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Saturation of equatorial inertial instability
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Inertial instability in parallel shear flows and circular vortices in a uniformly
rotating system ( f -plane) redistributes absolute linear momentum or absolute angular
momentum in such a way as to neutralize the instability. In previous studies we
showed that, in the absence of other instabilities, at high Reynolds numbers the final
equilibrium can be predicted with a simple construction based on conservation of total
momentum. In this paper we continue this line of research with a study of barotropic
shear flows on the equatorial �-plane. Through numerical simulations the evolution
of the instability is studied in select illuminating cases: a westward flowing Gaussian
jet with the flow axis exactly on the equator, a uniform shear flow and eastward and
westward flowing jets that have their flow axis shifted away from the equator. In the
numerical simulations it is assumed that there are no along-stream variations. This
suppresses equatorial Rossby waves and barotropic shear instabilities and allows only
inertial instability to develop. We investigate whether for these flows on the equatorial
�-plane the final equilibrated flow can be predicted as was possible for flows on the
f -plane. For the Gaussian jet centred on the equator the prediction of the equilibrated
flow is obvious by mere inspection of the initial momentum distribution and by
assuming that momentum is mixed and homogenized to render the equilibrated flow
inertially stable. For the uniform shear flow, however, due to the peculiar nature of
the initial momentum distribution and the fact that the Coriolis parameter f varies
with latitude, it appears that, unlike in our earlier studies of flows on the f -plane,
additional constraints need to be considered to correctly predict the outcome of the
highly nonlinear evolution of the instability. The mixing range of the linear shear flow
and the value of the mixed momentum is determined numerically and this is used to
predict the equilibrated flow that emerges from an eastward flowing jet that is shifted
a small distance away from the equator. For shifts large enough to induce no shear at
the equator the equilibrium flow can be well predicted using the simple recipe used
in our earlier studies of parallel shear flows on the f -plane. For the westward flowing
jet shifted a very small distance from the equator, no prediction appears feasible. For
modestly small shifts a prediction is possible by combining the empirical prediction
for the linear shear flow with a prediction similar to what we used in our previous
studies for flows on the f -plane.
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1. Introduction
In recent studies of the turbulent nonlinear evolution of inertially unstable

vortices and planar shear flows in rotating homogeneous fluids, we showed how
to predict the equilibrated flows that emerge (see Kloosterziel, Carnevale & Orlandi
2007a; Kloosterziel, Orlandi & Carnevale 2007b; Carnevale et al. 2011; Carnevale,
Kloosterziel & Orlandi 2013). These studies considered uniformly rotating systems,
the f -plane dynamics well-known from geophysical fluid dynamics. In a laboratory
setting of flows in a basin rotating with angular velocity ⌦ , the Coriolis parameter
f = 2⌦ , whereas in the context of geophysical mid-latitude ocean/atmosphere flows,
⌦ is replaced by the projection of the Earth’s angular velocity on the local vertical
axis, i.e. f = 2⌦ sin � with ⌦ the planetary angular velocity and � latitude (see e.g.
Pedlosky 1987). In this study, we attempt to make similar predictions for zonal shear
flows near the equator using the well-known equatorial �-plane approximation. The
equatorial �-plane is just a special case of the ‘mid-latitude’ �-plane approximation
which comes about from an expansion around a latitude �0 with the variable Coriolis
parameter approximated by f = f (y) = f0 + �y with f0 = 2⌦ sin �0, � = 2(⌦/R) cos �0,
y = R(� � �0) and R the planet’s radius. So y is the distance measured from the
latitude �0, to which we can assign a distance y0 = R�0 away from the equator. The
equatorial �-plane ( f (y) = �y) follows by taking �0 = 0.

In this study we do not allow for along-stream (x) variations. This restriction
permits only the inertial instability to develop (see figure 1a). Hence, we only consider
‘pure’ inertial instability, also known as ‘symmetric instability’ and as ‘centrifugal
instability’ for circular flows. Further, we consider just a homogeneous fluid (constant
density ⇢) and study the inertial instability of some barotropic flows with an initial
zonal velocity u = U(y). For recent studies of the competition between inertial
and barotropic instability see e.g. Gallaire & Chomaz (2003), Billant & Gallaire
(2005), Griffiths (2008), Bouchut, Ribstein & Zeitlin (2011), Carnevale et al. (2011),
Carnevale et al. (2013) and Ribstein, Plougonven & Zeitlin (2014).

With the imposed ‘symmetry’, for flows on the f -plane we discovered (see
Kloosterziel et al. 2007a,b; Carnevale et al. 2011, 2013) that the outcome of
inertial instability can often be predicted: although highly-nonlinear and turbulent
the instability drives the flow towards a state of neutral stability through absolute
momentum mixing. In the limit of large Reynolds numbers, the final state could be
predicted based on the assumptions that (a) momentum is conserved and (b) the new
flow that emerges is inertially stable. The basic idea is outlined in § 2 where we
formulate the problem and outline some results from the literature concerning inertial
instability.

In § 3 we study the evolution of an inertially unstable Gaussian jet centred
on the equator flowing westward (an eastward flowing jet is inertially stable). In
§ 3.1 we present our prediction of the outcome of the instability. This prediction is
well-confirmed in § 3.2 where we present the evolution of the instability for various
Rossby numbers and Reynolds numbers through numerical simulations. Implicit in
the prediction is that we assume that the adjusted momentum distribution has no
discontinuities.

In § 4 we consider a uniform shear flow. This case has been widely studied in the
past few decades because it always will be inertially unstable in some latitude band
about the equator and because its simplicity allows for detailed linear stability analysis.
In § 4.1 we show that, unlike for the Gaussian flow on the equatorial �-plane or flows
we studied before on the f -plane (see Kloosterziel et al. 2007a,b; Carnevale et al.
2011, 2013), there is an indeterminacy and no unique obvious prediction can be made
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FIGURE 1. (a) Schematic showing a barotropic flow u(y) and the vorticity produced
by two types of instabilities (inertial and barotropic). With the equatorial �-plane
approximation the Coriolis parameter f = �y with y latitude (south–north) and � = 2⌦/R,
with ⌦ the Earth’s angular velocity and R the Earth’s radius. Horizontal vortex tubes
(aligned along the x-axis) represent pure inertial instability, and vertical vortex tubes
(aligned along the z-axis) represent pure barotropic horizontal-shear instability. Only pure
inertial instability is considered in this study. (b) Schematic showing how to construct the
predicted momentum distribution on the f -plane with constant f = f0 (from Kloosterziel
et al. 2007b). An initial distribution (thick solid curve) is unstable in the region y� <
y < y+ where dm/dy > 0, taking f0 > 0. Equilibration sets m = mc over the wider range
yl < y < yh (thin curve).

through the simple construction of momentum redistribution. In § 4.2 we show through
numerical simulations that ‘nature’ does drive the flow to a final state which is one
of a multitude of possibilities, all of which must have at least one discontinuity in the
adjusted profile. This leads to the question: is there something fundamentally different
in the equatorial �-plane dynamics from f -plane dynamics? In other words, are there
additional constraints hitherto never needed for f -plane inertial instability that would
provide a unique answer to the question of what the final flow should be? Could it
be that the uniform shear case is somehow pathological? We have not been able to
answer such questions. Nonetheless, the results are robust and may be a starting point
for further investigation.

In § 5 we discuss the evolution of the Gaussian jet when the flow axis does not
coincide with the equator. In that case the eastward flowing jet is also unstable and we
show in § 5.1 how the final equilibrium can be predicted using the empirical results
for the linear shear case from § 4. For larger shifts the equilibrated flow from the
unstable eastward jet is predicted in § 5.2 with a simple construction which assumes
continuity of the adjusted profile. The shifted westward Gaussian jet is discussed in
§ 5.3. For small shifts of the flow axis away from the equator no prediction appears
possible. This is related to the fact that there is simultaneous inertial instability in two
adjacent regions but with unequal rates of growth, unlike in § 3 where two adjacent
regions of instability had equal growth rates.

For modest shifts we also show in § 5.3 that the equilibrium approaches a prediction
which combines the results for the linear shear flow with a prediction similar to what
we used in our previous studies for flows on the f -plane. For large shifts of either jet,
eastward or westward, the equilibrated flows on the �-plane approach those reported
in Kloosterziel et al. (2007b) and Carnevale et al. (2013) where f -plane dynamics was
considered.
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In § 6 we conclude with a brief discussion of the results and address various other
unanswered questions. In the appendix A we explain the procedure with which we
can predict the equilibrated flows that emerge from the eastward flowing jet with a
small shift and the westward jet with a moderately small shift.

2. Formulation and background
Assuming no variability in the zonal x-direction (west–east), the equations of motion

for an incompressible, homogeneous fluid with the traditional approximation are
Du
Dt

� f (y)v = ⌫r2u,
Dv

Dt
+ f (y)u = � 1

⇢
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The material derivative and the Laplacian are
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(2.3a,b)

with u, v, w the velocity components in the zonal x-direction, y-direction (south–north)
and the vertical z-direction, respectively. Here ⇢ is the constant density, ⌫ the
kinematic viscosity, p pressure and t time. Although there are three velocity
components, they only depend spatially on the cross-stream variable y and the vertical
variable z. With the traditional approximation, horizontal and vertical accelerations
due to the horizontal component of the Earth’s rotation vector are ignored and only
horizontal motions are affected by rotation as in the usual f -plane dynamics. But,
in this study of equatorial flows, the variability of the Coriolis parameter f (y) with
latitude cannot be ignored.

Since we assume @x =0 at all times, it follows that if viscosity vanishes, the absolute
momentum m is materially conserved:

Dm
Dt

= 0 with m(y, z, t) = u(y, z, t) �
Z y

f (y0)dy0. (2.4)

Apart from an arbitrary constant, the absolute momentum is

mid-latitude �-plane: f (y) = f0 + �y, m = u � f0y � (1/2)�y2,

equatorial �-plane: f (y) = �y, m = u � (1/2)�y2,

mid-latitude f -plane: f (y) = f0, m = u � f0y.

