α for the
values of α presented. Using numerical methods, we find that the difference r+ − r−
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Figure 6. Overturning motions induced by centrifugal instability visualized by plots of
azimuthal vorticity in an axisymmetric flow simulation. (a) (t = 28) The linear phase of
the instability from random small-scale perturbations creates a stack of rings of azimuthal
vorticity of alternating sign (rib vortices) centred on the axis (r = 0) of the primary vortex.
(b) (t = 56) Nonlinear interactions of the rib vortices cause the formation of dipolar structures
that propagate outside the initial unstable region. (c) (t = 64) Extensive mixing of angular
momentum that extends well beyond the initial instability region results from the propagation
of the perturbations. These are results for velocity profile (2.2) with Ro = −4 and α= 3. The
flow is bounded above (at z = 1) and below (at z = 0) by free-slip surfaces. The computational
flow domain extends from r =0 to r = 6. The boundary at r =6 is also free-slip. The Reynolds
number for this run was 6 × 104. Positive/negative contours of ωθ are black/grey. The contour
interval is 0.003. The range of the initial unstable region, r− <r < r+, is indicated by the
vertical dashed lines.

is a monotonically decreasing function of α for α> 2. In other words, for fixed Ro,
the instability region becomes narrower as α increases.

Starting from small-scale random initial perturbations, the instability begins within
the annulus of instability. The perturbation grows into a stack of ‘rib vortices’ as
illustrated in the schematic diagram in figure 3(b), where we plot the azimuthal
vorticity in an r–z (radial–vertical) cross-section. In inviscid theory, the most unstable
rib vortices would be those of infinitesimal vertical dimension (Stone 1966; Dunkerton
1981; Bayly 1988; Smyth & McWilliams 1998; Gallaire & Chomaz 2003). However,
the damping effect of viscosity on small scales results in a balance that selects a fastest-
growing mode of finite scale that emerges from the linear phase of the instability. For
increasing Re, the preferred vertical scale of the motions was found by Kloosterziel
et al. (2007a) to decrease as Re−1/3.

Kloosterziel et al. (2007a) studied the axisymmetric unfolding of centrifugal
instability well beyond the initial linear phase. Their goal was to understand the
ultimate tendency of the centrifugal instability acting alone. By using axisymmetric
simulations, for which the barotropic instability is suppressed, they were able to follow
the evolution of the pure (that is, axisymmetric) centrifugal instability all the way
through to nonlinear equilibration. The numerical method will be discussed in § 4.
The typical early phases of this axisymmetric evolution are illustrated in figure 6
taken from a numerical simulation at high Re. Figure 6(a) shows the rib vortices in
the ωθ field that grow out of the small-scale random perturbations during the linear
dynamics phase of the instability growth. Note that these rib vortices are initially
confined to the region of instability defined by the Rayleigh criterion. The limits of
this region, r− < r < r+, are indicated by the dashed vertical lines in each figure. As
the axisymmetric evolution continues past the linear-instability phase, the rib vortices
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Figure 7. (a) A schematic diagram of the construction used to determine the new absolute
angular momentum resulting from inviscid mixing of the angular momentum for a centrifugally
unstable anticyclone in an example for which α= 3 and Ro = −4. The thin curve is the absolute
angular momentum of the original anticyclonic vortex. The thick curve is the equilibrated
absolute angular momentum. The thick curve overlies the thin curve for r > rc . (b) The
azimuthal velocity field based on the equilibrated angular momentum shown in (a). The thin
line is the initial velocity profile.

begin to pair, forming dipolar vortex heads in both the inner and outer parts of the
instability region as seen in figure 6(b). The rib vortices then begin to self-advect
beyond the linear-instability region, both towards smaller and larger r . As illustrated
in figure 6(c), the dipolar heads propagate beyond the initial instability region. The
rings then interact in a complicated fashion and soon engulf much of the vortex with
overturning motions of the type observed in the laboratory experiment. Eventually
this motion settles down, the flow becomes vertically uniform, the instability ceases,
and there is a new distribution of angular momentum.

By running many axisymmetric simulations with many types of initial velocity
profiles and a wide range of Reynolds numbers Re, Kloosterziel et al. (2007a) were
able to deduce a rule for the final angular momentum distribution in the infinite
Re limit. This rule says that for both cyclones and anticyclones the flow adjusts
to reduce the gradient of L2 in and around the region of initial instability. The
adjustment involves mixing angular momentum from beyond the instability region
into the instability region to produce constant L. It is surprisingly easy to predict just
how far beyond the region of instability angular momentum will be mixed. For the
anticyclone, the instability engulfs a region just large enough to bring the absolute
angular momentum to zero everywhere in the new vortex core. This is illustrated in
the diagram shown in figure 7(a). Equilibration is complete when the negative absolute
angular momentum L is completely mixed with the positive L from the axis of
the vortex out to a point r = rc that is just as far as necessary to make the total absolute
angular momentum within that radius zero. Thus, given an initial anticyclonic profile
V0(r), the value of rc can be determined from the following formula:

∫ rc

0

L0(r)r dr = 0, (2.6)

where L0(r) = r (V0(r) + r/(2Ro)) is the initial unperturbed absolute angular
momentum.

The final equilibrated profile is then L(r) = 0 for 0 <r < rc, while L(r) = L0(r) for
rc < r . This profile is shown by the thick curve in figure 7(a). The corresponding
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prediction for the equilibrated velocity field is

V (r) =

{
− r

2Ro
, 0 ! r ! rc,

V0(r), rc < r.
(2.7)

Within the new core (i.e. where r ! rc), the predicted flow is given in dimensional
form as V (r) = −Ωr , which is just solid-body rotation with the angular velocity −Ω ,
that is, the negative of the angular velocity of the tank. This means that the predicted
flow in the core is stationary in the laboratory frame of reference. The profile for the
equilibrated V is shown by the thick solid line in figure 7(b). This singular velocity
profile is approached ever more closely in numerical axisymmetric experiments as the
Reynolds number is increased (Kloosterziel et al. 2007a , figure 13a).

Cyclones can also be centrifugally unstable as noted above. However, centrifugal
instability in barotropically stable cyclones cannot trigger barotropic instability. The
difference between cyclones and anticyclones is discussed further in § 6.

2.2. Nonlinear equilibration in 2-D Barotropic Instability

The initial axisymmetric flow in an anticyclone has anticyclonic vorticity in the core
surrounded by an annulus of cyclonic vorticity. In the later stages of the instability, this
distribution is rearranged, in some cases rather dramatically. In the examples shown in
the Introduction, a tripole and a pair of dipoles emerged out of the debris of the vortex
breakup. More exotic structures such as quadrupoles (an anticyclone surrounded by
three cyclonic satellites) have also been observed as temporary structures which
then break up, leaving monopoles, dipoles or tripoles as stable byproducts of the
breakup; see Morel & Carton (1994) and Carnevale & Kloosterziel (1994) for a fuller
description of these possibilities.

