1 2	In press in: Whales, Whaling and Marine Ecosystems, James Estes, ed., University of California Press, 12/03
3	
4	
5	
6	
7	
8	
9	Bigger is Better: The Role of Whales as Detritus in Marine Ecosystems
10	
11	
12	
13	
14	Craig R. Smith
15	Department of Oceanography
16	University of Hawaii at Manoa
17	1000 Pope Road
18	Honolulu, HI 96734
19	USA
20	Email: csmith@soest.hawaii.edu
21	
22	
23	

24 *Abstract.* Dead whales are the largest, most food-rich detrital particles in the ocean, typically containing $>10^6$ g of organic carbon in energy-rich lipids and proteins. Most whales suffering 25 26 natural mortality appear to sink rapidly to the deep-sea floor, with little loss of tissue during 27 transit. Although whale detritus constitutes a small proportion of total organic flux to the deep 28 sea, whale falls provide energy-rich habitat islands that are frequent on regional scales (e.g., with 29 a mean nearest neighbor distance of <16 km in the northeast Pacific). Experimental studies on 30 the California slope demonstrate that deep-sea whale falls support a succession of diverse 31 macrofaunal assemblages, characterized in sequence by (1) mobile scavengers, (2) enrichment 32 opportunists, and (3) sulfophiles (including chemoautotrophs); the entire successional process 33 lasts for decades on large carcasses. The enrichment-opportunist and mobile-scavenger stages 34 harbor at least 32 species that appear to be whale-fall specialists. Whale detritus in pelagic, 35 continental shelf, and intertidal ecosystems does not appear to be a significant source of energy 36 or habitat for novel animals, although some mobile, intertidal scavengers (e.g., polar bears), may 37 obtain significant energetic benefits from whale carrion. Commercial whaling drastically 38 reduced the occurrence of detrital whales in all marine ecosystems, and is likely to have caused 39 substantial species extinction in deep-sea whale-fall assemblages due to loss of 65-90% of the 40 whale-fall habitat. The species extinctions were likely most severe in the North Atlantic where 41 whales were decimated in the 1800's, and may be ongoing in the Southern Ocean and northeast 42 Pacific, where intense whaling occurred into the 1960's and 1970's. Whaling may also have 43 caused a decline in highly mobile coastal scavengers, in particular the California condor, that 44 depended on stranded-whale carrion. Experimental implantation of lipid-rich, whale-bone 45 packages in a variety of ocean basins could help to determine whether whaling induced 46 extinctions have modulated biodiversity levels of whale-fall communities.

47 Key words: whale falls; great whales; whaling; detritus; succession; extinctions; biodiversity;
48 carrion; scavengers; opportunists; chemoautotrophs; chemosynthesis

- 49
- 50

INTRODUCTION

51

52 Organic detritus plays fundamental roles in the structure and dynamics of all marine 53 ecosystems. The importance of a particular type of organic detritus (i.e., non-living organic 54 matter) in an ecosystem depends on a number of key characteristics, including: (1) The size of 55 the detrital particles; (2) The nature of organic materials contained within the particles (e.g., the 56 presence of energy-rich lipids and proteins); (3) The flux of organic carbon, or limiting nutrient, 57 entering the ecosystem in the form of the detritus (especially relative to fluxes in other forms); 58 (4) The frequency of occurrence of the detrital particles (essentially flux divided by particle 59 size). These characteristics constrain the use of a particular detrital type by detritivores, and 60 ultimately control the ecological and evolutionary opportunities (and selective milieu) provided 61 by the detritus.

62

63 Dead-whale detritus has remarkable characteristics, and thus may play unusual roles in 64 marine ecosystems. Cetaceans are by far the largest parcels of organic matter formed in the 65 ocean, with adult body masses of the nine largest species, or the "great whales," ranging from 5 66 to >160 tonnes (e.g., Lockyer 1976). The enormous size of adult great whales provides a refuge from most predators with the consequence that much of the natural whale mortality may occur 67 68 from nutritional or disease stresses sustained during migrations (e.g., Gaskin 1982, Corkeron and 69 Conner 1999, Moore et al. 2003). Based on relative population production rates, even the 70 successful whale predators, i.e., the killer whales (Orcinus orca), appear to utilize a small

proportion of adult great-whale production. When predation events do occur, the
disproportionate mass of a great whale, and the sinking of carcasses, often precludes predators
from consuming most of the carcass (e.g., Silber et. al. 1990, Guinet et al. 2000). Thus, in
contrast to most other marine animals, great whale biomass typically enters the marine food web
as fresh carrion parcels many tonnes in size (Britton and Morton, 1994).

76

77 A fresh detrital whale consists mostly of soft tissues (87-92% by weight, Robineau and de Buffrénil, 1993), with a 40 t carcass containing 1.6×10^6 g C in labile organic compounds 78 79 such as lipids and proteins. As a consequence, dead whales are among the most nutrient rich of 80 all detritus on both a weight- and particle-specific basis. The cetacean skeleton is also laden with 81 organic material, with large bones often exceeding 60% lipid by weight (Deming et al. 1987, 82 Smith and Baco 2003, Schuller et al. 2004). Thus, the ossified skeleton of a 40-t whale may 83 harbor 2000-3000 kg of lipid (Smith and Baco 2003), potentially providing substantial 84 nutritional resources, as well as habitat, for a variety of organisms.

85

Due to large body size, whale populations have low production rates compared to most other organisms in the ocean (Katona and Whitehead 1988); thus, when averaged over large areas, the flux of carbon through whale detritus is small relative to total detrital flux, even in the most organic-poor ecosystems such as the abyssal seafloor (Jelmert and Oppen-Bernsten 1996; see calculations below). Nonetheless, end-member characteristics in particle size and quality potentially allow whale detritus to play disproportionate roles in the structure and evolution of marine ecosystems.