9
>=

>;
(2.5)

The stability of a stationary barotropic current with zonal velocity u = U(y) with
respect to ‘symmetric’ disturbances, i.e. disturbances that do not vary in the along-
flow direction (@/@x = 0), is in the inviscid dynamics determined by the sign of the
modified Rayleigh discriminant

� = f ( f � dU/dy) = �f dM/dy with M(y) = U(y) �
Z y

f (y0)dy0, (2.6)

with stability if �(y) > 0 everywhere and instability if for some range of y the
discriminant � < 0 (see for circular flows Rayleigh 1916; Sawyer 1947; Drazin
& Reid 1981; Kloosterziel & van Heijst 1991; Kloosterziel & Carnevale 2007;
Kloosterziel 2010). For each particular approximation listed in (2.5), the appropriate
combination of f (y) and corresponding M(y) must be used.
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In terms of the absolute momentum, there will be stability if f dM/dy < 0 for all
y and instability if f dM/dy > 0 for some y-range. For the mid-latitude f -plane, the
discriminant is � = f0( f0 � dU/dy) with f0 the Coriolis parameter and instability
follows if f0dM/dy > 0 for some y with M = U(y) � f0y (see Kloosterziel et al.
2007a). Throughout the (mostly) meteorological literature, the more general criterion
for symmetric instability in a continuously stratified fluid on the f -plane is formulated
as the condition that f0Q < 0 with Q the Ertel potential vorticity (e.g. Fjortoft 1950;
Ooyama 1966; Hoskins 1974; Holton 1992). For the equatorial �-plane see Griffiths
(2003a) and references therein. In this study of the evolution in a homogeneous fluid,
Q = f � dU/dy = �dM/dy is simply the absolute vertical vorticity, also called the
potential vorticity.

In the limit of vanishing viscosity (⌫ = 0 or Reynolds number Re ! 1), the
overturning motions associated with inertial instability amplify most rapidly if
their vertical scales (i.e. in the z-direction) are vanishingly small (e.g. Dunkerton
1981; Smyth & McWilliams 1998; Griffiths 2008; Kloosterziel & Carnevale 2008).
The growth rate � of normal-modes perturbations, proportional to exp(� t), is
bounded from above according to � <

p
maxy(�fQ) provided that fQ = � < 0

somewhere in the domain. This inviscid maximum growth rate is attained for infinitely
shallow overturning motions, i.e. when vertical scales become vanishingly small. For
finite but large enough Reynolds numbers, only perturbations with vertical scales
within a finite range will amplify. Within this range, a maximum growth rate is
found at a specific vertical scale. Hence, if a flow is subjected to small (symmetric)
perturbations and the ‘fastest’ mode is excited, one expects meridional motions
with this scale to emerge. For numerical simulations exhibiting this behaviour, see
for example Griffiths (2003b), Kloosterziel et al. (2007a,b), Plougonven & Zeitlin
(2009) and Carnevale et al. (2013). These simulations showed that the initially
orderly (normal-modes type) growth is followed by a turbulent phase in the evolution
which ultimately results in a new, quasi-steady stable barotropic flow with fQ > 0
everywhere.

We discovered that the outcome of this highly nonlinear evolution on the f -plane
could be well predicted for high Reynolds numbers through a recipe for absolute
(geostrophic) momentum mixing. The recipe is based on conservation of total
(volume integrated) momentum m = u � f0y and the idea that at infinite Reynolds
number mixing would be perfectly efficient, mixing uniformly in and around the
instability region, and mixing no more momentum than is necessary to reach a
stable equilibrium. A mixing of momentum to reach a uniformly mixed state over
a range whose width is determined by conservation of total momentum is all that
is needed to predict the final stable flow for large Reynolds numbers. Such flows
have f0Q = �f0dm/dy > 0 everywhere. In the ‘mixed’ region that emerges the flow
is neutrally stable, i.e. dm/dy = 0, while elsewhere f0dm/dy < 0, as sketched in
figure 1(b). The thin horizontal line between yl < y < yh is the constant m = mc of
the predicted inertially stable barotropic flow expected to emerge from the initial
flow (thick solid line). Assuming f0 > 0, the initial flow is unstable in the region
y� < y < y+ where dm/dy > 0 and hence has f0Q < 0 in that region. Total momentum
conservation simply requires that

Z yh

yl

(mc � m(y))dy = 0, (2.7)

which, in a simple case such as that sketched in figure 1(b), uniquely determines mc,
yl (y low) and yh (y high). For y < yl and y > yh, the momentum distribution remains
unchanged. By construction, the predicted momentum distribution m(y) has the same
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total momentum as the original unstable profile. In the region of constant m = mc
(yl 6 y 6 yh), the predicted equilibrated velocity is u(y) = mc + f0y, while outside this
region it is unchanged, i.e. u(y) = U(y).

An important difference between this study and our previous studies is that f (y) =
�y changes sign going from ‘south’ (y < 0) to ‘north’ (y > 0) across the equator at
y = 0, and dm/dy > 0 no longer necessarily implies instability because instability is
expected when f (y)dm/dy > 0 (see for example figure 3a and caption).

Below we present results from numerical simulations of the Navier–Stokes
equations, i.e. (2.1a�c) and (2.2) which are zonally invariant (no x-dependence).
The method of simulation is a channel model based on the staggered mesh scheme.
The model is described in detail in Orlandi (2000). This numerical scheme conserves
energy when run inviscidly, so energy dissipation should result only from the explicit
viscosity. The computational domain in the y-direction is terminated by free-slip
vertical walls. Simulations with the flow periodic in the vertical direction were
compared with simulations with free-slip boundaries in that direction. No significant
differences were found, and we report only results with periodicity in the vertical here.

The initial velocity field was constructed from the basic velocity field U(y) plus
small random perturbations. The perturbations are applied in all three velocity
components and at all points in the domain. Depending on the initial flow U(y),
f (y) and the demand that for given Reynolds number the instability is well-resolved,
resolutions from 513 ⇥ 513 up to 2049 ⇥ 2049 grid points were used (details are in
the text and figure captions).

3. A westward flowing Gaussian jet centred on the equator
As in Kloosterziel et al. (2007b) and Carnevale et al. (2013), we first consider a

barotropic current with streamwise velocity

U(y) = U0 exp(�y2/L2), (3.1)

with absolute momentum m = M(y)= U(y)��y2/2. The length scale L determines the
width of the jet which is centred on the equator. Whereas on the f -plane the sign of
the peak velocity U0 is irrelevant, on the equatorial �-plane stability/instability does
depend on the sign of U0. On the �-plane, there will be instability if dM/dy > 0 for
y > 0 but also when dM/dy < 0 when y < 0 because f = �y changes sign with y.

In this section we use the length scale L and the time scale T = 1/�L to
non-dimensionalize all dimensional quantities. Thus the non-dimensional absolute
momentum M and non-dimensional initial velocity field U(y) are

M = Ro exp(�y2) � y2

2
, U = Ro exp(�y2), with Ro = U0

�L2
(3.2a,b)

the ‘equatorial’ Rossby number.
The condition for instability is �y dM/dy > 0 or non-dimensionally

y dM/dy > 0 with dM/dy = �2yRo exp(�y2) � y. (3.3)

Equivalently the condition is that the Rayleigh discriminant � = ��ydM/dy < 0,
which we can write non-dimensionally as

�̃ = �/⌦2 = 4(L/R)2y2(2Ro exp(�y2) + 1) < 0 (3.4)

(⌦ is the planetary angular velocity). Hence, instability is not possible for positive
Ro because then ydM/dy6 0 or � > 0 for all y. In other words: an eastward flowing
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FIGURE 2. Non-dimensional �̃ =�/⌦2 (3.4) for the Gaussian U(y)= U0 exp(�y2/L2) for
(a) the critical value Ro = �1/2 corresponding to westward flow with |U0| = 0.7 cm s�1

when L = 25 km and (b) for Ro = �4 or |U0| = 5.7 cm s�1 when L = 25 km. The
‘equatorial’ Rossby number Ro is defined in (3.2). In (b) � < 0 between y/L = ±1.44.
Inertial instability is expected within this region where � < 0. In (b) the largest negative
values are at y/L = ±ymax = ±0.86 with �/⌦2 = �1.28 ⇥ 10�4. This corresponds to a
fastest (smallest) e-folding time scale of 14 days.

jet (U0 > 0 or Ro > 0) will be stable, and only a westward flowing jet with U0 < 0
and Ro <�1/2 is expected to be unstable. Under terrestrial circumstances, this means
(using R ⇡ 6380 km, ⌦ ⇡ 7.29 ⇥ 10�5 s�1) that for instability

for L = 25 km: |U0| > 0.7 cm s�1, for L = 50 km: |U0| > 2.9 cm s�1, (3.5a,b)

and so on. In § 5 we will show that the eastward flowing jet is unstable when the
axis of the flow does not exactly coincide with the equator.

In figure 2(a), we show �̃ for the critical Ro=�1/2 when for all y the discriminant
�̃ > 0. In figure 2(b), we show �̃ for Ro =�4 when the jet is expected to be unstable.
There are two regions of instability where �̃ < 0, joined at y = 0. Roughly in the
middle of each region, maximal negative �̃ is found at y = ±ymax. These are the
positions of maximal growth of the symmetric instability. The non-dimensional value
of ymax is determined by the relation

2|Ro|(1 � y2) = exp(y2). (3.6)

The outer edges of the instability regions are indicated by y± where �̃ =0 or dM/dy=
0 and are simply

y± = ±
p

log 2|Ro|. (3.7)

We expect in each region initially the development of a vertical stack of alternating
meridional vortices with a vertical centreline about y =±ymax. This is confirmed below
in figure 6(a).

3.1. Prediction
The symmetry of the initial momentum profile M(y) about the equator (y = 0) and the
fact that equal rates of initial growth of the instability will occur in the two instability
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FIGURE 3. (a) Schematic of the predicted momentum distribution. The thin curve is
the initial m-distribution M(y) for an unstable Gaussian jet (Ro < �1/2). Instability
commences in the two regions, on the left y 2 [ y�, 0] which connects to the region
on the right with y 2 [0, y+] as also indicated in figure 2(b). The values of y± are a
function of the Rossby number according to (3.7). The left instability region is associated
with dM/dy < 0 and right instability region with dM/dy > 0 so that ydM/dy > 0 or
equivalently � < 0. The outer limits {y�, y+} are indicated with the thin dashed vertical
lines. The prediction for the equilibrated flow is indicated with the thick solid curve. It
has constant m = mc < 0 between y = ±ymix indicated by the thin solid vertical lines.
Equation (3.9) determines how non-dimensional mc and ymix vary with the Rossby number
when Ro < �1/2 (see text). (b) The initial Gaussian jet (thin line) and the predicted final
flows according to (3.10) for Ro=�2 and Ro=�4. In each case the amplitudes have been
scaled with |Ro| to facilitate comparison. For Ro = �2 the maximum amplitude (at y = 0)
has decreased 25 %, for Ro = �4 the decrease is 40 %.

regions, suggests mixing will occur between y = ±ymix with mc = M(ymix) such thatR
(M(y) � mc)dy = 0. This is sketched in figure 3(a). The corresponding new flow

would be stable because all negative gradients dm/dy would have disappeared for y<0
and all positive gradients for y > 0.