The horizontal segregation of the vertical vorticity resulting in these structures
is the result of barotropic instability. This is an instability of horizontal shear that
can be understood completely within the context of two-dimensional flow. Since the
instability is two-dimensional, it makes no difference if the initial flow is cyclonic
or anticyclonic except for an overall sign change in the vorticity distribution. The
(necessary) criterion for this instability is given by the inflection point theorem of
Rayleigh (1880). Originally for planar shear, a generalized form of the criterion also
applies to initially axisymmetric flow (see Drazin & Reid 1981). There is no known
general sufficient criterion for the instability. Linear theory can be applied to piecewise
uniform axisymmetric vorticity profiles to predict analytically the growth rates for
various azimuthal modes, that is, modes that vary as eimθ . This was done by Stern
(1987) and Flierl (1988) by normal modes analysis and by Kloosterziel & Carnevale
(1992) through an energy method. For more general profiles, as would be appropriate
for laboratory flows, numerical analysis can be used to predict the growth rates of
individual azimuthal modes. The barotropic instability of velocity profile (2.2) has
been studied as a model for laboratory flows as well as for geophysical flows. For this
profile, figure 8 shows how the growth rates of the first three unstable modes vary with
the steepness parameter (cf. Carton & McWilliams 1989; Carnevale & Kloosterziel
1994; Gallaire & Chomaz 2003). These are measured exponential amplification rates
of the perturbations that follow exp(γ t) with t the non-dimensionalized time. There
are no growing modes for α " 1.85. As α is increased above this critical value,
mode m =2 is the first to become unstable. The growth of this mode is responsible
for tripole formation. As α is increased further, higher modes also become unstable.
The double-dipole formation seen in the Introduction results from the growth of a
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Figure 8. (a) Non-dimensional exponential growth rate γ of the barotropic instability for
azimuthal modes m= 2, 3, 4 (data from Kloosterziel & Carnevale 1999). (b) Products of
nonlinear evolution when the initial perturbation is purely mode m= 2 (tripole), 3 (quadrupole)
or 4 (pentapole). Blue/red represents positive/negative vorticity.

combination of mode m =2 and higher modes, and so can occur only for α # 3.
Carnevale & Kloosterziel (1994) showed that mode m =3 may grow into a stable
quadrupole, but its stability was rather fragile, and small disturbances of a few per
cent of its maximum vorticity led to its destruction. Because of its fragile stability, the
quadrupole is not ordinarily seen as an end state of the kind of anticyclone breakup
described above; however, Beckers & van Heijst (1998) have shown that it is possible
to routinely generate quadrupoles in the laboratory by strongly stimulating mode
m = 3 initially, in agreement with the numerical study by Carton (1992). The mode
m = 4 growth can result in creating a pentapole (as in figure 8). This ‘square vortex’
becomes unstable when fluctuations bring two of the outer satellites close together.
The satellites then coalesce in pairs, forming a transient tripole that then usually
breaks up into a pair of dipoles. Higher-order structures, resulting from the growth of
higher-order azimuthal modes, also become unstable when the outer satellites come
close together and coalesce, resulting in some combination of monopoles, dipoles and
tripoles.

The long-term outcome of the barotropic instability will depend on the value
of α as well as the distribution of initial perturbation energy among the possible
unstable modes for that value of α. For α " 1.85, the flow is not unstable and
remains a monopole. A tripole results for 1.85 " α " 3 (Kloosterziel & Carnevale
1999). For higher values, the vortex can go through a remarkable array of forms,
depending on how many azimuthal modes are unstable and the precise form of the
initial perturbation. Very complicated flows can result, especially when the initial
perturbation has significant energy in spatial scales on the order of that characteristic
of the unperturbed vortex. The flow can evolve through a series of intermediate states
including, for example, hexapoles, pentapoles and quadrupoles. Except for small-scale
debris in the form of thin vorticity filaments and the small vortices that may be
created by the roll-up of filaments, the final result is some combination of monopoles,
dipoles, tripoles and quadrupoles, although the quadrupole is a less likely component
as discussed above. If the initial disturbance is made of only small-scale small-
amplitude randomly distributed velocity fluctuations, we find that the end product is
either a monopole, a tripole or a pair of dipoles.
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3. Full 3-D simulation versus prediction
Our goal is to determine how well the outcome of the breakup of an anticyclonic

vortex can be predicted by using what we know of the nonlinear equilibration of
the axisymmetric centrifugal instability and the 2-D barotropic instability. In the
laboratory experiments discussed above, it appears that an early rapid centrifugal
instability sets up conditions for a barotropic instability that then follows. For inviscid
flow, we can predict the outcome of pure centrifugal instability by using (2.7). Here we
will use this formula to give us an approximation of the effects of centrifugal instability
in the early part of the actual 3-D flow. Then, lacking a general theory to predict the
equilibration of barotropic instability, we use 2-D simulation of the Navier–Stokes
equations to predict the outcome of the barotropic instability. The initial condition
for this 2-D simulation is taken as the theoretical equilibrium of the centrifugal
instability and random grid-scale noise. The 3-D viscous flow will never actually
achieve the velocity discontinuity contained in (2.7). Therefore, perhaps one should
consider using an artificially smoothed version of this profile for an initial condition
of the 2-D simulation. The singular profile could be smoothed by estimating the
diffusive effect of viscosity acting over some period of time or perhaps, more simply,
the discontinuity could be arbitrarily smoothed over the scale of a few gridpoints.
Either choice would be artificial and arbitrary, so for the time being we have used
formula (2.7) as is, simply rendering it on the finite 2-D grid used in the next phase of
the prediction. The Reynolds number used for the 2-D simulation is that of the 3-D
simulation to which the prediction will be compared. The grid for the 2-D simulation
is the same as the horizontal grid used in the 3-D simulation.

In summary, this prediction scheme replaces the centrifugal instability phase of
the evolution by jumping to the velocity field given by (2.7). Then the barotropic
instability phase of the flow is replaced by a two-dimensional simulation. This scheme
has the best chance of succeeding when the initial flow is centrifugally unstable
but barotropically stable. In that case, in the full 3-D simulation, the flow must
become centrifugally unstable before any barotropic instability can take place. Thus,
we take as our first case an initial profile with steepness parameter α= 1.8, which is
barotropically stable as discussed in § 2.2 above. On the other hand, the prediction
scheme should be expected to have less skill if the initial instability rates for the two
instabilities are comparable. How well the scheme does under these circumstances
will be tested using an example with α= 3. In both cases, we have explored a range
of Re and Ro as will be discussed below.

4. Centrifugal instability faster than barotropic instability (α = 1.8)
As explained above, the velocity profile (2.2) is barotropically stable for α " 1.85.

If we take as an initial condition the velocity profile (2.2) with α= 1.8, there will
be no barotropic instability initially. There will, however, be centrifugal instability if
the Rossby number is sufficiently negative. The inviscid criterion tells us that we will
have centrifugal instability if and only if Ro < −1; however, since we cannot reproduce
infinite Re flow numerically, we must consider the effects of finite Re.

The numerical method used is a finite-difference staggered-mesh scheme that solves
the incompressible Navier–Stokes equations in a cylindrical coordinate system (r, θ, z)
with the z-axis coincident with the axis of the initial vortex, which is parallel to the axis
of rotation of the background as sketched in figure 3. The details of the method, which
is energy conserving in the absence of viscosity in the limit of infinitesimal time steps,
are described in detail in Verzicco & Orlandi (1996) and Orlandi (2000). We impose
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free-slip boundary conditions on the top and bottom of the computational domain and
on the cylindrical wall. To allow sufficient room for the unfolding of the barotropic
instability, we have taken the radial range as 0< r < 6. The coordinate system is
stretched in the radial direction to allow for a uniform maximal radial resolution up
to r = 2 and gradually diminishing resolution for larger r . Changing the stretching to
begin beyond r = 2.25 showed no significant effect on the results when applied in test
cases. In the vertical direction, sufficient space is needed to represent the rib vortices
discussed above. This is more of a concern at low Re than at high Re because the rib
vortices are thinner in the vertical direction the higher the value of Re. For high Re,
the concern is to have sufficient resolution in the vertical direction to resolve the rib
vortices. Our previous experience with axisymmetric simulations (Kloosterziel et al.
2007a) and 3-D simulations (Orlandi & Carnevale 1999) of centrifugal instability
suggested that the vertical range 0 <z < 1 would be adequate for present purposes.
Each 3-D simulation was initiated with the ideal velocity profile (2.2) and a random
perturbation of amplitude 1 % of V (r) was applied to the azimuthal velocity at
every point in the domain. Perturbations of much lower amplitude were found to
be too weak to initiate instability before the vertical vorticity diffused significantly,
especially at low values of Re. Thus, this 1 % perturbation level was used in all
simulations.