94	Below I discuss current ecosystem responses to the input of whale detritus. I then					
95	estimate the effects of industrial whaling on the production of dead whales, and speculate on the					
96	consequences of these changes for marine ecosystems. Finally, I propose an experimental					
97	approach to test some of these speculations.					
98						
99	CURRENT ECOSYSTEM RESPONSES TO WHALE DETRITUS					
100						
101	Production and initial fate of whale detritus					
102						
103	Great whales suffering natural mortality are typically in poor nutritional condition and					
104	negatively buoyant upon death; as a consequence, most whale carcasses initially sink towards the					
105	seafloor (Ashley, 1926, Schafer 1972, Gaskin 1982, Guinet et al. 2000, Smith and Baco 2003, D.					
106	W. Rice personal comm.). Because there appear to be few scavengers on whale sized particles in					
107	midwater (Britton and Morton 1994), and because whale carcasses will sink rapidly following					
108	lung deflation from hydrostatic pressure, it is extremely likely that relatively little tissue removal					
109	will occur during a dead whale's descent to the seafloor. If a whale carcass sinks in deep enough					
110	water, hydrostatic pressure will limit the generation of buoyant decompositional gases through					
111	reduction of gas volume and increased gas solubility (Allison et al. 1991). At depths greater than					
112	1000 m, the amount of microbial tissue decay required to generate carcass buoyancy (e.g., >67 %					
113	of carcass mass through fermentation) is prohibitive; the soft tissue of a carcass will be removed					
114	by scavengers or disintegrate from microbial decomposition long before positive buoyancy can					
115	be generated, and the carcass will remain on the seafloor (Allison et al. 1991). At shallower					
116	depths, there is some probability that gas generation could refloat a whale carcass, although this					

will depend in part on the outcome of competition for soft tissue between scavengers and
microbes. It is interesting to note that an essentially intact gray-whale carcass has been found at
150 m depth in Alaskan waters, suggesting that, in cold waters where whales often abound, even
15 atm of pressure may prevent decompositional flotation of a whale carcass (Smith and Baco,
2003).

122

123 Based on this reasoning, most great-whale "detritus" will be rapidly deposited onto the 124 seafloor. Because 88% of the ocean is underlain by ocean bottom deeper than 1000 m, the vast 125 bulk of great-whale detritus is very likely to begin recycling at the deep-sea floor. In contrast, 126 while whale strandings receive prominent play in the mass media, a relatively small proportion 127 of great-whale detritus appears to reach the intertidal zone. For example, out of ~1600 gray 128 whales (*Eschrichtius robustus*) dying annually in the Northeast Pacific (Smith and Baco, 2003, 129 and references therein), only ~50 per year become stranded along the shoreline in a typical year, 130 and the record 273 strandings in 1999 represented less than 20% of average annual gray-whale 131 mortality (Rugh et al., 1999). Because most whale detritus likely ends up at the deep-sea floor, 132 the deep-sea ecosystem response to great-whale detritus is discussed first.

133

134

Deep-sea effects of whale detritus

135

When averaged over the entire deep-sea floor, the flux of particulate organic carbon (POC) in the form of great-whale carcasses is modest. The flux of small POC to the deep-sea floor ranges between ~0.3 and 10 g C_{org} m⁻² y⁻¹ (e.g., Smith and Demopoulos, 2003). For comparison, Smith and Baco (2003) estimated that approximately 69,000 great whales die each 140 year. If we assume that whale biomass is 5% organic carbon, that the average weight of a dying great whale is 40 t, and that the ocean covers $3.6 \times 10^8 \text{ km}^2$, the flux of organic carbon to seafloor 141 from whale falls averages $3.8 \times 10^{-4} \text{ g C}_{\text{org}} \text{ y}^{-1}$ (see Jelmert and Oppen-Bernsten (1996) for similar 142 143 calculations). This is only about 0.1% of the background POC flux to the deep-sea floor under 144 the most oligotrophic central gyre waters. Even if whale mortality and flux is 10-fold greater 145 along migration corridors or in whale feeding grounds, background POC flux will also be higher 146 in these regions because they typically occur along ocean margins or oceanographic fronts. 147 Thus, it is difficult to imagine that the flux of great-whale detritus would exceed 0.3% of seafloor 148 POC flux anywhere in the deep sea.

149

150 However, whales do not sink as an even veneer of organic matter, but rather as giant organic-rich lumps (e.g., Butman et al. 1995). The ~50 m² of sediments immediately underlying 151 152 a fresh whale fall sustains, in a single pulse, the equivalent of about 2000 yr of background POC 153 flux at abyssal depths (Smith and Baco 2003). In addition, these massive enrichment events can 154 be common on regional scales. For example, Smith and Baco (2003) estimated conservatively 155 that within the North Pacific gray-whale range, whale falls occur annually with an average 156 nearest neighbor distance of <16 km. If whale falls produced organic-rich "islands" at the food-157 poor deep-sea floor for extended time periods (e.g., Stockton and DeLaca, 1982), they could 158 support archipelagos of specialized communities, much as do hydrothermal vents and cold seeps 159 (Van Dover, 2000).