If this is indeed what happens, then ymix is determined by the condition
Z +ymix

�ymix

{|Ro| exp(�y2) + y2/2}dy =
Z +ymix

�ymix

{|Ro| exp(�y2
mix) + y2

mix/2}dy, (3.8)

which yields the transcendental relation between ymix and |Ro|
Z +ymix

0
|Ro| exp(�y2)dy = ymix|Ro| exp(�y2

mix) + y3
mix/3, (3.9)

which is easily solved numerically. Knowing ymix as a function of |Ro| we also know
mc(|Ro|), and we can predict that the adjusted absolute momentum and velocity profile
non-dimensionally are

m = mc, u = mc + y2/2, y 2 [�ymix, +ymix],
m = M(y), u = U(y), y /2 [�ymix, +ymix],

�
(3.10)

with non-dimensional U as in (3.2). Note that for all negative Ro, according to (3.2),
the initial m(y) < 0 for all y and that for increasing |Ro| the value of the predicted
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FIGURE 4. Profiles of vertically averages of (a) absolute momentum m and (b) zonal
velocity u for a westward flowing Gaussian zonal jet centred on the equator. Here Ro=�4
and Re = |U0|L/⌫ = 15k. The full computational domain for this simulation is such that
z 2 [0, 4p] and y 2 [�6, +6] on a grid of 513 ⇥ 513 points. Here we are showing only the
y 2 [�3, +3] portions of the profiles. Thick grey lines indicate the prediction. Along the
axis y is non-dimensionalized with the length scale L. Time has been non-dimensionalized
with the time scale (�L)�1.

mc gets ever more negative while the predicted mixing region [�ymix, +ymix] gets ever
broader. This is illustrated in figure 3(b) where we plot the velocity profiles we expect
to find after equilibration of the inertial instability for Ro = �2 and Ro = �4.

3.2. Numerical simulations
We now demonstrate that numerical simulations confirm the predictions for the
equilibration of the westward flowing Gaussian jet at the equator. In figure 4, we
show the evolution of the vertically averaged profiles of m and u as the inertial
instability unfolds and equilibrates. As discussed in § 2, the vertical wavelength of
the inertial instability vanishes at infinite Reynolds number. All of the simulations
that we present will have a finite Reynolds number, which we define in the Gaussian
case as Re = |U0|L/⌫. With viscosity, the most unstable mode has a finite vertical
wavelength. The resolution that we use in all the simulations presented here will
be sufficient to resolve the most unstable mode and also, as best as we can, all of
the significant smaller scale motions that are generated nonlinearly. In the simulation
used to prepare figure 4, Re = 15k (i.e. 15 000). The Rossby number is as defined in
(3.2), and in this simulation Ro = �4.

In figure 4(a), we see that the profile of vertically averaged momentum changes
rapidly from the initial condition (thin grey line) to a nearly equilibrated state at
non-dimensional time t = 18. The predicted equilibrium is shown as a thick grey
line. After t = 18, the evolution is much slower, with the profile becoming smoother
as seen at t = 50. The subsequent evolution is primarily slow viscous diffusion of
momentum. The m-profile evolves toward the homogeneous mixed state in the mixing
region as predicted by our mixing scheme. The corresponding evolution of the profile
of vertically averaged velocity u is shown in figure 4(b). The profile rapidly evolves
toward the predicted profile. As predicted, the maximum velocity of the jet is reduced
in value by about a factor of a half during the equilibration. The match between the
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FIGURE 5. Effects of variation of (a) Re and (b) Ro on the equilibration of inertial
instability of the Gaussian jet. All of the simulation results are taken at t = 50. The size
of the computational domain and the resolution are as described in the caption of figure 4.
Thick grey lines indicate the predictions.

profile at t = 50 (thin solid black curve) and the prediction (thick grey curve) is
excellent for most of the jet. In the region just outside of the predicted mixing
region, there is a small overshoot at t = 50 in which a small amount of eastward flow
is found. This has also been noted before in examples of flow on the f -plane (see
Kloosterziel et al. 2007b).

Figure 5 shows how the results of equilibration vary with Re and Ro. Figure 5(a)
confirms that, as in our previous work with flows on the f -plane, the match between
the vertically averaged profile of m and the prediction improves with increasing Re.
Here the view is ‘zoomed-in’ relative to that shown in figure 4(a), and we see that
the curve for m at t = 50 and Re = 15k is not perfectly flat. The irregularities are the
result of perturbation vortices (see below) that have not yet dissipated. Figure 5(b)
shows that equilibration occurs similarly over a wide range of unstable Ro.

The vortex dynamics of the equilibration process for the Gaussian zonal jet on the
equator in the standard �-plane model is illustrated in figure 6. Only the along-stream
component of the vorticity !x = @w/@y � @v/@z is shown since it is the growth of this
component that characterizes the inertial instability, that is, the inertial instability is
characterized by secondary overturning motions with their axis aligned with the flow
direction as sketched in figure 1(a).

In the earliest phase of the evolution (see figure 6a, t = 7.5) two vertical columns of
counter-rotating vortices form in the !x-field. Each column is centred on the position
of maximum growth rate ±ymax as discussed above and marked here by a thick grey
vertical straight line. The columns or stacks of vortices result from the linear phase of
the instability. The shape and distribution of the vortices are somewhat irregular due to
the nature of the initial random perturbation that we have used to initiate the evolution.
As an aid to the discussion, we also include vertical black dashed lines marking the
limits of the linear instability region (y�, y+) and vertical solid black lines marking
the limits of the predicted mixing range at y = ±ymix (see figure 2b).

As the vortices grow in strength, they begin to interact nonlinearly. They pair
with neighbours, both above and below, forming dipolar ‘heads’ and ‘tails’. As these
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FIGURE 6. Contour plots of !x from a simulation of the Gaussian jet with Ro = �4 and
Re = 15k at non-dimensional times (a) t = 7.5, (b) 10, (c) 20, (d) 50. The along-flow
component of the vorticity is !x = @w/@y � @v/@z with v, w the velocity components
in the y and z direction, respectively. The initial instability region, is bounded by the
vertical dashed lines, at y� and y+. The predicted outer limits of the inertial instability
equilibration range, y =�ymix and y =+ymix, are indicated by the vertical solid black lines.
Positive/negative contours are drawn as black/grey lines. The zero contour level is not
drawn. The contour increments are (a) 0.5, (b) 4.0, (c) 4.0, (d) 1. In (a), the vertical
solid grey lines indicate the initial positions ±ymax of maximum growth rate according
to linear theory. These are also indicated in figure 2(b). Only a portion (y 2 [�4, +4],
z 2 [0, p]) of the full computational domain (y 2 [�6, +6], z 2 [0, 4p]) is shown.

dipolar ‘heads’ and ‘tails’ develop, the vorticity in them tends to roll up. Consider
figure 6(b) (t = 10). In the region of positive y, what we are calling ‘dipolar heads’
have a positive vortex on the top and a negative vortex on the bottom. With this
configuration, self-advection transports the dipolar head in the positive (northward)
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y direction. Hence, these dipoles are on a trajectory to leave the region of linear
instability. In the negative y region the dipolar heads are those dipoles that form with
negative vorticity on top and positive on the bottom. Hence, for them, the sense of
self-advection is in the negative (southward) y direction and thus they are also on
a trajectory to exit the linear instability region. By t = 10, we see that some of the
dipolar heads are crossing the boundaries of the linear instability region and one
has already escaped. By this process, the perturbation is not confined to the linearly
unstable region and mixing can occur well beyond that region. Also note that the
vortices have formed dipolar tails and that these are oriented to propagate toward the
equator at y = 0. Thus this mechanism of dipolar ‘head’ and ‘tail’ formation allows
the instability to propagate beyond the linear instability region and to mix vigorously
even within it.

By t = 20 (figure 6c), the strength of the vortical motions is decaying. The dipolar
‘heads’ have travelled to and beyond the predicted limits of the mixing range. As the
dipoles approach these limits, they tend to be deflected as is already evident for one
dipolar ‘head’ seen on the left in figure 6(b). In figure 6(c), we see that some of
the dipolar ‘heads’ have left the predicted mixing region and have actually turned
around and are oriented so as to return toward that region. There is also what we
might call ‘debris’ from the destruction of the dipolar heads that have left, or tried to
leave, the mixing region. By t = 50 (figure 6d), the !x field has decayed significantly
from its peak strength, although there are some remaining regions of activity. Outside
the mixing region in figure 6(d) there is some evidence of inertial wave radiation.

To conclude this section we note that the domain-integrated potential vorticity
or absolute vorticity, i.e.

R
Q(y)dy, is conserved. For the initial flow Q = �dM/dy

with M(y) the momentum distribution, while for the predicted equilibrated flow the
potential vorticity is q = �dm/dy, with m the momentum distribution which has
m = mc between y = �ymix and y = +ymix. Hence

Z +ymix

�ymix

Q(y)dy = �[M(ymix) � M(�ymix)] = �
Z +ymix

�ymix

dm
dy

dy =
Z +ymix

�ymix

q(y)dy (3.11)

because in the prediction the level curve m = mc connects with M(y) at y = ±ymix (see
figure 3a). More generally, any m(y) which connects with M(y) at some y = yl and y =
yh implies potential vorticity conservation but only certain choices imply momentum
conservation.