Simulations were performed from Re =5000 (i.e. 5k) to Re = 30k. Problems with
insufficient resolution become marked at Re = 20k and were unacceptable at Re =30k.
The adequacy of the resolution was tested both by examining how quickly energy
falls off in spectral space during the most turbulent phase of the breakup (see the
Appendix for more details) and by grid refinement. The grid-refinement tests involved
comparing the end results of key simulations using grids with N grid points in each
of the three coordinate directions with N varied from 97 to 129 to 193. It was
found that the simulations with N = 129 were well resolved up to and including
Re =15k. The results reported throughout the paper are based on simulations with
N = 129.

Through 3-D simulation, we find that for α= 1.8 at Re = 15k, the centrifugal
instability is insufficient to induce barotropic instability from Ro = − 1 down to
Ro ≈ −2.05, while tripoles form for −2.05 # Ro # −2.45 and double dipoles for
−2.45 # Ro. We will now examine two examples in some detail.

4.1. Example: tripole formation: α= 1.8, Ro = −2.35

We begin with a case of evolution that leads to a tripole. Before looking at the
final outcome of the instability, it is interesting to examine the effects of the initial
instability, which in this case must be centrifugal. A centrifugally unstable vortex
evolving three-dimensionally will suffer a much more complicated initial development
than that possible in axisymmetric flow due to the potential for unstable modes with
non-zero azimuthal wavenumber. The evolution of the azimuthal component of the
vorticity is a useful diagnostic, at least for the early flow, because initially there is
no ωθ associated with the basic profile (2.2). The growth of the rib vortices discussed
in the Introduction is well captured by growth in ωθ . To help analyse the complex
evolution, we decompose the azimuthal vorticity perturbation field ωθ (r, θ, z, t) into
azimuthal ‘m’ and vertical ‘k-modes’ according to

ω̂θ (r, m, k, t) =

∫ 2π

θ=0

∫ 1

z=0

ωθ (r, θ, z, t) sin(2πkz)e−imθ dz dθ . (4.1)
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Figure 9. History of Υk,m as defined by (4.2) for vertical wavenumbers k =0.5, 1, . . . , 3.0, with
azimuthal mode wavenumbers (a) m= 0 and (b) m= 1 for the case α= 1.8 and Ro = −2.35.

The integrals are performed as discrete sums over our computational grid. The
axial wavenumbers k are positive half-integers (k = 1/2, 2/2, 3/2, . . .). Note that it is
convenient to use the sine transform in the vertical direction because the free-slip
boundaries force ωθ = 0 at z =0 and z = 1. The azimuthal wavenumbers are signed
integers (m =0, ±1, ±2 . . .), but note that because ωθ is real, the Hermiticity condition
ω̂∗(r, m, k, t) = ω̂(r, −m, k, t) holds.

A measure of the contribution of a certain mode (k, m) in the azimuthal vorticity
can be defined as

Υk,m(t) =

√√√√√

∫ r=rrib

r=0

|ω̂θ (r, k, m, t)|2r dr

r2
rib/2

, (4.2)

where rrib is to be taken sufficiently large to fully capture the effects of the instability
on the vortex. The actual value of rrib will depend on the parameter values for a
particular simulation. We found that taking rrib =1.5rc, where rc is defined by (2.6),
is sufficient. The normalization is such that if |ω̂θ (r, k, m, t)| =1 over the region of
integration, then Υk,m would be unity. The growth rate σk,m(t) of a certain mode (k, m)
in this region can be defined by

σk,m(t) =
d

dt
ln(Υk,m(t)). (4.3)

The time-varying contribution Υk,m and the growth rate σk,m, apart from the
normalization, are as defined by Gallaire & Chomaz (2003), who performed a linear-
stability study for vortices over a range of α but without background rotation. They
found that of all modes, those with m =0 and m =1 are the fastest growing with the
growth rate of the mode m =0 being about 10 % larger than that of the corresponding
m =1 mode. With rotation, we also find that modes m =0, 1 dominate. In figure 9,
we show the evolution of Υk,m for m =0, 1 for k = 0.5 to k =3. Unlike the case of the
linear analysis of Gallaire & Chomaz (2003), where each mode exhibits exponential
growth, here the modes display a more complicated behaviour, although each shows
some period of exponential growth somewhere between t =0 and t ≈ 90. During this
period, mode (m, k) = (0, 2) achieves the highest growth rate (σ2,0 = 0.15 at t = 68).
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Figure 10. (a–d ) Three-dimensional isosurfaces of the azimuthal vorticity ωθ distribution for
the case with α= 1.8, Ro = −2.35 and Re = 15k. The images are views taken from a direction
perpendicular to the axis of the primary vortex and correspond to different times as labelled.
The structure of the rib vortices is well organized until t ≈ 120, and azimuthal modes m= 0
and m= 1 are identifiable. After t ≈ 140, the rib vortices tangle and a description in terms of
a few azimuthal modes is no longer possible. Red/blue corresponds to positive/negative ωθ

with magnitude increasing in time from 3.2 × 10−3 at t = 90 to 3.3 × 10−1 at t =190.

The highest growth rate attained by an m =1 mode is about 25 % lower (σ0.5,1 = 0.11
at t = 92). Of the modes shown, the m =0 modes tend to grow at least 20 % more
rapidly than the m =1 modes for the corresponding values of k, except for the k =6
modes, where the maximum growth rates are about the same for m =0 and m =1. The
highest amplitude is achieved by an m =0 mode (Υ2.5,0 ≈ 0.2 at t = 120). After t ≈ 90,
nonlinear effects end the exponential growth phase of these modes. Until this time,
the perturbation can be described essentially in terms of the m =0 and m = 1 modes;
however, after this time, higher azimuthal modes reach similarly high amplitudes and
become important in a way that is best illustrated with three-dimensional vorticity
isosurface plots.

Figure 10 shows the early evolution of the instability for α= 1.8 and Ro = −2.35
through a rendering of the azimuthal component of the vorticity. The image at t =90
shows the field that results from the exponential growth phase of the instability. The
next image shows that modes with azimuthal wavenumbers m = 0 and m = 1 continue
to dominate until about time t = 120. After this point, the rib vortices become
entangled and much higher azimuthal modes become significant. The entanglement
of the rib vortices is a result of strong nonlinear interactions.