160

How do deep-sea ecosystems respond to the massive flux event of a whale fall? Although
the deep-sea floor is remote and relatively poorly studied, there is now substantial evidence that

163	sunken whales create persistent, ecologically significant habitats. Most information concerning					
164	the seafloor fate and impacts of whale detritus comes from the California slope, beneath the					
165	migration corridor of the northeast Pacific gray whale. I will review the California-slope data					
166	first, and then summarize knowledge from other deep-sea regions.					
167						
168	The first natural whale-fall community was discovered on the California slope in 1987					
169	(Smith et al. 1989). Study of this assemblage led to the hypothesis that deep-sea whale falls pass					
170	through four successional stages (Bennett et al. 1994):					
171						
172	1) A mobile scavenger stage, during which necrophagous fish and invertebrates rapidly					
173	remove whale soft tissue,					
174						
175	2) An enrichment-opportunist stage, during which dense assemblages of heterotrophic					
176	bacteria and invertebrates colonize the lipid-laden skeleton and surrounding					
177	sediments enriched by whale-tissue "fallout,"					
178						
179	3) A sulfophilic stage, during which chemoautotrophic assemblages colonize the					
180	skeleton as it emits sulfide from anaerobic decomposition of internal lipids, and					
181						
182	4) A <i>reef stage</i> , during which the hard, elevated skeletal remains are colonized by					
183	suspension feeders exploiting flow enhancement.					
184						
185						

Experimental, time-series studies of whale falls at depths between 1000 and 2000 m on the
California slope provide strong evidence for the first three successional stages; these data are
reviewed below.

189

190 The mobile-scavenger stage. Whale carcasses (n=2, wet weights of 5 and 35 t) studied at 0.25 191 and 1.5 months after arrival at the seafloor exhibited community patterns consistent with a 192 mobile scavenger stage (Fig. 1). Within this time frame, carcasses were largely intact, with the 193 predominant scavengers including hundreds of hagfish (mostly *Eptatretus deani*), and several 194 sleeper sharks (Somniosus pacificus) 1.5-3.5 m in length (Smith at al., 2002). Other important 195 scavengers included many thousands of small (~0.5 cm long) lysianassid amphipods on one 196 carcass, and large lithodid crabs, possibly Paralomis multispina, on the other (Smith and Baco, 197 2003). During this stage, hagfish were drawn from minimum distances of 0.6 - 0.8 km (Smith 198 and Baco, 2003) and the stage lasted approximately 0.3 - 1.5 yr, depending on carcass size (5 or 199 35 t). Time-lapse photography and *in situ* sampling suggested that most of the soft tissue was 200 directly removed by necrophages, especially S. pacificus, even though putrefaction was 201 occurring within the whale flesh. The resultant tissue removal rates estimated for the scavenger assemblages $(40 - 60 \text{ kg d}^{-1})$ imply that a 160 t blue whale (*Balaenoptera musculus*) carcass 202 203 might support a mobile scavenger stage for as long as 7-11 yr. A total of 38 species of 204 megafauna and macrofauna have been identified from whale falls in the mobile scavenger stage 205 (Baco-Taylor, 2002, Smith and Baco, 2003), with most species apparently being generalized 206 scavengers. Calculations combining whale-fall spacing (for *Eschrichtius robustus* in the 207 northeast Pacific) with scavenger foraging rates and fasting times indicate that large mobile 208 scavengers such as rattails, hagfish and lysianassids are unable to specialize on whale falls, given

current stock sizes of great whales in the northeast Pacific (Smith and Baco, 2003). Nonetheless,
the scavenger assemblages on the California slope are well adapted to recycle the soft tissue of
whale carcasses over surprisingly short time scales (i.e., months to years).

212

213 **The enrichment-opportunist stage.** Communities consistent with an enrichment-opportunist 214 stage were documented on carcasses (n=3) ranging in size from 5-35 t at the seafloor for 0.3 - 35215 4.5 yr. During this stage, sediments within 1-3 m of the skeleton were heavily enriched in 216 organic matter (in some cases exceeding 10% organic carbon by weight) by tissue particles 217 dispersed by scavengers. Organic-rich bones and sediments during this time were colonized by 218 extremely high densities of heterotrophic macrobenthic polychaetes, mollusks and crustaceans 219 (Fig. 1)(Smith et al. 2002, Smith and Baco 2003). In some areas, bacterial mats also covered 220 sediments nearby the skeleton. Macrofaunal densities in the sediments within 1-3 m of the carcass attained 20,000 - 45,000 individuals m⁻² in as little as 4 months (Fig. 2); these densities 221 222 exceeded background levels by an order of magnitude, and are the highest ever reported for 223 macrofauna below 1000 m depths (Smith and Baco 2003). A number of the most abundant 224 species in organic-rich sediments and on whale bones are new to science (e.g., two dorvilleid 225 polychaetes, a chrysopetallid polychaete, and a gastropod) and could be whale-fall specialists; 226 other species abundant on the whale falls during this stage have been collected at other types of 227 organic enrichment (e.g., fish falls, Smith 1986) and are likely to be generalized opportunists. 228 Despite high macrofaunal densities near the whale carcasses, species diversity adjacent to the 229 skeletons was low (e.g., only 18 macrofaunal species)(Fig. 2). This rapid colonization by a high-230 density, low-diversity assemblage is strongly reminiscent of shallow-water opportunistic 231 communities around sewage outfalls and beneath salmon pens (e.g. Pearson and Rosenberg

1978, Weston 1990, Zmarzly et al. 1994), and indicates that intense pulses of organic enrichment
(e.g., whale falls, large kelp falls, etc.) are common enough at slope depths off California to have
allowed the evolution of enrichment opportunists (Smith and Baco 2003). The duration of the *enrichment-opportunist stage* is likely to vary substantially with whale-carcass size, and ranges
from <2 yr for a 5-10 t carcass, to at least 4.5 yr for a 35 t carcass.