4. Uniform shear flow
The linear stability properties of uniform shear flows U(y) = ⇤y on the equatorial

�-plane was first studied by Dunkerton (1981) and in several papers thereafter by
that author and others, with extensions including double diffusion effects (Prandtl
number Pr 6= 1) and non-symmetric disturbances (see references in Griffiths 2008).
In two earlier papers Griffiths (2003a,b) included the effect of uniform stratification
(constant buoyancy parameter N) but he used the hydrostatic approximation and just
vertical diffusion of momentum. As a consequence the problem could be characterized
by a single non-dimensional parameter ✏ = (2⌫N2�2/⇤5)1/3. This makes it difficult
to say what the Reynolds number was in his numerical simulations. Nonetheless,
in the study of the uniform shear flow by Griffiths (2003b), the resolution was
high enough (256 ⇥ 256 grid points) to clearly see the instability develop, and
as it proceeded the instability homogenized fQ. The initial region of instability
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FIGURE 7. Non-dimensional �̃ = �/⇤2 and M = M/(⇤2/�) as a function of
non-dimensional y = y/L with L = ⇤/� for positive shear ⇤ > 0. The position of the
fastest growth is expected at ymax = 1/2. The instability region is between y = y� = 0 and
y = y+ = 1. For negative shear ⇤ < 0, using the length scale L = |⇤|/� one would get
M = �y � y2/2, � = y(y + 1) instead of (4.2) with instability between y = y� = �1 and
y = y+ = 0 and maximal growth at y = ymax = �1/2. For negative shear the two parabolas
(M and �) are simply shifted one non-dimensional unit to the left and all is simply a
reflection of what is seen here across the equator at y = 0.

where fQ = � < 0 disappeared and over some range a new flow emerged near neutral
stability with Q ⇡ 0.

In this section, we determine this range and determine the mixed mc that emerges
with simulations using resolutions varying between 1537 ⇥ 1537 and 2049 ⇥ 2049
grid points. First, however, note that for U(y) = ⇤y, we have dimensionally

� = fQ = �y(�y � dU/dy) = ��ydM/dy = �y(�y � ⇤),

M = ⇤y � �y2/2.

�
(4.1)

For definiteness we just consider positive shear ⇤ > 0. Then the instability range
where � < 0 is between y = y� = 0 and y = y+ = ⇤/�.

The length scale L =⇤/� is used to non-dimensionalize latitude y and depth z, and,
as in the previous section, a time scale T = 1/�L = 1/⇤ is used to non-dimensionalize
time t, and a velocity scale L/T = ⇤2/� to non-dimensionalize momentum m and
zonal velocity u. The non-dimensional Rayleigh discriminant is �̃ = �/⇤2. With that
understood, non-dimensionally

M = y � y2/2, U = y,
�̃ = y(y � 1) = �ydM/dy.

�
(4.2)

Instability occurs between non-dimensional y = y� = 0 and y = y+ = 1. This is
illustrated in figure 7. Both �̃ and M are parabolas with (non-dimensionally) a
negative minimum �̃m = �1/4 at y = ymax = 1/2 and a maximum M = 1/2 at y = 1
( for negative shear ⇤ < 0, see caption of figure 7). Here |�|m = max{��} = ⇤2/4
and if exponential growth is assumed, i.e. exp(� t), the growth rate � < |�|1/2

m = |⇤|/2.
Instability is expected to manifest itself initially as overturning motions centred

about y = ymax, just as in one of the two instability regions for the unstable Gaussian
jet, i.e. as either the pattern on the left or right of figure 6(a).
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FIGURE 8. Examples of possible momentum distributions of equilibrated flows for positive
shear ⇤ > 0. In each panel the initial unstable m-distribution is the parabola (thin solid
line) with non-dimensional m = M = y � y2/2 as in (4.2). Instability range is between
non-dimensional y = 0 and y = 1 (see figure 7). (a) ‘Observed’ case (see text) with mc =
0.232 and yl = �0.464, yh = 1.732 (dashed), special case mc = 3/8 and yl = 0, yh = 3/2
(thick solid) and a case with mc < 0 (dot-dashed). In each case (4.3) is satisfied. There is a
positive jump at y = yl and continuity at y = yh with mc = M(yh). The equality 2yh + yl = 3
is satisfied. (b) Two examples (thick dashed and thick solid) with m = mc between y = yl <
0 and y = yh > 0 and a positive jump at y = yl and negative jump at y = yh. (c) Continuous
at y = yl 6 0 and negative jump at y = yh > 0. Case mc = 0, yl = 0, yh = 3 is the thick dashed
line. (d) Example (thick dashed line) with an internal jump at y = 0 (equator) and two
different mc-levels. Case mc = 3/8 and yl = 0, yh = 3/2 (thick solid line) also shown in (a).
For negative shear ⇤< 0 all these graphs have to flipped about the y = 0 axis (see remarks
in the caption of figure 7).

4.1. Prediction?
For the uniform shear flow we face a problem: the initial m-distribution m = M(y), as
seen in figure 7, has a single maximum with no adjacent minima. If again we assume
that the instability sets the m-distribution to some constant m = mc over some y-range,
there is no obvious answer. Various equally plausible possible equilibria are sketched
in figure 8. All satisfy the constraint of total absolute momentum conservation.

First note that always at least one discontinuity (a ‘jump’) in the equilibrated m-
profile would be required as in figure 8(a), where we show three possibilities that
conserve m. The jump is ‘positive’ ( from lower m to higher m) on the left in the
region y 6 0 in each case at y = yl. A positive jump in the region y > 0 would
correspond to an unstable situation with � = �ydm/dy < 0 since dm/dy = +�(y).
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On the right, the adjusted profile connects at y = yh with the initial m-profile with
the condition that Z yh

yl

(M(y) � mc)dy = 0, (4.3)

and in this case mc = M(yh). We marked as ‘observed’ the case (dashed) with mc =
0.232 and yl =�0.464, yh = 1.732 which we will discuss further below. Also shown is
the special case (solid) mc = 3/8 and yl = 0, yh = 3/2. Amongst the three possibilities
shown in figure 8(a), this case has the smallest range over which m = mc with width
yh � yl = 3/2.

In figure 8(b), we show two cases with a positive jump at y = yl < 0 and a negative
jump at y = yh > 0 which also satisfy (4.3). In figure 8(c), we show the opposite of
the scenario shown in figure 8(a), i.e. an adjusted profile which is continuous in m at
y = yl 6 0 and a negative jump at y = yh > 0. The particular case with mc = 0 and yl = 0,
yh = 3 is the dashed line. Finally, in figure 8(d), we show yet another possibility with
an ‘internal’ jump at y = 0 but continuous at y = yl 6 0 and y = yh > 0. The particular
case with m = mc = �5/8 between yl = �1/2 and y = 0 and m = mc = 1/2 between
y = 0 and yh = 1 is shown as the dashed line. This has the same ‘width’ (yh � yl = 3/2)
as the other case shown in figure 8(d) (thick solid line with a jump at yl = 0 and
continuous at yh = 3/2), which is also shown in figure 8(a).

All scenarios sketched in figure 8(a–c) imply conservation of total potential vorticity.
Without going into details, it suffices to point out that the jumps can be represented
using the Heaviside stepfunction multiplied by the appropriate jump amplitude. This
means that in the q-distribution there will be �-functions at the jump locations. It
is easily verified that this implies that

R
q(y)dy =

R
Q(y)dy. Hence potential vorticity

conservation does not provide an additional constraint with which a particular final
equilibrium is singled out. In the same way it can also be shown that the dashed-
line solution with the ‘internal’ jump in figure 8(d) also implies potential vorticity
conservation. However, that solution can be ruled out because it has more energy than
the initial state. In all cases, the final equilibrated state must have less energy than the
initial state. Even taking into consideration this energy constraint, all examples shown
in figure 8(a–c) are viable candidates. What nature will choose is thus not clear at all.
The numerical simulations will provide the answer.

4.2. Numerical simulations
For the numerical simulations, it remains only to define the Reynolds number for the
flow. Using the length scale L = ⇤/� and time scale T = 1/⇤, the non-dimensional
reciprocal of ⌫ gives us the Reynolds number Re = ⇤3/(�2⌫) for this flow.

The evolution of the profiles of vertically averaged absolute momentum m and zonal
velocity u for the uniform shear flow is shown in figure 9. Once the instability begins,
m(y) goes through a rapid change, resulting by non-dimensional time t = 90 in a
relatively flat mixed region (figure 9a). On the northern (positive y) end of this mixed
region, the flat portion of m(y) joins the initial condition without a jump. On the
southern side, however, the mixed region joins the initial condition by a relatively
steep jump at approximately y = �1/2. As time proceeds, the mixed region tends to
get smoother and flatter, while the slope of the jump tends to become shallower. This
shallowing of the jump is a result of long-term viscous diffusion.

The evolution of u(y) is illustrated in figure 9(b). As the u(y) profile evolves, a
step-like bump forms on the profile around non-dimensional y ⇡ �1/2. The steepness
of the positive (upward) slope of this bump increases rapidly between t = 30 and
t = 90. The steepness is greatest at t = 90, and then it slowly and continually becomes
shallower from t = 90 to the end of the simulation at t = 1000.
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FIGURE 9. Profiles of vertically averaged (a) absolute momentum m and (b) zonal velocity
u for the uniform shear flow at the equator. The full computational domain for this
simulation is y 2 [�4, +4] and z 2 [0, 2p] on a grid of 1537 ⇥ 1537 points. Here we
show only the y 2 [�1, +3] portion of the profiles. The Reynolds number of the flow is
Re = ⇤3/�2⌫ = 50k.

The effect of varying Re on the equilibrium achieved after inertial instability is
illustrated in figure 10. The curves drawn for various Re in each panel of the figure
correspond to non-dimensional time t = 200 when the inertial instability is essentially
equilibrated and slow viscous diffusion has not yet severely affected the profiles.
Figure 10(a) demonstrates that as Re increases, m(y) becomes flatter and smoother
in the ‘mixed region’, the region extends farther in the negative y direction, and
the steepness of the jump near y ⇡ �1/2 increases. The corresponding curves for
u(y) are shown in figure 10(b). The bump on the profile between y ⇡ �1 and y ⇡ 0
becomes increasingly step-like, with the jump becoming steeper with increasing Re.
The sharp gradient in u at y ⇡ �1/2 corresponds to a large negative value of the
(non-dimensional) potential vorticity q = y � du/dy. This was also observed in the
numerical simulations of Griffiths who added uniform stratification to the problem
(see Griffiths 2003b).