Although the early instability is not the ideal centrifugal instability, which is purely
axisymmetric with only m = 0 modes, the essential result is, nevertheless, still a
steepening of vorticity gradients similar to that seen in axisymmetric simulations. In
figure 11, we show the initial velocity and angular momentum profiles (dashed) and
compare them with the vertically and azimuthally averaged profiles at later times. The
dotted curve in each figure represents the theoretical equilibrium for axisymmetric
flow in the Re = ∞ limit. The vertical lines at radii r− and r+ indicate the inner
and outer boundaries of the initial centrifugally unstable region. The figure shows
the tendency of the 3-D instabilities to steepen the velocity and angular momentum
profiles, in the region beyond r = r+, and to bring the core into solid-body rotation.
For this simulation, the time t = 140 represents the point of maximum steepening
of these curves in the outer region. Subsequent evolution showed relaxation towards
solid-body rotation for r < r+ and diminishing of the velocity gradient beyond r+.
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Figure 11. The radial profile of the vertically averaged azimuthal velocity and angular
momentum of the vortex from the 3-D simulation with α= 1.8, Ro = −2.35 and Re = 15k.
The curves correspond to times t = 0, 90, 140 and 190. The initial t =0 profile is shown by a
black dashed line ( ) and the later times by solid lines with shading from black to light
grey of decreasing intensity with increasing time. The theoretical profile of the vortex after
stabilization by the axisymmetric centrifugal instability at infinite Reynolds number is shown
by a dotted line ( ). The inner and outer radii (r−, r+) of the initial centrifugally unstable
region are denoted by the dash-dotted ( ) vertical lines.
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Figure 12. (a–c) Evolution of ωz averaged over z for the case α=1.8, Ro = −2.35 and
Re = 15k. The corresponding figure showing the evolution of azimuthal power is 13(a). The
limits on the grey-scale vary between minimum and maximum values that change with time:
t = 220 (min = −2,max = 1), t = 360 (−1.2, 0.6) and t = 550 (−1.2, 0.4). The full horizontal
extent of the computational domain out to r = 6 is shown.

Of course, at any finite Re, the steepening of the gradients can never reach the
predicted infinite slope. The change of the averaged velocity profile with Re is
discussed in detail by Kloosterziel et al. (2007a). Although the steepening of the
gradient is incomplete, it is sufficient, as we will see, to trigger barotropic instability
in accord with the hypothesis of Kloosterziel & van Heijst (1991) and in agreement
with Orlandi & Carnevale (1999).

As the centrifugal instability steepens the velocity gradient, various barotropically
unstable modes begin to grow. The effect on the vortex can be seen in the vertically
averaged vertical component of the vorticity field ω̄z(r, θ, t) shown in figure 12. By
t = 220, a large-scale distortion away from axisymmetry is just becoming noticeable.
By t = 360, a tripole has formed, but at this point it is difficult to know whether this
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Figure 13. Evolution of the power pz,m in azimuthal modes of ωz. The thick labelled curves
show the evolution of power in azimuthal modes 1–4 (dashed black line, m= 1; solid black
line, m= 2; dashed grey line, m= 3; solid grey line, m= 4). The thin solid line is the total power
in ωθ . All curves are normalized by the instantaneous power of the axisymmetric component
(i.e. |ωz,0(t)|2). For (a, b) α= 1.8 and Re = 15k. (a) The case Ro = −2.35 is an example for
which a tripole results. (b) The case Ro = −3 is one for which a pair of dipoles results.

vortex will remain a tripole or split into a pair of dipoles. However, the subsequent
evolution is simply continued rotation and viscous diffusion of the tripole.

To analyse this behaviour in detail, we can compare the ‘power’, that is variance,
in the various azimuthal modes of ω̄z(r, θ, t) with that in the axisymmetric (m = 0)
mode. We define the modal amplitude as

ω̃z,m(t) ≡
∫ 2π

θ = 0

∫ rmax

r=0

∫ 1

z=0

ωz(r, θ, z, t)e
−imθr dr dθ dz, (4.4)

where the integration is over the entire computational domain. For the simulations
reported here, rmax = 6. The Fourier transform in θ is performed using a fast Fourier
transform and the integrals in r and z are computed as sums on the discrete
computational grid. The ratio of the contribution of modes m and −m relative
to the axisymmetric part of the flow is

pz,m(t) ≡ |ω̃z,m|2 + |ω̃z,−m|2
|ω̃z,0|2 = 2

|ω̃z,m|2
|ω̃z,0|2 , (4.5)

where we have used the Hermiticity constraint to simplify. In addition, it is useful
to consider the total power in the ωθ -field relative to that in the axisymmetric part
of ωz. This will give us a measure of the importance of centrifugal instability, which
generates ωθ . Thus, we define the total power in ωθ relative to that in the axisymmetric
part of ωz:

pT
θ (t) ≡ 1

|ω̃z,0|2
∫ 2π

θ=0

∫ rmax

r=0

∫ 1

z=0

ω2
θ (r, θ, z, t)r dr dθ dz. (4.6)

In figure 13(a), the evolution of the power in the most highly excited azimuthal modes
of the vertically averaged vertical vorticity ωz is plotted along with pT

θ . We first note
that rapid growth in pT

θ precedes growth in the azimuthal modes of ωz. Departure of
the vortex from axisymmetry is measured by the power pz,m(t) in modes m (= 0. After
t = 100, there is some significant growth in modes |m| = 1, 2, 3 and 4 that all remain
at about the same level until around t = 220; however, they each have less than 5 %
of the power compared with the axisymmetric mode. The combined effect of these
azimuthal modes does not yet cause a very strong distortion of the vortex away from
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axisymmetry, as we see remains the case in figure 12 at t = 220. Then, around t = 220,
pz,2(t) begins to grow rapidly. When this reaches about 10 %, a tripole is seen to begin
to emerge, and by t = 360, we have the well-formed tripole shown in figure 12 at that
time. Note that pz,4(t) grows to about the 5 % level around t = 360. This is related
to a thinning of the central anticyclonic vortex. As pz,4(t) subsequently decreases, the
central vortex becomes more circular. Even though pz,2(t) decreases to about the 10 %
level after it has peaked at t = 360, it remains the dominant mode, and the vorticity
configuration remains that of a tripole as shown in figure 12 at t = 550. At time
t = 550, pz,1(t) is near its peak value and seems to rival pz,2(t); however, this seems to
have little effect on the form of the tripole. As an aside, we note that modes m = ± 1
are interesting in that they are never unstable in the pure barotropic problem (see
figure 8). Their growth is made possible only with the freedom of variation in z and
they play an important role in the 3-D centrifugal instability, as discussed above. In
the barotropic problem, they can be related to the propagation of the vortex structure
since they correspond to a dipolar perturbation, and a dipolar distribution of ωz

would exhibit self-induced motion. In the centrifugal instability, on the other hand,
these modes change the axisymmetric ring modes of the pure centrifugal instability
into helical modes.

4.2. Double-dipole formation: α=1.8, Ro = −3

For sufficiently negative Rossby numbers (Ro " −2.45 with Re = 15k), the evolution
of the vortex becomes more complicated and more interesting. Figure 13(b) shows
the histories of the power in the first four perturbation azimuthal modes of ωz along
with the total power in ωθ for a simulation with Ro = −3. With α= 1.8, there is still
no initial barotropic instability, and as in the previous case, we see that rapid growth
in pT

θ (t) precedes growth in the azimuthal modes of ωz. Also as in the previous case,
eventually there is significant growth and sustained amplitude in pz,2(t). The most
significant difference between figures 13(a) and 13(b) is that in figure 13(b) we see an
appreciable sustained growth in pz,4(t). To see how this affects the evolution of the
vortex, we will now compare the evolution of the ωz vorticity distribution shown in
figure 14 with the modal power histories in figure 13.