237

238 The sulfuphilic stage. Following scavenger removal of soft tissue from great-whale carcasses 239 on the California slope, the recycling of lipids trapped within the skeleton (5-8% of total body 240 mass) appears to be dominated by anaerobic microbial decomposition (Smith 1992, Deming et 241 al. 1997, Smith and Baco 2003). Sulfate reduction is particularly important, providing a 242 sustained efflux of sulfides that can support sulfide-based chemoautotrophic bacteria, both free-243 living and endosymbiontic within the tissues of mussels, clams, and vestimentiferan polychaetes. 244 Such a sulfophilic stage, composed of chemoautotrophs and other sulfide-tolerant species, has 245 been documented on four California-slope whale skeletons at the seafloor for > 2 yr (Bennett et 246 al. 1994, Smith and Baco 2003). This stage is characterized by several key components 247 including (Smith and Baco 2003):

248

249 1) Mats of heterotrophic and chemoautotrophic bacteria growing on bone surfaces, and250 within bone sutures and trabaculae,

251 2) Large populations (>10,000 individuals per skeleton) of the mussel *Idas washingtonia*,
252 which harbors chemoautotrophic endosymbionts,

253 3) Rich macrofaunal communities (>30,000 individuals) composed of bivalves, isopods,
254 amphipods, polychaetes, limpets, and snails constituting at least three trophic levels.

255

256 Whale-fall communities in the sulfophilic stage are remarkably species rich, with an average of 257 185 species per skeleton; they appear to have the highest local species richness of any known 258 deep-sea, hard-substrate community (Baco and Smith 2003). Many of the species from the 259 sulfophilic stage are extremely abundant on whale skeletons, but have rarely, if ever, been 260 collected in surrounding habitats; they thus may be specialists that have evolved in sulfide-rich, 261 whale-skeleton habitats (see discussion below). The sulfophilic stage also exhibits faunal overlap 262 with other deep-sea, chemosynthetic communities, sharing 11 species (including vesicomyid 263 clams, bathymodiolin mussels, and a vestimentiferan polychaete) with hydothermal vents, and 20 264 species with cold seeps (Baco et al., 1999, Smith and Baco 2003).

265

Large whale skeletons on the California slope sustain rich sulfophilic communities for extended time periods. Schuler et al. (2004) used 210 Pb/ 226 Ra disequilibrium and lipid degradation rates in whale bones to show that large whale skeletons may support sulfophilic communities for 40 – 80 yrs. The skeletons of juvenile gray whales appear to support the sulfophilic stage for much shorter periods of time (e.g., several years) because the poorly calcified bones disintegrate much more rapidly, releasing the lipid reservoir (Baco-Taylor 2002, Smith and Baco 2003).

273

Whale-fall succession in other regions. Considerably less is known about deep-sea community
response to whale falls beyond the California slope, but there is evidence that a succession of
scavengers, enrichment opportunists and sulfophiles will also colonize carcasses in other regions.
For example, numerous studies suggest that mobile scavengers will feed voraciously on fresh

278 whale falls throughout the well-oxygenated deep sea (Isaacs and Schwartzlose 1975, Hessler et 279 al. 1978, Jones et al. 1998, Smith and Baco 2003). Furthermore, organic-rich sediments with an 280 abundant microbial assemblage are documented beneath a whale fall in the western Pacific 281 (Naganuma et al., 2001), and enrichment opportunists are known from sites of organic loading in 282 a range of deep-sea settings (e.g., Turner 1977, Grassle and Morse-Porteus 1987, Desbruyeres 283 and Laubier 1988, Levin et al. 1994, Snelgrove et al. 1994, Kitazato and Shirayama 1996, 284 Snelgrove and Smith 2002). Finally, sulfophilic assemblages appear to be widespread on whale 285 carcasses in the deep sea because bathymodiolin mussels with chemoautotrophic endosymbionts 286 have been recovered from whale bones in the North and South Atlantic, and in the northwestern 287 and southwestern Pacific, at depths ranging from 220 to 4037 m (Wada et al. 1994, Naganuma et 288 al. 1996, 2001, Baco-Taylor 2002, Smith and Baco 2003). Sulfophilic assemblages have also 289 been found on fossil deep-sea whale skeletons as old as 30 myr (Squires et al. 1991, Goedert et 290 al. 1995), indicating that whale skeletons have supported chemoautotrophic communities over 291 evolutionary time (Distel et al. 2000). Thus, succession on whale falls in the deep-sea in general 292 is likely to be functionally similar to that on the California slope, and this successional process, 293 including colonization by sulfophiles, is likely to have occurred for at least 30 myr. 294 Nonetheless, species structure and rates of successional change may differ dramatically in other 295 parts of the deep sea, and patterns of succession are likely to have varied following the radiation 296 of large whales since the Miocene (Gaskin 1982, Distel 2000). In particular, in the modern 297 ocean in regions such as the North Pacific central gyre, where whale falls should be much less 298 common and seafloor communities are much more depauperate (e.g., Smith and Demopoulos 299 2003), what $\frac{1}{2}$ where $\frac{1}{2}$ succession is expected to be extremely protracted (potentially lasting > 100 yr) 300 and species-poor compared to the California slope.