Based on these results and experience with equilibration on the f -plane (see
Kloosterziel et al. 2007a,b; Carnevale et al. 2011, 2013), we hypothesize that in
the limit of infinite Re the equilibrium profile of m would be perfectly flat in the
mixing region and there would be a jump discontinuity on the southern side of the
mixing region at y ⇡ �1/2. This would then correspond to one of the examples from
figure 8(a). If mc is the level of m in the mixing region and yl the location of the
jump, then we hypothesis that the equilibrium profile would be

m = mc, u = mc + y2/2, y 2 [ yl, yh],
m = M(y) = y � y2/2, u = U(y) = y, y /2 [ yl, +yh].

�
(4.4)

Assuming conservation of total absolute momentum according to (4.3), we find a cubic
equation relating yl to yh for any given mc. Using the assumed continuity at y = yh
so that mc = M(yh) this yields an exact relation: 2yh + yl = 3. Based on the observed
level mc ⇡ 0.232, from M(yh)= mc we obtain yl =�0.464 and yh = 1.732 which agrees
with the observed location of the jump near y ⇡ �1/2. We have already sketched this
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FIGURE 10. Variation with Re of profiles of vertically averaged (a) absolute momentum
m and (b) zonal velocity u for the uniform shear flow at the equator. The curves all
correspond to non-dimensional time t = 200 by which the inertial instability has essentially
equilibrated, but before viscous diffusion has had time to begin to smooth out the jump
near y ⇡ 0.5. The full computational domain is y 2 [�4, +4] and z 2 [0, 2p] on a grid
of 2049 ⇥ 2049 points. Only the y 2 [�1, +3] section of the computational domain is
shown. The thick grey line in (a) is the prediction (4.4) with mc = 0.232 and yl = �0.464,
yh = 1.732, also marked as ‘observed’ in figure 8(a). The thin grey line in each plot
corresponds to the initial condition. The Reynolds number is defined as Re = ⇤3/�2⌫.

solution in figure 8(a). It is drawn as the thick grey line in figure 10(a). This is not the
solution of the smallest possible mixing range, nor does it correspond to any possible
extremization of energy loss. There is no simple principle that we have been able
to determine that selects this particular solution, even restricting consideration to the
class of possibilities shown in figure 8(a).

The vortex dynamics behind the instability and its equilibration in the uniform
shear flow are illustrated in figure 11. The evolution is similar to what we have
seen in the Gaussian case but for the difference that in the !x field just one vertical
column of vortices of alternating sign forms at the position of maximum growth as
predicted by linear theory (figure 11a). Each vortex pairs with its two neighbours to
form dipolar heads/tails propagating in the negative/positive y direction (figure 11b).
These dipolar structures propagate beyond the region of linear instability and fill
out a region where the absolute momentum becomes well mixed (figure 11c). As
equilibration nears completion, there remain some relatively weak, long lived, vortex
structures in the mixing region and some weak inertial waves beyond (figure 11d).
Clearly, the evolution seen in figure 11 is not symmetric as in the Gaussian jet case
(see figure 6): we have only one region of instability from which intense activity
emerges on the northern (positive y) side of the mixing region, away from the equator
at y = 0, while far less is seen to the south of the equator where the jump develops.

5. East- and westward flowing jets o� the equator
In § 3 we showed that the eastward flowing Gaussian jet is always stable when

centred on the equator whereas the westward jet can be unstable but only when Ro =
U0/�L2 < �1/2 (remember a flow to the east has U0 > 0, to the west U0 < 0). But
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FIGURE 11. Contour plots of !x from a simulation of the uniform shear flow with
Re = 50k at non-dimensional times (a) t = 18, (b) t = 22, (c) t = 50 (d) t = 1000. The
initial instability region, is bounded by the vertical dashed lines, at y� = 0 (the equator)
and y+ = 1. The final limits of the inertial instability equilibration range, yl ⇡ �0.46 and
yh ⇡ +1.73, are indicated by the vertical solid black lines. Only a portion (y 2 [�1.5, 2.5],
z 2 [0, p/2]) of the full computational domain (y 2 [�4, +4], z 2 [0, 2p]) is shown. The
computation is done on a grid of 1537 ⇥ 1537 points. Positive/negative contours are drawn
as black/grey lines. The zero contour level is not drawn. The contour increments are
(a) 0.42, (b) 1.5, (c) 3.1, (d) 0.15. In (a), the vertical solid grey line indicates the initial
position of maximum growth rate ymax = 1/2 according to linear theory. The Reynolds
number of the flow is Re = ⇤3/�2⌫ = 50k.

if the flow axis of the eastward jet is shifted to some small distance y0 away from
the equator there will be instability, even for very small Rossby numbers. This is
illustrated in figure 12(a), where the thin Gaussian curve shows the stable eastward jet
on the equator. If the axis is however at y = y0 > 0 (north of the equator) there will be
positive shear dU/dy > 0 in the region between the equator at y = 0 and y = y0. This
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FIGURE 12. Schematic showing a ‘top view’ of (a) an eastward Gaussian jet and (b) a
westward Gaussian jet shifted northward with their axis a distance y0 away from the
equator. In (a) the shift y0 is small so that finite positive shear is found between the
equator (y = 0) and some location y < y0. This implies instability (thick line) where the
positive shear dU/dy > �y so that � < 0. For small shifts the eastward jet is unstable for
any Rossby number Ro > 0. In (b) the shift is small enough and Ro sufficiently negative
(Ro < Rocr = �1/2) so that two regions of instability remain, one north of y = y0 where
dU/dy > �y and one south of the equator (y < 0) where the negative shear dU/dy < �y.
In both regions � < 0 while separated by a stable region north of the equator. For the
westward jet in (b) only the southern instability region remains if the magnitude of the
Rossby numbers falls below some critical value. See text for more details.

implies that the Rayleigh discriminant � = �y(�y � dU/dy) < 0 between y = 0 and
some y < y0 (indicated by the thick line in figure 12a). We call a shift ‘large’ when
the jet has a negligible velocity amplitude at the equator. Then f = �y is of one sign
over the entire region occupied by the jet and stability/instability is only determined
by the sign of Q = �y � dU/dy or dM/dy(⌘ � Q). Then essentially f -plane dynamics
is found. The transition between a large and a small shift occurs via a ‘critical’ shift.
This special shift-value y0 varies with the Rossby number Ro. This will be further
clarified below. Figure 13 illustrates the distinction we shall make between ‘small’,
‘critical’ and ‘large’.

For the westward jet the situation is entirely different. This is sketched in
figure 12(b). If Ro < Rocr = �1/2 and the jet is shifted, the two regions of instability
(see figure 2b) that were joined at the equator become separated. In figure 2(b)
the thick Gaussian curve is the unstable jet on the equator with Ro < �1.2. The
shifted curve with two separate thick lines indicates that when y0 > 0 there will be a
region of instability south of the equator (y < 0) where the shear dU/dy < 0 such that
� =�y(�y � dU/dy)< 0. Directly north of the equator a band of inertially stable flow
emerges while beyond the peak at y = y0 the other region of instability resides with
sufficiently large positive shear dU/dy > 0 so that � < 0 again. For a large northward
shift, the shear south of the equator becomes negligible and only one region of
instability is possible. Then, as for the eastward jet, f -plane dynamics is recovered.
But for small shifts of the westward Gaussian jet we encounter a case never studied
before: there will be inertial instability in two nearby regions with unequal rates of
growth. The secondary overturning motions seen above in figure 6(a,b) will grow
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FIGURE 13. Diagram showing a ‘side view’ of the absolute momentum distribution M =
U(y) � �y2/2 for the shifted eastward jet. Three possibilities are shown: a ‘small shift’
for which the equilibration can be predicted using the results from § 4 for the linear shear
flow, a ‘critical shift’ which is a combination of Ro and y0 such that the predicted mixing
range with constant m = mc extends to the equator, and a ‘large shift’ where equilibration
is reached through mixing to some level mc as sketched in figure 1(b) for the f -plane. To
prepare this graph a fixed Ro was used but variable y0. The critical case is only possible
for y0 > 2.2. More details are provided in the text.

faster on one side than on the other. Their nonlinear propagation into the region where
the instability is growing at a smaller pace alters the flow there and no prediction
of the outcome seems possible. This difficulty is sketched below in figure 16 on the
left with the grey line marked ‘mc?’. For definiteness we will just discuss northward
shifts (y0 > 0).

For either jet we simply take the velocity field

U(y) = U0 exp(�(y � y0)
2/L2) (5.1)

and the corresponding absolute momentum is therefore

M = U0 exp(�(y � y0)
2/L2) � �y2/2. (5.2)

As in § 3 we non-dimensionalize M and U so that non-dimensionally

M = Ro exp(�(y � y0)
2) � y2/2, U = Ro exp(�(y � y0)

2), Ro = U0/�L2, (5.3a,b)

and y is non-dimensionalized with L. The magnitude of the non-dimensional shift
y0 tells us how far we are away from the equator at y = 0. For example, a non-
dimensional y0 = 3 means the axis of the current is at a distance 3L. The condition
for instability remains � < 0 or non-dimensionally

y
dM
dy

= y
�
2(y � y0)Ro exp(�(y � y0)

2) + y
�
> 0. (5.4)

This implies the use of the time scale T = 1/�L and velocity scale L/T = �L2 but for
the numerical results presented below we found it more convenient to report times
t non-dimensionalized with the advective time scale T = L/|U0| and to define the
Reynolds number as Re = |U0|L/⌫.
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5.1. Eastward jet: small shift
In figure 12(a) we indicate what we mean by small: it is a combination of y0 and Ro
such that the initial M-distribution has dM/dy > 0 in a range between the equator at
y = 0 and y < y0. This is also sketched in figure 13. The thick lines in both figures
indicate this range. Locally the M-distribution looks like a downward parabola, as
for the uniform shear flow studied in § 4 (see figure 7). Hence the same ambiguity
arises: how will the flow equilibrate? But since we now know how the linear shear
flow adjusts, we can make a good guess. The answer is already sketched in figure 13:
one can expect the development of a jump discontinuity south of the equator while
momentum will be mixed to some constant level mc. A surprisingly good prediction
for the mixing range and mixing level mc can be made using a linear shear matching
procedure which is described in some detail in the appendix A.

An example is shown in figure 14. This is for the eastward jet with Ro = 4 and a
shift y0 = 1. In the appendix A we illustrate the procedure for the same jet but with a
smaller shift (y0 =0.5, see figure 20). The idea is to approximate the initial momentum
distribution M around the position of maximal growth ymax by

M(y) ⇡ 1M + Sy � By2/2 ⌘ MS. (5.5)

In figure 14(a) we show this approximation MS as a dotted line. It is obviously a
downward parabola, just as the M-profile of the uniform shear flow. At y = ymax by
construction we have MS = M and M0

S = M, M00
S = M00 (M0 ⌘ dM/dy, M00 ⌘ d2M/dy2).