In figure 14, we see that around t = 210 the distribution of ωz has formed a triangular
core of anticyclonic vorticity surrounded by three cyclonic satellites, a quadrupole.
This is related to the growth of pz,3(t), which peaks at about 8 % and is around 6 % at
t = 210 (see figure 13b). Such a triangular structure has been the subject of previous
theoretical study, numerical simulations and laboratory experiments (Carnevale &
Kloosterziel 1994; Beckers & van Heijst 1998). This configuration with three cyclonic
satellites can persist indefinitely if the initial perturbation is carefully prepared and
dominated by mode m = 3; however, for random initial conditions as used here, this is
usually just a transient phase of the evolution. As discussed by Morel & Carton (1994)
and Carnevale & Kloosterziel (1994), the quadrupole becomes unstable when two of
its satellites come close to each other and merge, as is about to happen at t = 210. The
subsequent merger seen in figure 14 around t =225 results in a configuration in which
pz,2(t) dominates, that is a tripole. Unlike the previous case, with Ro = −2.35, where
the central vortex eventually becomes more circular, here the central vortex, being
strongly sheared by the outer satellites, becomes more elongated. It eventually rolls up
into two anticyclones that pair with the two cyclonic satellites, as seen in figure 14(e,
f ). The resulting pair of dipoles has a significant mode m =4 component along with
mode m =2. The growth of pz,4(t) in figure 13(b) corresponds to this formation of the



Aftermath of vortex breakup in rotating flow 107

t = 255

t = 160 t = 210
(a) (b) (c)

(d) (e) ( f )

t = 225

t = 320 t = 370

0

min max

Figure 14. (a–f ) Evolution of ωz averaged over z for the case α=1.8, Ro = −3 and Re =15k.
The corresponding figure showing the evolution of azimuthal power is 13(b). The limits on
the grey-scale vary between minimum and maximum values that change with time: t = 160
(−4, 2), t = 210 (−2.5, 1.5), t = 225 (−2, 1), t = 255 (−1.5, 1.0), t = 320 (−1.2, 0.8) and t = 370
(−1.2, 0.8).

double-dipole structure. After about t = 400, the propagating dipoles begin to interact
with the walls of the domain. For simulations with more negative Ro at the same α,
the behaviour is similar to that shown in figure 14, except that the early formation of
a quadrupole may be preceded by the formation of structures of higher order, that
is, structures with even more satellites. As with the quadrupole, these too become
unstable with the merger of the outer satellites. Eventually, the merger process results
in the formation of double dipoles, as shown in the late stages in figure 14.

4.3. Testing the prediction: α= 1.8

Next, we test whether the combined effect of centrifugal and barotropic instabilities
can be predicted based solely on our inviscid prescription for centrifugal instability
and two-dimensional simulations of barotropic instability, as explained in § 3. In
figure 15(a), we show the contour plot of the vertical vorticity at mid-depth for a fully
3-D simulation of the evolution. The flow at this stage is nearly uniform in the vertical
direction. We show the mid-depth field here rather than a vertically averaged field
to allow some of the small-scale features to be evident. Furthermore, we have used
contour plots rather than grey-scale to allow a somewhat more detailed comparison
between the 3-D simulation and the prediction.
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Figure 15. Comparison of the results of the three-dimensional simulation with the prediction.
(a) Vorticity field at mid-depth at time t = 380 in the fully three-dimensional simulation.
(b) Predicted vorticity field at time τ = 330 from the two-dimensional simulation
of the barotropic part of the prediction. The isolevels increase from −0.5 to 0.3
with increments of 0.04. Black/grey contours represent negative/positive isolevels. α= 1.8,
Ro = −2.35 and Re =15k.

At this point in the evolution of the flow, the centrifugal instability has run its
course, and the barotropic instability has been triggered and finally equilibrated,
resulting in a tripole. For comparison, the vorticity distribution from our prediction
is given in figure 15(b). The time scales are different in the two cases. Figure 15(a)
corresponds to the 3-D simulation at time t = 380 after the initial condition, while
the time τ = 330 in figure 15(b) is the time since the initiation of the 2-D simulation
starting from the theoretical centrifugal equilibrium state. The 3-D result and the
prediction are remarkably similar. Note that the overall orientation of the fields is not
significant since it only depends on the particular orientation of the field of random
perturbations used to initiate the flow.

Next, we consider the Ro = −3 case, which, as seen above, results in double dipoles.
Since this is still a case with α=1.8, the initial profile is again barotropically stable
and it is the centrifugal instability that drives the flow towards barotropic instability.
The result of a full 3-D simulation is illustrated by the vertical vorticity at mid-depth
in figure 16(a). This can be compared with the prediction in figure 16(b), based again
on our inviscid prescription for centrifugal instability equilibration followed by the
2-D simulation. Even though the vorticity minima in the anticyclones are somewhat
more diffuse in the prediction than in the 3-D simulation, overall the results match
very well.

4.4. Regime diagram: α=1.8

Another measure of the skill of our prediction scheme is how well it can predict the
boundaries between the regimes in which the final result of evolution from small-
scale random initial perturbations is a monopole, a tripole or double dipoles. The
results depend on the Reynolds number. Our predictions are based on the inviscid
extrapolation for centrifugal instability and should thus improve as Re increases. On
the other hand, for a given resolution, the numerical simulations will degrade in
quality as Re is increased and small scales are not properly represented, thus limiting
the accessible range of Re.
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Figure 16. Comparison of the results of the three-dimensional simulation with the prediction.
(a) Vorticity field at the mid-depth at time t = 360 in the fully three-dimensional simulation.
(b) Predicted vorticity field at time τ = 240 from the two-dimensional simulation of the
barotropic part of the prediction. The isolevels increase from −0.4 to 0.2 with increments
of 0.03. Black/grey contours represent negative/positive isolevels. α= 1.8,Ro = −3.0 and
Re = 15k.

We have performed a series of 3-D simulations designed to map out the boundary
between the regimes in which small-scale random perturbations of our basic profile
will lead to a final monopole, a tripole or double-dipole configuration. The 3-D
simulations were compared with our prediction scheme described above using 2-D
simulation. The resolution of both the 3-D and 2-D simulations was 129 points in
each coordinate direction.

Determining the border between the tripole regime and the double-dipole regime
was very straightforward. For simulations near this border, the flow reaches a point
at which a tripole forms with an elongated elliptical anticyclone in the centre and two
cyclonic satellites. The flow is then at a critical point in the evolution. One of two very
different scenarios follows. In one scenario, the anticyclone continues to elongate and
then rolls up into two anticyclones. Each of these ‘daughter’ anticyclones then partners
with one of the cyclonic satellites to create one of the dipoles in the resulting double-
dipole configuration. In the other scenario, the elongation of the central anticyclone
ceases and is followed by ‘axisymmetrization’ (Melander, McWilliams & Zabusky
1987) of the central vortex. In the latter scenario, the resulting configuration remains
a tripole with a nearly circular central vortex during the long viscous decay phase
that follows.