301

302

303	Biodiversity and whale-fall specialists. Deep-sea whale-fall communities, in particular those in					
304	the sulfophilic stage, may harbor remarkable levels of both local and global species richness.					
305	Whale falls are perhaps the least-studied chemosynthetic habitats in the deep sea, having been					
306	intensively sampled only along the California slope. Nonetheless, 407 animal species are known					
307	from whale falls, with 91% coming from California-slope whale falls alone (Baco and Smith					
308	2003). This rivals the global species richness (469) known for far more intensively studied					
309	hydrothermal vents (Tunnicliffe et al. 1998), and substantially exceeds the number (~230) known					
310	from cold seeps (Sibuet and Olu 1998, Baco and Smith 2003). The relatively high species					
311	richness on lipid-rich whale skeletons likely results from the broad array of nutritional modes					
312	sustained by whale falls; a whale skeleton supports sulfophiles (e.g., species with					
313	chemoautotrophic endosymbionts), bone-matrix feeders, saprophages, generalized organic-					
314	enrichment respondents, and typical deep-sea deposit feeders and suspension feeders, all in close					
315	proximity (Baco and Smith 2003). Clearly, whale falls are heavily exploited habitat islands at					
316	the deep-sea floor.					

317

There is increasing evidence that whale falls provide habitat for a specialized fauna, i.e., a 318 319 suite of species that is specifically adapted to live on whale remains. Bennett et al. (1994) first 320 noted a bimodal pattern in the frequency distribution of species abundances on whale skeletons 321 suggesting the presence of core species particularly adapted to whale-bone niches (qualitatively 322 similar patterns are observed in dung and carrion assemblages in terrestrial environments). To date, 36 macrofaunal species were first collected on whale falls, and 28 of these have not been 323

found in any other habitat (Table 1). A number of the species thus far unique to whale carcasses are extremely abundant, indicating that they are well adapted to whale falls and can attain substantial population sizes given suitable conditions. The absence of these species in samples from other related habitats (e.g., wood falls, algal falls, enriched sediment trays, hydrothermal vents, and cold seeps), suggests that they may indeed be endemic to whale falls.

329

330 In addition to the 28 potential whale-fall endemics, there are at least five other species 331 that may be dependent on whale falls (Table 2). These are species that attain extraordinary 332 abundance on whale carcasses, but occur only as isolated individuals in other habitats. It is 333 likely that a large proportion of the total individuals within these species live on whale falls, 334 essentially making them whale-fall specialists (i.e., their evolution has been largely shaped by 335 selective pressures at whale falls)(Bennett et al., 1994). This brings the total number of potential 336 whale-fall specialists to 33. This number of potential whale-fall specialists is likely to rise 337 substantially as the diverse dorvilleid (estimated to be 40 species), amphipod, and copepod 338 components of the California-slope whale-fall fauna are rigorously examined by taxonomists, 339 and as whale-fall communities are more intensively sampled throughout the world ocean.

340

341 It should be noted that potential whale-fall specialists span a broad range of taxonomic 342 and functional groups. These "specialists" come from five different phyla, and appear to include 343 whale-bone feeders (*Osedax*, a sipunculid and some limpets), bacterial grazers (some limpets, 344 *Ilyaracha profunda*), species utilizing chemoautotrophic endosymbionts (the bathymodiolins, 345 thyasirid, vesicomyid, and siboglinid), deposit feeders (the ampharetids), facultative suspensions 346 feeders (the bathymodiolins), and predators (the polynoids, *Paralomis manningi*)(see discussion

of food webs above). This diversity suggests that a variety of taxa and trophic types have			
become specifically adapted to whale-fall niches, and depend (in aggregate) on a variety of			
resources provided by the whale-fall habitat.			
Whale detritus at shelf depths			
Remarkably little is know about the ecosystem response to whale falls at shelf depths.			
Because seafloor POC flux rates are typically much higher on the shelf than in the deep sea, the			
flux of organic carbon to the shelf floor in the form of whale detritus likely makes an			
insignificant contribution to the nutrient budgets of the continental shelf (e.g., Katona and			
Whitehead 1988). Exceptions to this generalization might occur in calving lagoons, such as Ojo			
de Liebre and San Ignacio Lagoons in Mexico, where gray-whale strandings, and mortality in			
general, are likely to be concentrated in unusually small areas (e.g., Rugh et al. 1999).			
Whale falls are certain to attract scavenger aggregations and undergo community			
succession on the continental shelf floor, but only very limited, anecdotal information concerning			
such shelf processes is available. At 150 m depths off Alaska, a gray-whale carcass with			
substantial remaining soft tissue had attracted dense clouds of scavenging lysianassid amphipods			
(T. Shirley, personnal communication). At 90-m depths in the Strait of Juan de Fuca near San			
Juan Island, a 30 t fin whale (Baleanoptera physalus) placed at the seafloor for three months			
attracted a moderate diversity of facultative fish and shrimp scavengers, although little tissue			
removal had occurred (A. Shepard, D. Duggins and C. Smith, unpublished data). In this			
relatively high-flow setting, no bacteria mats were visible on the carcass, possibly due to			

disruption by currents. After 28 months at the seafloor, the fin-whale carcass had been strippedof soft tissue (D. Duggins, personal communication).