This means that also at ymax the Rayleigh discriminant �S ⌘ ��ydMS/dy = �. This is
illustrated in figure 14(b). Even for this relatively large shift it is seen in the figure that
�S ⇡� over the entire instability range where � <0. In the appendix A it is explained
why the flow that has initially a momentum distribution MS is expected to equilibrate
with a mixing level mc = 1M + 0.232(S2/B). The prediction only uses this predicted
level and the assumption that just as for the linear shear flow a jump occurs south
of the equator (y = yl < 0), as in figure 8(a) (‘observed’) or for example figure 10(a),
while at y = yh > 0 on the right-hand side of the mixing range mc = M. The location
of the jump is then determined by momentum conservation, i.e. (4.3) is satisfied. The
prediction is drawn as a thick grey curve in figure 14(c). It is seen that around t = 300
when the flow has equilibrated, the vertically averaged momentum indeed matches the
prediction remarkably well except near the jump position. In the simulation we used
Re = 400k. Much higher Re are expected to reveal a ‘sharpening’ of the jump, just as
is seen in figure 10(a).

The jump discontinuity that is seen to have formed in figure 14(c) was schematically
indicated in the upper left part of figure 13. If we compare this with the results for
the linear shear flow shown in figure 10(a), there is clearly little qualitative difference.
But the adjusted velocity field seen in figure 14(d) for the Gaussian jet is obviously
very different from the adjusted linear shear flow seen in figure 10(b). This indicates
that for the adjustment of the inertial instability the finer details of the flow away
from the initial instability region do not matter much. For example, in figure 14(d) the
mixing has produced a profile which connects to the Gaussian profile to the right of
the peak velocity (y = y0) where the flow is decreasing with distance. For the uniform
shear flow in figure 10(b) the mixing has proceeded to the right to connect with the
linearly increasing flow. But in both cases the initial momentum distributions and the
Rayleigh discriminant in the region of instability and ultimate mixing region ‘look’
the same and this is all that matters.
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FIGURE 14. (a) Initial momentum M (solid grey line) and the approximation MS (dotted
line) for the eastward flowing jet with Ro = 4 and shift y0 = 1. The approximation MS
is given by (5.5) with non-dimensionalized 1M = 1.11, S = 4.91, B = 4.58 (see (A 5) in
the appendix A). The location of fastest growth y = ymax = 0.53 is indicated by au. The
thick black part of M indicates the instability region y 2 [0, 0.88]. (b) Non-dimensionalized
Rayleigh discriminant � (solid line) and the approximation �S = ��ydM/dy (dotted line).
The location of fastest growth y = ymax = 0.53 is indicated by a u. In (c) and (d) the
prediction based on the linear shear dynamics (see appendix A) for the equilibrium m
and u-field is shown as a thick grey curve. The black curve in (c) and (d) is the result
at non-dimensional time t = 300 of a numerical simulation of the equilibration of the
eastward Gaussian jet with (c) absolute momentum m vertically averaged and (d) velocity
u vertically averaged. At time t = 300 the inertial instability has essentially equilibrated.
The full computational domain is y 2 [�4, 4] by z 2 [0, 4p] with 1025 grid points in each
direction. Only a section of the y-range is shown. The Reynolds number for the flow is
Re = |U0|L/⌫ = 400k. In (d) the u-field has been normalized with Ro, i.e. we show u/|Ro|
so that the peak velocity at t = 0 is U(y0)/|Ro| = 1.

5.2. Eastward jet: critical shift and large shift
From the diagram in figure 13 it should be clear that larger Ro imply a larger ‘bump’
added to the downward parabola ��y2/2, the sum of which is the absolute momentum.
It should also be clear that if the eastward jet with some fixed large Ro is shifted to
larger y0 than just discussed, the mixing hypothesis (constant mc over some range and
conservation of total absolute momentum) implies that for some y0 the mixing range
extends exactly to the equator but not beyond and no jumps south of the equator are
expected. We call this the ‘critical shift’ although it is really a specific combination
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FIGURE 15. Plots of the vertically averaged absolute momentum m(y) and u(y) showing
the initial (thin grey curve) conditions and the state after a time sufficient to allow
nearly complete absolute momentum mixing (solid black curve), for the eastward flowing
Gaussian initial jet on the �-plane with: (a) and (b) a ‘critical shift’ example (see text)
with y0 = 5 and Ro = 20.6, (c) and (d) a ‘large shift’ example with y0 = 10 and Ro = 40. In
each panel the thick grey curve is the prediction based on our momentum mixing scheme
with no discontinuities. For the critical case the mixed level in (a) is mc ⇡ 0. At time
t = 90 (a,b) and t = 70 (c,d) the inertial instability has equilibrated. The full computational
domain for (a) and (b) is y 2 [�3, 9] by z 2 [0, 4p] with 1025 grid points in each direction.
For (c) and (d) the y-range is y 2 [2, 14]. In all panels only a section of the y-range is
shown. The Reynolds number is Re = 50k. In (b) and (d) we show u/|Ro| so that the
peak velocity at t = 0 is U(y0)/|Ro| = 1.

of y0 and Ro. Figure 13 shows an example. Experimentation with the mixing recipe
reveals that the smallest shift for which the critical case occurs is y0 ⇡ 2.2 with Ro ⇡
1.98. For y0 increasing monotonically above the value 2.2, the corresponding critical
Ro increases monotonically as well. For example, when y0 = 5 the critical Ro is Ro =
20.6. The results of numerical simulation for this particular critical combination of y0
and Ro are shown in figure 15(a,b). Figure 15(a) shows that the inertial instability has
mixed the momentum between the equator and a position to the right of the peak of
the jet, as seen in figure 15(b). The agreement with our prediction (thick grey lines)
is excellent. This example is representative for all possible critical cases with y0 > 2.2.

What we call ‘large’ next is somewhat arbitrary, but simply put: it is a combination
of y0 and Ro so that the mixing does not reach the equator and no jumps are expected.
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One can see from figure 15(a) that if Ro is slightly lowered from Ro = 20.6, the peak
amplitude around y0 = 5 in the initial momentum distribution (thin grey line) becomes
a bit lower while barely affecting the depth of the ‘valley’ around y = 3 because of
the rapid fall-off of the Gaussian jet amplitude with distance from y0. Momentum can
then be conserved by mixing between some y = yl > 0 and a position yh > y0 with an
mc lower than in figure 15(a) so that (2.7) is satisfied. Instead of showing that, we
show in figure 15(c,d) a case with y0 = 10 and large Ro = 40. It is seen again that the
agreement between the numerical results and the prediction is very good. This case
was also sketched in figure 13. One may find this an extremely high Rossby number,
but it is really a matter of definitions. Dimensionally y0 = 10 corresponds to a distance
10L with L the width of the Gaussian jet. The Coriolis parameter at y0 is f0 = �y0. If
instead of Ro = U0/�L2 we choose Ro = Rof0 = U0/f0L then with the shift y0 = 10L
we would have had Rof0 = 4.

The reason for showing the example seen in figure 15(c,d) and not a more
‘reasonable’ one, is twofold. First, because although all in this study is formulated
in the context of equatorial �-plane dynamics, things quickly start to look like
mid-latitude f -plane dynamics. Figure 1(b) for example used the absolute momentum
on the f -plane, i.e. M = U(y) � f0y (with U also a Gaussian jet) but it is not unlike
figure 15(c). Secondly, if figure 15(a) is compared with 15(c), one sees very different
initial momentum distributions. But the mixing through inertial instability leads to
adjusted, inertially stable flows that differ very little, as comparison of panel (b)
with panel (d) of figure 15 reveals. Note that although ‘f -plane-like’ adjustments
are observed, the length scale L can be anything, say a mere 10 km. Then a shift
of 100 km (non-dimensional y0 = 10) would hardly be cause to start considering
mid-latitude f -plane dynamics, but with such small L the Rossby number Ro = U0/�L2

can be quite large, even for small U0. Therefore the adjustment near the equator can
be quite similar to that found at high latitudes.

5.3. Westward jet: small and large shift
As for the linear shear flow discussed in § 4, the adjustments for the eastward jet are
triggered from a single region of instability. But in § 3 we saw that the westward
Gaussian jet centred on the equator has two regions of instability where the Rayleigh
discriminant � < 0 (see figure 2b). They meet at the equator and because in both
regions the rate of normal-modes growth is equal and the initial absolute momentum
is symmetric about the equator (see figure 3a), the prediction was easy (thick line in
figure 3a). The secondary motions associated with the instability seen in figure 6(a)
amplify at equal rates and propagate from both regions towards the equator and
away from the equator, mixing the momentum and a new, stable flow emerged. The
prediction was well-verified, e.g. see figure 5.

If the symmetry is broken by shifting the jet away from the equator, we still have
two regions of instability provided Ro <�1/2. But they become separated as sketched
in figure 12(b). In figure 17(a) we show the Rayleigh discriminant for the westward
jet with Ro=�4 and the northward shifts y0 =0.4,0.8 and 1.6. Clearly seen is that the
regions of instability, where � < 0, become ever more separated. To the south (y < 0)
the most negative value of � decreases in amplitude with increasing shift, to the
north (y > 0) it first increases and then decreases. As mentioned in § 2 normal-modes
growth exp(� t) of the inertial instability is expected to have � <

p
maxy(��)

with the maximal growth rate �max =
p

maxy(��) attained in the limit of infinite
Reynolds number. Therefore the ratio of the theoretical upper limits on growth,
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FIGURE 16. Diagram showing a ‘side view’ of the absolute momentum distribution M =
U(y) � �y2/2 for the shifted westward jet. Two possibilities are shown: a ‘small shift’
and a ‘large shift’ where equilibration is reached through mixing to some level mc as
sketched in figure 1(b) for the f -plane and in figure 13 for the shifted eastward jet. For
small shifts and sufficiently large |Ro| two regions of instability with different rates of
normal-modes growth exist initially, separated by an inertially stable region north of the
equator at y = 0, as sketched in figure 12(b). For very small shifts no prediction appears
possible (see figure 18a,b) while for modestly small shifts a prediction is possible (see
figure 19).
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FIGURE 17. (a) The Rayleigh discriminant � for the westward Gaussian jet with Ro=�4
and northward shifts y0 = 0.4, 0.8 and 1.6. (b) Ratio of maximal normal-modes growth rate
(at the positions marked by u), i.e. �max(y > 0)/�max(y < 0). For larger shifts y0 ' 2 the
southern instability region disappears and f -plane-like adjustment occurs, marked by ‘large
shift’ in figure 16.

that is �max(y > 0)/�max(y < 0) for the shifted Gaussian jet, tells us how disparate
the rates of growth are. This is shown in figure 17(b). Further note that figure 17(a)
shows that, although the regions of instability become more separated, with increasing
shift the position of fastest growth on the southern side (y =�ymax in figure 6a) moves
towards the equator and the position of fastest growth on the northern side (y = +ymax
in figure 6a) moves away from the equator. Also on both sides the widths of the
instability regions decrease.