The double-dipole states are generally not as symmetric as that shown in figure 14
at t = 370. In some cases, one of the dipoles is composed of a very strong vortex
and a very weak vortex. For a given Ro and Re that produce a double-dipole state,
the degree of symmetry of the dipoles is sensitive to the choice of the seed for the
random generation of the initial small-scale perturbation. When one of the vortices
in a dipole is very weak, it may become sheared out around the stronger companion
vortex, and the resulting final state of the system may look more like a dipole and a
separate monopole than two dipoles. We have not tried to create a separate category
for these states but just consider them as examples of the limiting case of asymmetry
in the double-dipole state.
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Figure 17. Regime diagram for the case with α= 1.8, in which the centrifugal instability is
initially faster than the barotropic instability. The solid black curve is the boundary between
tripoles and double dipoles resulting from 3-D simulations. The dashed black curve is the
prediction for this boundary. The solid grey curve is the boundary between monopoles and
tripoles resulting from 3-D simulations. The dashed grey curve is the prediction for this
boundary. The sampling error is indicated by the error bars. Re is given in units of 1000.

Determining the border between the monopole and the tripole regimes proved
less straightforward than for the tripole to double-dipole transition. The problem
here is that some mode m =2 growth may be observed without the formation of
well-defined cyclonic satellites. One needs to somewhat arbitrarily decide how much
mode m =2 distortion of the monopole is necessary to classify it as a tripole rather
than a monopole. Barba & Leonard (2007) confronted this issue in a study of the
emergence of tripoles from vortices with net circulation. In their definition of a
tripole, they required that the zero-vorticity contour pinches off, isolating the two
satellite vortices from each other. We considered using this criterion, but found that
in our case of zero net circulation, the zero contour line was rather more complicated,
and we found it difficult to precisely state whether it closed around each of the
satellites or not. For example, sometimes it would close around one satellite but not
around the other, or just nearly close, with the formation of many thin filaments that
made the contour difficult to follow. A detailed discussion of this filamentation and
its dynamic implications is found in Carton & Legras (1994). We considered using
other contour levels. At levels below 0.05 (which is 5 % of the unperturbed |ωz| at
r = 0), we found that some ambiguity remained in some cases. At level 0.05, there
was no ambiguity in deciding when the contours pinched off or not for any of the
simulations near the transition boundary. The states in which this contour pinched
off seemed reasonably described as tripoles. Testing with a contour level 0.06 and
above, we found some states in which the contour did pinch off unambiguously, but
for a vorticity distribution that looked very much like a monopole with only a weak
mode-2 perturbation. Thus, 0.05 seemed a reasonable choice, and we decided to deem
the structure a tripole when this contour pinched off.

The regime diagram resulting from the 3-D simulations is shown in figure 17 along
with our predictions. The solid curves with solid symbols are deduced from the
3-D simulations. The regime boundary predictions are shown by dashed curves. The
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curves are drawn by plotting the average of Ro of the two simulations that define the
transition from one behaviour to the other at a given Re. For example at Re = 15k, a
tripole was found for Ro = −2.5 and double dipoles at Ro = −2.6. Thus, the regime
boundary was marked at the midpoint Ro = −2.55. One could thus assign an error
to this point as +Ro = ±0.05, which is just the sampling error. The sampling error is
indicated by the error bars on each data point.

The curves in figure 17 imply that the smaller Re the larger Ro needs to be to
obtain a transition from the monopole state. This seems reasonable since a Laplacian
viscosity will damp the azimuthal modes more than the axisymmetric mode (the
higher m the more efficient the damping). There is a trade-off between high viscosity
(damping) at low Re and the large amount of available energy that can be released
at large Ro, making transitions possible at small Re if Ro is sufficiently large. For
fixed Ro " −2.6, the graphs of the 3-D results show that as Re increases, one
goes from monopoles to tripoles to double dipoles. This reflects the fact that as
Re increases, the damping on mode m =2, the mode necessary to create a tripole,
becomes insufficient to prevent its growth to significant levels, while mode m =4 is still
suppressed, and thus a tripole results. Then for even higher Re, mode m =4 is able to
grow and double dipoles result. Although mode m =3 is also barotropically unstable,
and its growth would also be expected, it typically leads to a transient configuration
as explained in § 2.2. Similarly, modes with m > 4 also become important as Re
is increased, but they too lead to structures that are unstable and transient. The
tendency of the curves in the high-Re limit is not entirely clear. We do not have
data beyond Re = 15k that is sufficiently well resolved to say whether the regime
boundaries asymptote to two distinct values in the Re → ∞ limit or if perhaps they
both converge towards Ro = −1, in which case we would always find double dipoles
after centrifugal instability at Re = ∞.

Figure 17 reveals that for fixed Re, the gap in Ro where tripoles result is relatively
narrow compared with the ranges in which double dipoles or monopoles result, both
of which extend beyond the limits of the figure. This may account for the fact that
in early experimentation with anticyclones produced by stirring in a rotating tank
(Kloosterziel & van Heijst 1991), only monopoles or double dipoles were observed as
final states.

In terms of the validity of our predictions, we should expect that at low Re the
difference between 3-D simulations and our prediction, which is based in part on
inviscid projections for the centrifugal instability, is relatively large but improves
with increasing Re. We see that this is the case, for example, for the monopole to
tripole boundary. At low Re, viscous effects diminish the ability of the centrifugal
instability to steepen the velocity profile. Thus, it is more difficult to produce the
higher azimuthal modes needed to produce tripoles than in the inviscid case, and so
tripole production requires a higher Ro than predicted. As Re increases, the effects of
viscosity become less important and the gap between prediction and 3-D simulations
diminishes, plateauing for Re $ 10k, before shrinking to the size of the sampling
error at Re =15k. A similar trend is found for the tripole to double-dipole transition
boundary. For that boundary, the gap between prediction and 3-D simulations
becomes about the sampling error for Re $ 8k. For both boundaries, the prediction
systematically underestimates the magnitude of Ro needed to achieve transition for
a given Re because finite Re does not permit the full steepening of the vorticity
gradients that the prediction assumes. Nevertheless, the success is remarkable, and we
would expect that the gap between prediction and 3-D simulations would decrease
further with increasing Re, given sufficient numerical resolution.
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5. Barotropic instability faster than centrifugal instability (α= 3)
For α higher than 1.85, the growth rate of the barotropic instability will be non-

zero from the initial moment. In that case, centrifugal instability and barotropic
instability will be in competition from the beginning. One can imagine that as long
as the centrifugal instability is substantially faster than the barotropic instability, our
prediction scheme should continue to exhibit skill in predicting the outcome of the
combined instability. However, the prediction scheme should lose skill as the growth
rate of the initial barotropic instability increases to and exceeds that of the centrifugal
instability. Here we test how well the scheme does in the situation when the growth
rate of barotropic instability is initially somewhat larger than that of centrifugal
instability.

The barotropic instability growth rate for mode m = 2 (the mode responsible for
tripole production) acting alone is approximately 0.077, as shown in figure 8(a).
Note that since the Coriolis parameter does not enter into the 2-D flow equations,
the growth rate for the barotropic instability has no dependence on the Rossby
number. The growth rate of the centrifugal instability, however, does depend on the
Rossby number of the flow. The growth rate for the pure centrifugal instability may
be obtained by performing axisymmetric simulations. For α= 3 and Re =15k, we
find that as Ro is decreased from Ro = −1.0 to Ro = −2.2, the growth rate of the
centrifugal instability increases from 0.0 to 0.073. Thus, in this range of Ro, the
centrifugal instability is slower than the barotropic instability.

As we shall see, the transition from the tripole regime to the double-dipole regime
occurs at Ro ≈ −1.45, which falls in this range of Ro. Furthermore, for α= 3, the
barotropic instability is sufficiently strong that tripoles form for all Ro from Ro = −1
(the inviscid centrifugal instability boundary) down to the tripole to double-dipole
transition boundary. Thus, there is no monopole to tripole regime transition boundary
in this case.