372

373 There are very few data to indicate whether lipid-rich whale bones support a specialized 374 fauna at shelf depths. The mussel *Myrina pacifica*, which is thus far known only from whale 375 bones, has been collected at 220 m on the Japanese slope (Baco-Taylor 2002, Smith and Baco 376 2003), but this may reflect the upper end of a bathyal (i.e., deep-sea) depth distribution. In 377 addition, a new species of Polyplacophora (*Callistochiton* sp.) has been collected on whale bones 378 from 240 m off Concepcion, Chile (J. Sellanes, personnal communication), but once again it is 379 unclear whether this is predominantly a shelf or bathyal species. It is conceivable that whale 380 falls, like hydrothermal vents (Van Dover 2000), only support an endemic fauna in the deep sea, 381 below depths of a few hundred meters. If true, this contrasts with other organic-rich substrates, 382 in particular wood falls, which support highly specialized (albeit, non-overlapping) species in 383 both the deep sea and shallow water (e.g., Turner 1973, 1977, Coan et al. 2000). Clearly, the 384 dynamics and biogeography of whale falls at shelf depths merit substantial further study. 385 386 Whale detritus in the intertidal

387

Only a small percentage of great-whale mortalities result in strandings in the intertidal, even for essentially coastal species such as the gray whale, *E. robustus* (Jones et al. 1984). For example, roughly 50 gray whales in the northeast Pacific, comprising < 5% of annual mortality, come ashore in a typical year (Rugh et al. 1999, Moore 1999, Smith and Baco 2003). This represents approximately one gray-whale stranding per year per ~200 km of coastline along the

393 ~10,000-km gray-whale migration route, or a flux of organic carbon from whale detritus of ~10 g C_{org} m⁻¹y⁻¹ (assuming each whale carcass weighs 30 t and is 5% organic carbon). The flux of 394 395 drift carrion from other sources (e.g., jellyfishes, fishes, turtles, seabirds, and other marine 396 mammals) to beaches in the northeast Pacific, based on very limited measurements, appears to be 397 roughly an order of magnitude higher (Columbini and Chelazzi 2003). Thus, whale detritus (if 398 left undisturbed on the beach) appears to be a relatively minor source of carrion for intertidal 399 scavengers (e.g., Rose and Polis 1998). However, it has been suggested that cetacean carcasses 400 are important in the diet of some highly mobile terrestrial scavengers such as polar bears (Ursus 401 maritima) and Arctic fox (Alopex lagopus), and that whale carrion may have helped coastal 402 populations of California condors (Gymnogyps californianus) to survive following the extinction 403 of the Pleistocene terrestrial megafauna (Katona and Whitehead 1988). Reliance on whale 404 carrion by local populations of terrestrial scavengers seems especially likely around calving 405 lagoons, such as Ojo de Liebre and San Ignacio in Mexico, where whale strandings are 406 especially frequent (Rugh et al. 1999).

407

408 Very few data appear to be available on the natural recycling of stranded whale carcasses, 409 but some generalizations appear possible. Although scavengers, such as seabirds, shorebirds, 410 polar bears, foxes and vultures, may remove some of the soft tissue from whale carcasses (e.g., 411 Schafer 1972, Katona and Whitehead 1988, Columbini and Chelazzi 2003), stranded cetaceans appear to be recycled primarily by microbes and terrestrial arthropods (e.g., flies, ants, and 412 413 trogid, dermestid, and silphid beetles) (Columbini and Chelazzi 2003). Carcass reduction may 414 take many months or even many years if mummification occurs (Schafer, 1972), and involves a 415 variety of decompositional stages (e.g., bloat, internal-liquification, and dry-tissue stages) with

successional patterns resembling those for large carcasses in fully terrestrial habitats (Schafer,
1972, Cornaby 1974, Columbini and Chelazzi 2003). Thus, whale detritus stranded on beaches
appears to be largely removed from marine food webs, with very little direct impact on marine
ecosystems. In essence, whale strandings constitute a small, natural detrital flux from the ocean
to land.

- 422

Whale detritus in the pelagic realm

423

424 Whales that die in shallow water become inflated with decomposition gases within days, 425 becoming buoyant detrital particles that may drift at the sea surface for weeks. The total flux of 426 organic material in the form of whale detritus clearly is very small compared to other pelagic 427 detrital sources (whale detrital carbon flux is < 0.0005% of primary production rates even in 428 oligotrophic regions), suggesting the energy input from whale detritus is not significant. Very 429 limited observations indicate that during the early stages of decomposition, floating whale 430 carcasses may be scavenged by sharks (e.g., blue sharks, Prionace glauca, and tiger sharks, 431 *Galeocerdo cuvier*) and seabirds, although massive tissue removal is not usually observed (C. 432 Smith, personal observations). Over periods of weeks, microbial decay weakens the cetacean 433 connective tissues, and large skeletal components with tissue attached (e.g., the jaw, skull, 434 sections of vertebrae) break off the carcass and sink to the seafloor (Schafer 1972). Thus, even 435 for whales that die and initially float at the sea surface, much of the organic matter contained in 436 the carcass ultimately becomes recycled at the seafloor. The small flux and short residence 437 time of whale detritus at the sea surface suggests that there is little opportunity for whale 438 carcasses to support a specialized community in pelagic ecosystems.

439

- 440
- 441

IMPACTS OF WHALING ON THE ROLES OF WHALE DETRITUS

442

Hunting by humans caused massive reductions of great whale populations throughout the
world oceans. The patterns of whale population depletion, carcass utilization and, in some cases,
whale population recovery, differed substantially over time, among cetacean species, and among
ocean basins, with the consequence that whaling has had complex effects on the availability of
great-whale detritus to marine ecosystems. Below, I attempt to reconstruct patterns of whaledetritus depletion resulting from commercial whaling and speculate on some of the
consequences, particularly for deep-sea whale-fall communities.