In figure 18 we show the equilibration of the westward jet for the shifts y0 = 0.4
and 0.8 and fixed Rossby number Ro = �4. In each case the Reynolds number
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FIGURE 18. Plots showing the evolution of vertically averaged absolute momentum m(y)
for the westward flowing Gaussian jet with Ro = �4 and (a) y0 = 0.4 and (b) y0 = 0.8
with Re = 50k. The full computational domain is z 2 [0, 1.5p] and y 2 [�6, +6] with 1025
grid points in each direction. Only a portion of the y-domain is shown. In both panels
the vertical grey line indicates the position y0 of the jet, the equator is at y = 0. In (a)
with y0 = 0.4 the initial rate of normal-modes growth north of the equator is 1.36 faster
than that in the region south of the equator, in (b) with y0 = 0.8 the ratio is 1.96. The
thick grey line in (b) is the prediction based on a combination of linear shear matching
in the southern region with a jump north of the equator and in the northern region
momentum mixing to a constant level mc between y = yl > 0 and y = yh (see appendix A).
In this example the predicted jump position coincides with y = yl. For larger shifts y0
the two regions separate and the prediction becomes very accurate at high resolution (see
figure 19).

was Re = 50k. In figure 18(a) the initial growth rate of the instability is in the
northern region about 1.3 times faster than in the southern region. At t = 50 to
the north a tendency to develop a constant mixing level is observed while some
significant changes are also seen in the southern part. However at the later times
t = 150 and t = 350 to the south an almost flat m-distribution is seen to have formed.
This seems to indicate that there the flow tends towards having a constant m = mc

but it smoothly transitions to the northern part where no flat section has formed after
all. This picture did not simplify on increasing the resolution of the simulation from
513 ⇥ 513 gridpoints to 1025 ⇥ 1025, and the vortices involved in mixing do seem to
be resolved here. We conclude that in this example the growth rates and the regions
of instability are too close to make a simple prediction possible.

For the larger shift y0 = 0.8 in figure 18(b) we see that at t = 50 (dotted line)
to the north the flow is close to having a mixed region with a constant m = mc.
Locally it is the equilibrium predicted in figure 15(c) for the eastward jet far from the
equator according to (2.7). But at t = 50 no changes south of the equator are visible in
figure 18(b). Only much later (at t = 400) the entire flow is equilibrated and a major
change is seen in the southern region but by then the flow to the north, which was
at t = 50 mixed to a constant mc, has also been changed considerably.

The thick grey line in the figure 18(b) marked with ‘prediction?’ is described in
the appendix A. It is a combination of two predictions, namely: (a) the northern
instability region equilibrates through momentum mixing as sketched in figure 1(b) or
as in figure 15(c); and (b) the southern instability region equilibrates through a jump
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FIGURE 19. Plots showing the evolution of vertically averaged absolute momentum m(y)
for the westward flowing Gaussian jet with Ro = �4 and y0 = 1.2. In this example the
growth rate of the instability on the northern side is 3.15 times faster than that on the
southern side (see figure 17). (a) At t = 50 the northern region of instability has mixed to
a constant level m = mc while in the southern instability region no changes are visible. At
t = 700 the instability to the south is near equilibrium but the mixing has not produced
a constant mixing level m = mc. Since the growth is much slower in this region the
equilibrium already reached at t = 50 to the north has diffused away from the horizontal
level at the later time t = 700. (b) The equilibrium at t = 700 in the southern region as
a function of Re. The computational domain was z 2 [0, p/2] and y 2 [�1.6, +1.6] with
2049 grid points in each direction. With this much higher resolution the upward slope
seen in (a) has disappeared. The prediction is described in the appendix A. The thin grey
line in each plot corresponds to the initial condition (IC).

development north of the equator, similar to a mirror image of what we showed in
figure 14(c) for the eastward jet. Treated as two separate problems, assuming that the
other region of instability remains unchanged, the prediction becomes very accurate
when the two mixing ranges do not overlap. Figure 18(b) is an example when the two
hypothetical ranges touch at the mixing boundary that they share. In this case, the
prediction is not good. But, for slightly larger shifts, the two mixing regions separate
and then the prediction rapidly becomes quite accurate. An example is shown in
figure 19(a) where we used y0 = 1.2. At t = 50 (dotted line) the northern region has
equilibrated with constant m = mc with no changes south of the equator, while at the
much later time t = 700 the southern instability shows signs of having caused a jump
north of the equator. But no flat mixed region is seen otherwise. This is, however,
due to the fact that the number of grid points used here (2049 ⇥ 2049), although
sufficient to resolve the vortices over most of the domain, did not completely resolve
those in the small southern instability region. However, since the two mixed regions
do not overlap, they can be treated separately numerically.

In figure 19(b) we show the adjustment in the southern part using a much reduced
domain and increased resolution, concentrated about the southern instability region of
figure 19(a) (details are in the caption). It is seen that for Re = 50k the slope in
the m-profile seen in figure 19(a) at t = 700 has disappeared in figure 19(b). Further
increases of Re increases the sharpness of the downward jump but for all Re clearly
the mixed level mc is very close to the predicted level (thick grey line). Thus, we
conclude that if the shift is sufficiently large, generally the two regions of instability
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equilibrate at different rates in different fashions: a rapid adjustment in the northern
instability region with a mixed level mc and mixing range y 2 [ yl, yr] determined by
(2.7), as for the eastward jet shown for example in figure 15(c), and an adjustment
with a downward jump north of the equator following the prediction from the linear
shear matching procedure described in the appendix A.

6. Discussion
In this study we have attempted to predict the outcome of pure inertial instability

for a number of near-equatorial flows. For the westward Gaussian jet (§ 3) we
encountered a situation not found in our previous studies of flows on the f -plane: there
are two adjacent regions of instability in each of which the instability occurs initially
independently from each other. This is clearly seen in figure 6(a). Subsequently, the
streamwise vortices associated with the meridional overturning motions in inertial
instability propagate inwards towards the equator and outwards to higher latitudes,
co-mingle and, while doing so, transport and mix absolute momentum such as to
establish with progressing time (see figure 4) a new momentum distribution close to
the prediction made in § 3.1, figure 3(a).

On the other hand, for the uniform shear flow in § 4, the instability starts in one
region (see figure 11a) as in our previous f -plane studies. In figure 11, it is seen that
the secondary meridional vortical motions propagate freely to the north of the equator
(y > 0 with equator at y = 0) but barely cross the equator when propagating southwards
(towards negative y). It is on the south-side (negative y) in panel (a) of figures 9
and 10 that the ‘jump’ develops in the m-profile, whereas on the northern side the
adjusted profile appears to connect smoothly with the original profile. The observed
final flow is close to what we marked as ‘observed’ in figure 8(a). In figure 8, we
also showed a number of other possibilities (out of an infinite number).

In the construction for the Gaussian shown in figure 3(a), we assumed the simplest
possible solution which was continuous at both y = yl = �ymix and y = yh = +ymix.
For an mc lower than that shown in figure 3(a), conservation of momentum (4.3) can
also be accomplished but requires two jumps at y = ±yh with yh > ymix. In that case,
however, the mixing width yh � yl would be larger than the width 2ymix. Since our
prediction for the Gaussian jet is well-confirmed in § 3.2, it might appear that perhaps
the constraint of minimum mixing width needs to be added to uniquely determine the
outcome of the nonlinear evolution. If that constraint were applied to the linear shear
flow, we would expect the particular case shown in figure 8(a) as a thick solid curve,
which has a mixing width yh � yl = 3/2, to be the final state. All other scenarios
that also satisfy the constraint of lower final energy have a larger mixing width than
this. Indeed, the observed robust solution, represented by that marked ‘observed’ in
figure 8(a) (thick dashed curve) has width yh � yl ⇡ 2.2 > 3/2. Hence, the evolution
cannot be characterized as obeying a ‘minimum mixing range’ constraint.

As we mentioned in §§ 3.2 and 4.1 the predictions all imply conservation of
total momentum but also conservation of total (domain-integrated) potential vorticity.
Therefore if potential vorticity conservation is also added as a constraint, no particular
prediction is singled out for the uniform shear case.

Alternatively, one might also have thought that since �, in the uniform shear case,
is symmetric about the position of maximum growth ymax = 1/2 (see figure 7), a
solution symmetric about y = 1/2, with jumps at both y = yl < 0 and y = yh > 0,
would be the final state. However, the final equilibrium reached through the turbulent
nonlinear evolution proves to be very asymmetrical with an abrupt transition close to
a jump discontinuity ( figures 9a and 10a).
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We encountered such jump discontinuities in our study of inertially unstable
circular vortices on the f -plane (see figures 12, 13 and 26 in Kloosterziel et al.
2007a). In some cases a single jump was needed to satisfy total angular momentum
conservation and at ever higher Reynolds numbers the numerical simulations showed
that the discontinuity indeed developed. But the location of the discontinuity could
be only at one exact location. Perhaps there is something fundamentally different
dynamically for unstable flows near the equator as compared to similar unstable
flows on the f -plane. Could it be that the vortex dynamics need to be considered in
detail where perhaps the vanishing of the Coriolis parameter at the equator is crucial?
The fact that for both the shifted eastward and westward jets when close to the
equator a jump discontinuity also develops (see figures 14c,d and 19b) makes these
questions even more important. Hopefully these observations will stimulate further
research into these matters.