Examining the evolution of the azimuthal modes provides some insight into the
dynamics, as in the α= 1.8 case. First, we consider a case that results in a tripole.
We take Ro = −1.3 as an example. In figure 18(a), we see the evolution of pz,m(t)
(defined by (4.5)) for m =1–4 as well as pT

θ (t). Since in this case all of the power
levels are very small except for pz,2(t), we plot the graphs on a logarithmic scale to
facilitate comparison between them. The first thing to note is that the barotropic
instability is evident early on with pz,2(t) growing much more rapidly than pT

θ . The
strong growth of mode m =2 results in the formation of a tripole. Note that pT

θ never
becomes more than a tenth of a per cent (10−3). The flow begins to take the form of a
tripole as pz,2(t) reaches 10 % at around t = 130. It is a well-defined tripole at t = 170,
when pz,2(t) is at its maximum, and remains a well-defined, although slowly decaying,
tripole after that. Mode 4 grows rapidly until about t = 150; however, pz,4(t) remains
small (less than 3%) and so the structure is dominated by mode m =2 and the flow
remains a tripole.

Next, we look at the azimuthal modal growth in a case which results in double
dipoles. We take Ro = −1.46 as an example. In contrast with the previous case, here
we do see early growth in pT

θ that competes with the growth in mode m =2 and
reaches over 10 % before decaying, suggesting that centrifugal instability plays a
significant role. A tripole forms around t = 145, when pz,2(t) has reached 10 %. As
pz,4(t) reaches 10 % at t =220, the central anticyclonic vortex becomes elongated, and
by t = 233, with pz,4(t) reaching 15 %, the elongated anticyclone rolls up, forming two
anticyclones that go into creating the final pair of dipoles, similar to those shown in
figures 14 and 16. Although at α= 3, mode m =2 can grow even in the absence of
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Figure 18. Evolution of the power pz,m in azimuthal modes of ωz. The thick labelled curves
show the evolution of power in azimuthal modes m= 1–4 (dashed black line, m= 1; solid
black line, m= 2; dashed grey line, m= 3; solid grey line, m= 4). The thin solid line is the total
power in ωθ . All curves are normalized by the instantaneous power |ωz,0(t)|2. For each panel,
α= 3 and Re = 15k. (a) The case Ro = −1.3 is an example in which a tripole is produced. (b)
The case Ro = −1.46 is one for which double dipoles result. The p-axis is logarithmic.
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Figure 19. (a) The regime diagram for the case with α= 3 in which the barotropic instability
is initially faster than the centrifugal instability. The thick solid curve results from 3-D
simulations. The thin dashed curve is the prediction. Error bars are not included because the
sampling error is +Ro = ±0.005 or less and the error bars would be obscured by the symbols
on the lines. Re is given in units of 1000. (b) Variation of the regime boundary with α. The
thick solid curve results from 3-D simulations. The thin dashed curve is the prediction.

centrifugal instability, while mode m =4 cannot (see figure 8). Thus, it is the effect
of the centrifugal instability that allows growth in mode m = 4, and this growth will
only happen if the centrifugal instability (here measured by pT

θ ) is sufficiently strong.

5.1. Regime diagram: α= 3

In figure 19(a), we compare the predicted boundary for the transition from the tripole
regime to the double-dipole regime with that found with 3-D simulation. Although
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the curves have similar tendencies, the predicted curve systematically underestimates
the magnitude of Ro. The sampling error on these curves is +Ro = ±0.005, much less
than in the case α= 1.8 and much less than the separation of the curves. The 3-D
α= 3 simulations proved less costly in computer time than the α=1.8 simulation,
because the velocities involved for runs near the regime boundaries are lower (because
|Ro| is lower in this case), and this allowed more simulations to be run for this case
and, hence, higher precision in determining the regime boundary.

As for the case with α= 1.8, the gap between prediction and 3-D simulation
decreases with increasing Re, here going from +Ro = 0.370 to 0.1875 as Re goes
from 5k to 15k. In other words, the prediction improves with increasing Re. The
gap at Re =15k is, however, larger than that for the case of the α= 1.8 tripole to
double-dipole transition border which is 0.075. This is perhaps what we should expect
given the competing roles here of centrifugal and barotropic instabilities from t =0,
as discussed above.

Overall, it is remarkable that even though in this case the barotropic instability
is somewhat faster than the centrifugal instability, the prediction at least captures
the form of the regime boundary. Attempts to match the shape of the curves in
figure 19(a), as well as those in figure 17, to simple power laws in Re did not prove
fruitful. Additional experiments reaching to Re = 30k show that the gap between
prediction and simulation continues to narrow as Re increases; however, the issue
of grid resolution with Re > 15k is as in the case of the α=1.8 simulations, and
we feel that those simulations are not sufficiently resolved to be presented here. The
systematic underestimation of Ro by the prediction in figure 19(a) is not surprising,
for two reasons. First, as we have discussed for the case of α= 1.8, the prediction
is based on an infinite Re centrifugally equilibrated V that is discontinuous. Such a
discontinuous profile will have higher growth rates for m = 2 and higher modes than
the smoothed profiles that would actually result from a finite-Re simulation. Second,
for α= 3, the centrifugal instability will not have time to steepen vorticity gradients
as much as it would if the barotropic instability were slower.

5.2. Regime boundary as a function of α

To quantify how the dependence of the difference between prediction and 3-D
simulation grows with increasing α at fixed Re, we present, in figure 19(b), the tripole
to double-dipole transition Ro as a function of α for both our prediction and our
3-D simulation results. The graph shows that for Re = 15k and increasing α, the gap
between prediction and 3-D simulation opens up from +Ro =0.075 at α= 1.8 to
+Ro =0.1875 at α=3. This trend can be expected to continue since with increasing
α the barotropic instability will become ever faster. The best results are for low
α where the centrifugal instability is much more rapid than barotropic instability.
However, this graph suggests that for sufficiently high Re, there is a wide range of α
for which the prediction scheme is fairly skilful.

6. Conclusion
We have presented a new method for predicting the final vortices that emerge

from the breakup of a centrifugally unstable vortex in a rotating flow. This method
consists of first theoretically predicting the velocity profile towards which centrifugal
instability acting alone in an axisymmetric inviscid flow would drive the vortex.
This theoretical prediction uses a simple construction based on angular momentum
conservation. The resulting velocity profile is then used as the initial state of a
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two-dimensional simulation that captures the subsequent barotropic instability. We
have shown that this prediction method is very accurate when the initial vortex is such
that the centrifugal instability is much faster than any initial barotropic instability.
We have given a quantitative indication of how much skill this prediction method
loses as the initial growth rate of barotropic instability relative to that of centrifugal
instability is increased, and we have shown that, at least within one family of vortices,
the method still works reasonably well even when these initial growth rates are not
very different. This prediction method is a synthesis of what has been learned about
centrifugal and barotropic instabilities in rotating flow over the last few decades. The
field has progressed considerably since the first insights into the interaction between
centrifugal and barotropic instabilities were presented in Kloosterziel & van Heijst
(1991).

The success of the prediction method suggests that some version of it may prove a
useful tool in situations in which computing resources are insufficient to fully resolve
centrifugal instability. For example, in a general circulation model, a vortex may
appear that would be centrifugally unstable at infinite resolution, but will not become
unstable simply because the resolution of the model is insufficient to allow centrifugal
instability. The theoretical prediction for the centrifugally equilibrated vortex could be
substituted for such a vortex. This would then trigger the appropriate subsequent baro-
tropic instability, if any. Thus, the effects of a process which could be modelled only
at much higher resolution could be directly incorporated in the under-resolved model.