- 100
- 451

Effects of whaling on the production of whale detritus

452

453 To evaluate the impacts of whaling on the production of whale detritus, it would be 454 extremely useful to reconstruct the population trajectories of exploited cetaceans in each ocean. 455 Despite the efforts of the International Whaling Commission (IWC) and numerous scientists, 456 such reconstructions are generally not possible, and estimates of pre-whaling cetacean population 457 levels remained controversial and politically charged (e.g., Roman and Palumbi 2003). It does 458 seem clear that great whales, especially coastal species such as the Atlantic gray whale, began to 459 be intensively exploited in the North Atlantic in the early 1800's (Tonnenssen and Johnson 1982, 460 Whitehead 2002). Whaling efforts then intensified in the tropical and temperate Pacific in the 461 mid 1800's, in Antarctic waters after 1910, and in higher latitudes of the North Pacific and in the

462 Bering Sea as late as the 1950's (IWC 1993, Whitehead, 2002, Springer et al. 2003, E. Danner, 463 personal communication based on IWC catch statistics, Fig, 3). However, for many large species 464 (e.g., fin, sperm, sei, blue, humpback, and minke whales), the bulk of the worldwide take 465 occurred between approximately 1920 and 1980 (i.e., during 1-2 generations of a great whale), 466 with the IWC estimating that roughly 2 million great whales were harvested from the oceans 467 over this period (Fig. 3)(E. Danner, personal communication). For all but the sperm whale, it 468 appears safe to say that great-whale population sizes were reduced an order of magnitude or 469 more by whaling (e.g., IWC 1993, Best 1994, Roman and Palumbi 2003); for sperm whales, a 470 reduction to ~30% of pre-whaling values appears to be the best estimate (Whitehead 2002). 471 Thus, as a rule of thumb for estimating whaling effects on the production of whale detritus, I will 472 assume a 10-fold reduction in great-whale standing stock. In many cases, especially in the North 473 Atlantic, boreal North Pacific and Southern Oceans, great-whale populations remain at only 10-474 20% of pre-whaling levels (e.g., Best 1993, Springer et al. 2003, Roman and Palumbi 2003), 475 with a few notable exceptions (e.g., the northeast Pacific gray whale, Rugh et al. 1999). 476 477 Pelagic/shelf/intertidal effects of whaling. During both the open-boat and modern era of

whaling (i.e., pre- and post-1900, respectively, Whitehead 2002), the net effect of whaling must have been a straightforward reduction of whale detrital inputs to pelagic, shelf and intertidal ecosystems. This is because during the open-boat era, whale carcasses taken in the high seas typically were stripped of blubber and released to sink to the *deep-sea* floor (Tonnenssen and Johnson 1982); whales caught near shore (e.g., over the continental shelf) were likely to have been towed ashore for processing. Modern whaling leaves little detritus for the marine ecosystem because entire carcasses are processed on factory ships, or on shore (e.g., Tonnenssen and

Johnson 1982). Thus, with very localized exceptions (e.g., the inter- and subtidal in the
immediate vicinity of whaling stations), harvested carcasses were essentially removed from
pelagic, shelf and intertidal ecosystems.

488

489 By reducing great-whale populations by an order of magnitude, whaling must have 490 forced a roughly 10-fold decline in the flux and availability of great-whale detritus in pelagic, 491 shelf and intertidal ecosystems. For coastal populations of the California condor (*Gymnogyps* 492 *californianus*), the loss of whale carrion may have been significant, and could have caused 493 dramatic population declines. It also is conceivable that coastal populations of other wide-494 ranging scavengers that fed on stranded whales (e.g., polar bears, arctic foxes, and grizzly bears 495 (Ursus arctos horribilis)) declined as a consequence of commercial whaling. It is interesting to 496 note that while gray-whale populations have rebounded in the northeast Pacific, most stranded 497 whale carcasses are still removed from beaches (C. Smith, personal observations), yielding on 498 ongoing depletion of whale carrion. From a community-level perspective, the current energetic 499 contribution of great-whale detritus to pelagic and shelf ecosystems appears to be so small that 500 even if great-whale detrital fluxes were restored to pre-whaling levels, the ecosystem 501 consequences would be modest. However, in some intertidal areas, a 10-fold increase in the 502 frequency of whale strandings could yield a carbon flux approaching that from other sources of 503 marine carrion (see discussion above), suggesting that, prior to commercial whaling, stranded 504 whales could have been a significant source of carrion to mobile scavenger assemblages along 505 coastlines. This conclusion must remain tentative until the intertidal flux of carrion from all 506 sources is more intensively studied in various ocean regions.

507

The impacts of whaling on deep-sea ecosystems

508

509						
510	As for shallow marine systems, whaling must ultimately have led to a dramatic decline in					
511	whale-fall habitats at the deep-sea floor, potentially yielding extinction of whale-fall specialists,					
512	and limiting the dispersal of species dependent on sulfide-rich whale skeletons as habitat					
513	stepping stones (Butman et al. 1995, 1996, Committee on Biological Diversity in Marine					
514	Systems 1995, Smith and Baco 2003). However, the effects of whaling on whale-fall abundance					
515	in the deep sea were not necessarily monotonic because of two opposing factors.					
516						
517	(1) Prior to ~1900, the initiation of whaling in a region <i>increased</i> flux of whale carcasses to					
518	the seafloor because whale carcasses were discarded to sink after removal of blubber,					
519	baleen, spermaceti and minor components (Tonnenssen and Johnsen 1982, Butman et al.					
520	1995). The flux of carcasses to the deep-sea floor must also have been redistributed by					
521	carcass discards relative to natural whale mortaility because early whaling was initiated					
522	near home ports, and then moved further afield as local populations became depleted					
523	(e.g., Butman et al. 1995, Springer et al. 2003). In contrast, natural whale mortality is					
524	likely to have been distributed along migration routes, in calving grounds, or in regions					
525	where whales spend substantial portions of their life cycles (Butman et al. 1995, Rugh et					
526	al. 1999, Smith and Baco 2003).					
527						
528	(2) Ultimately (and immediately in the modern era), whaling <i>decreased</i> the flux of carcasses					
529	to the deep-sea floor because whale populations were driven downward, leaving far fewer					

whales to suffer natural mortality and sink to the seafloor.