Let us also draw attention to the fact that the linear matching procedure described in
the appendix A and used to predict the equilibrated flows shown in figures 14(c,d) and
19(b) is remarkable in that it essentially only uses the rather precisely determined non-
dimensional mixing level mc = 0.232 for the uniform shear flow and a rather simple
local approximation of the jet momentum distribution in the vicinity of the position
of maximal growth ymax (see e.g. figure 14a,b). This might prove useful in predicting
the equilibrium for different inertially unstable flows near the equator.

Finally, it may seem disappointing that for the westward jet with a slight shift,
no prediction appears possible. The rather smooth equilibrium momentum distribution
seen in figure 18(a) is clearly not a state with piecewise constant mixing levels as seen
in the prediction in figures 18(b) and 19(a) for the larger shifts. It seems reasonable to
expect that on the f -plane also such ‘unpredictable’ mixed flows will emerge if jets
are considered that also have two adjacent regions of instability with unequal rates
of initial normal-modes growth. This however has not been investigated and appears
not very important. In this study this is a direct consequence of the �-plane dynamics
with the Coriolis parameter f = �y changing sign crossing the equator and initial jets
that are not symmetric with respect to the equator, i.e. U(�y) 6= U(y).

The symmetric case of the westward flowing Gaussian jet of § 3 may appear to be
very special to the reader and one might wonder why this special case was studied in
such detail. The reason is that in various near-equatorial flow problems, the traditional
�-plane approximation used in this study is suspect and the full Coriolis force must
be considered (see for example Gerkema et al. 2008). Preliminary investigations
indicate that because the full Coriolis force implies vertical accelerations due to
zonal motions and zonal accelerations due to vertical motions, abandoning the
traditional approximation may have important consequences for the evolution of
inertial instability. One consequence is also that when considering the instability of
equatorial zonal flows, in a homogeneous fluid only the Gaussian jet of § 3 would be
a valid stationary flow. All other flows studied in this paper would not be stationary.
In the near future we hope to contrast the results from § 3 with the development of
the inertial instability without the traditional approximation.
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Appendix A. Shear matching procedure
The shear matching procedure we used to make the predictions shown in

figures 14(c,d) and 19 is based on a few observations. First, note that generally
if a uniform, stationary zonal flow is added to the problem, the dynamics for the
inertial instability is unchanged. That is, if a zonal flow with velocity u is changed
to u0 = 1U + u with 1U some constant velocity, then with the assumed symmetry
(@/@x = 0 for all fields), only the left-hand side of the v-equation in (2.1a�c) changes.
An additional term f (y)1U appears there which can be absorbed by an additional
stationary pressure gradient @1p/@y = �⇢f (y)1U. This does not affect the time
evolution and does not alter the Rayleigh discriminant �. So if instead of U = ⇤y
in § 4 we use the uniform shear flow U = 1U + ⇤y as the initial condition, a
new equilibrium emerges with non-dimensional m = 1M + mc in the mixed region
(1M = 1U), which remains y 2 [�0.464, 1.732] and mc = 0.232 (see § 4.2 and
figure 8a).

Secondly, in § 4 our choice of length scale L = ⇤/� and time scale T = 1/⇤ was
a matter of convenience. Other choices for L and T lead to different expressions. If
we choose L = (B/S) ⇥ (⇤/�) and T = S ⇥ 1/⇤, with B and S some arbitrary positive
numbers, the dimensional initial momentum (4.1) with an added constant velocity 1U
becomes non-dimensionally

M = 1M + Sy � (1/2)By2, y = y/L, (A 1)

with M non-dimensionalized with the velocity scale L/T = (B/S2) ⇥ ⇤2/�. When the
equations of motion are non-dimensionalized with these scales L and T , it follows that
more generally the non-dimensional momentum m = u � By2/2 is materially conserved
in the inviscid dynamics. The linear shear case with the added uniform flow is then
simply the initial non-dimensional flow u = U = 1U + Sy. Thus S stands for the
uniform shear dU/dy and B for �, but measured in different units. With these scalings
the mixed part of the equilibrium therefore approaches the non-dimensional value mc,

mc = 1M + 0.232(S2/B), (A 2)

between non-dimensional yl = �0.464(S/B) and yh = +1.732(S/B).
With these preliminary observations, we can now illustrate the procedure for the

eastward flowing jet with small shifts y0. We do this in figure 20 with an example
that has Ro = 4 and y0 = 0.5. We approximate M in the vicinity of the position of
maximal growth ymax with the first three terms of the Taylor series expansion (M0 ⌘
dM/dy, M00 ⌘ d2M/dy2):

M(y) ⇡ M(ymax) + M0(ymax)(y � ymax) + (M00(ymax)(y � ymax)
2)/2 (A 3)

which we rewrite as
M(y) ⇡ 1M + Sy � By2/2 ⌘ MS (A 4)

with

1M = U � U0 ⇥ ymax + (U00 ⇥ y2
max)/2, S = U0 � U00 ⇥ ymax, B = 1 � U00 (A 5a�c)

and U, U0, U00 evaluated at y = ymax.
The approximation MS is the dashed line in figure 20(a) and is identical to the

M-distribution of the linear shear profile given in (A 1). Note that B = 1 if U is
a uniform shear flow but for the Gaussian jet the curvature term U00(ymax) 6= 0 and



592 R. C. Kloosterziel, P. Orlandi and G. F. Carnevale

−0.20 0 0.23 0.50 1.00

3.5

4.0(a)

M
MS

m

0 0.23 0.44 1.00
−0.5

0

(b)

−0.50 −0.22 0 0.50 0.81 1.00

3

4

mc

y

yl yh

M
MS

Shear prediction

M
MS

Prediction

(c)

−0.50 −0.21 0 0.50 0.75 1.00

3

4

m

mc

y

(d )

FIGURE 20. Graphs illustrating the matching procedure with which we predict the
equilibrated flow that emerges from the unstable eastward jet shifted a small distance away
from the equator. (a) M (solid line) for Ro = 4 and y0 = 0.5 and the approximation MS
(dotted line) with MS = 1M + Sy � By2/2. (b) The Rayleigh discriminant � (solid line)
and the approximation �S =�ydMS/dy (dotted line). The instability region where � < 0 is
between y = y� = 0 (equator) and y = y+. (c) The expected equilibrium with a jump south
of the equator at y = yl = �0.464(S/B) and continuous north at y = yh = +1.732(S/B)
with mc = 1M + 0.232(S2/B) (dashed line) if MS is used as the initial condition (see
text). (d) The prediction for the jet only uses the mc level and assumes continuity of the
adjusted profile to the north. The jump location south of the equator is determined by
momentum conservation according to (4.3). In (a–c) u indicates the location of fastest
growth ymax. In this example 1M = 3.09, S = 3.48, B = 7.42 according to (A 5).

therefore B 6= 1 and S is not the shear at y = ymax, i.e. S 6= U0(ymax). If we write
�S = �ydMS/dy, then �S(ymax) = �(ymax), i.e. the most negative value of the actual
Rayleigh discriminant equals that of the approximation. In figure 20(b) �S is seen to
coincide with the actual Rayleigh discriminant � to a high degree of precision in the
region of instability where � < 0.

As we just explained, if the problem of the uniform shear flow is non-dimensionalized
with a different time scale and length scale, the non-dimensionalized shear flow takes
the form (A 4) and m = u � By2/2 is conserved. Therefore if MS is used as an initial
condition the equilibrium will approach the equilibrium with mc given in (A 2) with
the jump south of the equator at y = yl = �0.464(S/B) and connecting with the shear
profile at yh = +1.732(S/B). This solution is shown in figure 20(c) (dashed line).

Our prediction for the stable flow emerging from the unstable Gaussian jet is made
assuming:
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(I) the mixing level mc is that of the approximated ‘effective’ linear shear flow with
initial absolute momentum MS;

(II) the mixed region is continuous on the northern side, connecting with the M-
profile of the jet at the level M = mc at y = yh > 0;

(III) a jump occurs on the southern side at a location y = yl < 0 determined by
momentum conservation, i.e. according to (4.3).

Assumptions (II) and (III) for a linear shear flow would single out the possibilities
shown in figure 8(a). The ‘observed’ case shown there is based on the numerically
established mixing level mc used in assumption (I).

The prediction based on the assumptions (I)–(III) is shown in figure 20(d) as
the thick grey line. We used the word ‘effective’ linear shear because we did not
approximate the Gaussian profile at y = ymax by U ⇡ U(ymax) + U0(ymax)(y � ymax) but
used the higher-order, quadratic approximation (A 3).

In § 5.1 it is seen in figure 14(a,b) that for larger shifts y0 than used in figure 20,
the approximations MS and �S become less precise. Nonetheless, figure 14(c,d) shows
that the prediction agrees very well with the observed equilibrium flow that emerges
from the inertial instability.

For the prediction in § 5.3 we use essentially the same procedure to predict the
outcome of the instability of the westward flowing jet. But there are now two
instability regions. The prediction is actually a combination of two predictions: one
for the northern instability region and one for the southern region. Each can be
treated as if the other region remains unchanged. Thus we assume that the southern
instability region equilibrates through a jump development north of the equator,
similar to a mirror image of what we showed in figure 14(c) for the eastward jet.
The jump position and the mixed level m(S)

c in the southern region are determined
with the linear shear matching procedure described above, which conserves total
momentum (the superscript ‘(S)’ denotes south). A mirror images of the panels in
figure 20 would explain it in detail, but it suffices to say that the matching takes
place at ymax < 0 and the jump is predicted north of the equator at some y = y(S)

h > 0
with the mixed region (with m = m(S)

c ) connecting smoothly with the M-profile of the
jet at y = y(S)

l < 0. Assumptions (II) and (III) are adjusted in a trivial way for this
mirrored problem. The values of y(S)

l and y(S)
h are determined by (4.3) with mc = m(S)

c .
The northern instability is assumed to cause mixing to a constant level m(N)

c between
y(N)

l and y(N)
h again conserving total momentum, connecting both at y(N)

l and y(N)
h with

the M-profile. This is as sketched in figure 1(b).
The combination of the two predictions will also conserve momentum and imply an

inertially stable flow. The prediction in figure 18(b) is an example for which y(S)
h = y(N)

l
and there the predicted mixing level jumps downwards from m(S)

c to m(N)
c . For smaller

shifts y0, as in figure 18(a), hypothetically the two mixing regions would overlap
(y(S)

h > y(N)
l ) and no prediction is possible. For larger y0 (see figure 19) the prediction

agrees very well with the observations. This is when the two mixing regions are
separated.
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