We have not discussed here the case in which barotropic instability is much faster
than the centrifugal instability. One can imagine, for example, starting with a flow
that is barotropically unstable but centrifugally stable. The subsequent evolution could
increase the curvature of the flow which could trigger a centrifugal instability. Bayly
(1988) proved that the centrifugal instability condition can be applied locally with the
radius of curvature of streamlines playing the role of the radius in axisymmetric flow.
When the barotropic instability produces flow curvature sufficient to create centrifugal
instability, it is expected that the flow would locally go centrifugally unstable and
attempt to redistribute angular momentum, perhaps in such a way as to increase local
vorticity gradients. It would be interesting to try to predict the effect of such a sec-
ondary centrifugal instability in modifying the primary barotropic instability in such
a scenario, but such a line of research has, as far as we are aware, never been pursued.

Centrifugal instability in cyclones results in a velocity profile less steep than it
was originally, that is, stability is achieved by decreasing velocity gradients, just the
opposite of what happens in the anticyclonic case. Since transforming a barotropically
stable state into a barotropically unstable state requires steepening velocity gradients,
centrifugal instability in the cyclonic case cannot trigger a barotropic instability. This
point has been discussed in detail by Kloosterziel et al. (2007a). Furthermore, in
the case of the cyclone, the redistribution of angular momentum during centrifugal
instability does not reach deep into the core of the vortex, but instead is confined
to a narrow neighbourhood of the unstable region that is at the outer edge of the
core of the vortex. This, together with the fact that for cyclones Ro may need to be
significantly greater than 1 for centrifugal instability (see (2.5)) while |Ro| > 1 suffices
for anticyclones, explains why ‘explosive’ three-dimensional instability was observed
in anticyclones but not cyclones in the rotating tank experiments by Kloosterziel &
van Heijst (1991).

Although all of the work presented above was based on homogeneous (i.e.
constant-density) flow, our predictions may also work for centrifugally unstable
barotropic vortices in stratified flow with uniform background stable density gradient.
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Kloosterziel et al. (2007a) have shown that the results of axisymmetric centrifugal
instability with or without background stratification are the same as long as the
Reynolds number is sufficiently high. Stratification changes the form of the rib vortices
(flatter rib vortices for higher stratification) and the time scale of centrifugal instability,
but at high Reynolds numbers, the instability results in the same redistribution of
angular momentum as found in the unstratified case. However, possible decoupling
between layers in the vertical direction may lead to some difference in the evolution in
the barotropic instability part of the evolution. How well the unstratified predictions
work in the stratified case would be worth testing in future work. Considering
baroclinic vortices (i.e. vortices with vertical shear) in stratified flow would introduce
another level of complication. We are currently developing a prediction scheme for
the outcome of centrifugal instability for baroclinic vortices. This is much more
difficult than in the barotropic vortex case in stratified flow, where the unperturbed
isopycnals are flat. In the baroclinic case, mixing of angular momentum takes place
along isopycnals that are not horizontal and the mixing results in changing the shape
of the isopycnals. Further progress must be made on this problem before predictions
similar to those given above can be made.

Finally, we note that Kloosterziel et al. (2007b) give a prescription for predicting
the effect of centrifugal instability on rotating planar shear flows. As mentioned
in the Introduction, it may be possible to use this prediction in a scheme to predict
the outcome of a fully 3-D flow starting with a planar shear flow. The prediction of
Kloosterziel et al. (2007b) could be used to replace the centrifugal instability phase
of the flow and then 2-D simulations based on the predicted profile may capture the
subsequent evolution to some extent.

G.F.C. and R.C.K. acknowledge support from the National Science Foundation
grants OCE 07-26482 and OCE 07-26866, respectively. D.D.J.A.v.S. acknowledges
support from Dr Hendrik Muller’s Vaderlandsch Fonds and TU/e FSB.

Appendix. Resolution test
In the test of the adequacy of the grid resolution at high Re, we take the Fourier

sine transform of the vertical velocity w at a radius inside the instability region. We
define an azimuthally averaged amplitude at r = 1 as

w̄k(t) =
1

2π

∫ 2π

θ=0

∫ 1

z=0

w(r = 1, θ, z, t) sin(2πkz) dz dθ . (A 1)

The axial wavenumbers k are positive half-integers (k = 1/2, 2/2, 3/2, . . .). The Fourier
sine transform in z is performed using a fast Fourier transform on our discrete
computational grid, and the integral in θ is calculated by discretization on the grid.
The resulting power spectrum w̄2

k is plotted in figure 20 for different values of Re
and different computational resolutions at Ro = −2.5 and α=1.8. At these values of
Ro and α, vortex breakdown results in a tripole, but for slightly more negative Ro
two dipoles form instead. In figure 20(a), we see that the spectra for resolutions 973,
1293 and 1933 at Re = 15k approximately coincide with their respective maximum
wavenumber. Since each simulation has different random initial conditions, we do
not expect the spectra to coincide point by point, yet the overlap is very good. Each
spectrum corresponds to the time t =175, when centrifugal overturning is most active
(i.e. when pT

θ is near its maximum). At resolution 1933, the spectrum shows a steep
power law, perhaps as steep as k−6, from about k =3 to about k = 25, followed by a



Aftermath of vortex breakup in rotating flow 117

10–22

(a)

10–20

10–18

10–16

10–14

10–12

10–10

10–8

10–6

10–4

1 10 100

k

10–22

(b)

10–20

10–18

10–16

10–14

10–12

10–10

10–8

10–6

10–4

1 10 100

k

w– 2
k

k–6

1933

1293

973

k–6

Re = 30k
Re = 15k

Figure 20. Fourier sine power spectrum of the vertical velocity w at r = 1 averaged over θ
for simulations with α= 1.8 and Ro = −2.5 taken at t = 175. (a) This plot shows how the
spectrum changes for fixed Re =15k with increasing resolution: 973 (thick black line), 1293

(thick grey line) and 1933 (thin dashed line). The curve k−6 is shown for comparison. (b) This
plot shows how the spectrum changes for fixed resolution 1293 with increasing Re: grey line,
Re = 15k; black line, Re = 30k.

rapid dissipation-range fall-off, into a relatively flat ‘noise’ range for k greater than
about 55. Reaching the noise level in the spectrum is an indication of good resolution
at 1933. The k−6 power-law fall-off in this spectrum of the rib vortices recalls the
spectrum of the Lamb dipole, which falls off similarly (Orlandi 2009). That the
spectrum with resolution 1293 matches the spectrum with resolution 1933 up to about
the noise range suggests that we have adequate resolution at Re = 15k with 1293

points. At resolution 973, the spectrum ends in the dissipation range, which perhaps
suggests adequate resolution, but, to be safe, 1293 resolution was used to explore
the regime boundaries. For fixed resolution 1293, as Re is increased beyond 15k, the
high k spectral fall-off becomes less steep, filling in the spectrum with power-law-
like behaviour out to the spectral cutoff. Figure 20(b) illustrates this by comparing
the spectra for Re = 15k and Re = 30k at Ro = −2.5. The lack of a rapid spectral
fall-off for Re beyond 15k suggested that this is the limit of the parameter range that
we can explore with resolution 1293.
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