532	The initial increase and subsequent decrease in carcass production resulting from					
533	whaling, combined with spatial and temporal variations in the activities of whalers, have caused					
534	historical patterns of dead-whale flux to vary among ocean basins. In addition, whale-fall					
535	communities pass through successional stages with different persistence times (ranging from					
536	months to decades), yielding time lags between a reduction in whale-carcass flux and the decline					
537	of particular community types at the seafloor. Without accurate population trajectories for all					
538	great whales in all basins, a detailed reconstruction of whale-fall habitat loss and likely patterns					
539	of species extinctions is not possible. However, the limited data available on whale-population					
540	trajectories do provide some insights into the historical biogeography of whale-fall habitat loss.					
541						
542	The most comprehensive population trajectory available in the refereed literature for any					
543	great-whale species was developed by Whitehead (2002) for the sperm whale (Physeter					
544	macrocephalus), with reconstruction of the global population size since 1800. Using a few					
545	reasonable assumptions, the abundance over time of sperm-whale carcasses supporting mobile-					
546	scavenger, enrichment-opportunist, and sulfophilic communities in the deep sea can be estimated					
547	using the sperm-whale population trajectory (Fig. 4). The largest number of potential whale-fall					
548	specialists are found in sulfophilic communities (Tables 1 and 2) (Smith and Baco 2003), so the					
549	dynamics of this community type are perhaps most relevant to species extinction. Several points					
550	emerge from modeling the abundance of sperm-whale falls at the deep-sea floor over time since					
551	1800. (1) The discard of whale carcasses only modestly enhanced the number of whale-fall					
552	communities, e.g., increasing the number of sulfophilic communities by ~ 20% over natural					
553	processes in 1850 (Fig 4). (2) Because of short residence times, the abundances of mobile-					

554 scavenger and enrichment-opportunist communities respond rapidly to changes in whale-fall 555 abundance, while sulfophilic communities respond with a 40-yr time lag to whale depletion. 556 Thus, the number of sulfophilic communities on sperm-whale skeletons is estimated to be 557 declining now, even though sperm-whale abundance passed a minimum in 1981, and is currently 558 about 40% of pre-exploitation levels (Fig. 4). Based on the global sperm-whale trajectory, 559 whale-fall specialists may be only now approaching their greatest habitat loss, potentially 560 causing species extinctions to be occurring at their highest historical rates. Species-area 561 relationships suggest that loss of 60% of the area of a habitat, such has occurred for sperm-whale falls, should yield extinction of 20% or more of its endemic fauna (e.g., Pimm and Askins 1995, 562 563 Ney-Nilfe and Mangel 2000).

564

565 Regional asynchrony in the extermination of great whales suggests that ocean basins may 566 be in different phases of whale-fall habitat loss and species extinction. Whale populations were 567 first reduced in the North Atlantic in the 1800's, and even now may remain at < 25% of pre-568 whaling levels (Roman and Palumbi 2003). Because whale abundance has remained low in the 569 North Atlantic for approximately 150 yr (i.e., much longer than the lag time resulting from 570 sulfophilic community persistence), the number of whale-fall habitats have long since adjusted to 571 low whale abundance, and species extinction driven by habitat loss is likely to be well advanced 572 (e.g., Brooks et al. 1999). The loss of species may be substantial in the North Atlantic because 573 whale-fall habitat abundance has been held at 10-25% of pre-exploitation levels for an extended 574 time; species-area relationships (e.g., Pimm and Askins 1995, Ney-Nifle and Mangel 2000) 575 suggest that such habitat reduction will extinguish 30-50% of the specialized whale-fall fauna. 576 In contrast, southern-hemisphere great whales were heavily exploited much later, i.e., between

577 1920 and 1965 (Fig. 3), with their populations remaining low to the present (e.g., Best 1993, 578 Young 2000). As consequence, sulfophilic communities in the Southern Ocean are likely only 579 now to be approaching their historic lows, with extinction of whale-fall specialists in the 580 acceleration stage. Species extinctions are probably least advanced in the northeast Pacific, 581 where the greatest depletion of most large whales did not occur until the 1970's (Fig. 3, Springer 582 et al. 2003). In addition, some species, such the gray whale, had substantially recovered by 1970 583 from depredation suffered in the 1800's (Fig. 4), with the consequence that whale-fall habitats in 584 the northeast Pacific may never have reached the relative lows experienced in the North Atlantic. 585 Thus, one can predict that species extinctions and diversity loss in whale-fall communities have 586 been greatest in the North Atlantic, have been substantial and are likely accelerating in the 587 Southern Ocean, and have been least intense in the northeast Pacific. If species extinction due to 588 whaling has dramatically altered the biodiversity of whale-fall communities, one would predict 589 that current biodiversity levels are lowest in the North Atlantic and highest in the northeast 590 Pacific.

591

592 Can we rigorously test this prediction to determine whether patterns of whale-fall 593 biodiversity are consistent with whaling induced species extinctions? A reasonable experimental 594 approach would be to emplace uniform packages of lipid-rich whale bones at similar depths in 595 the North Atlantic, Southern Ocean and northeast Pacific, and then, after a sufficient time period 596 (i.e., 2-3 yr), compare biodiversity levels of bone-colonizing assemblages across basins. This 597 experimental approach is quite feasible because bone implantations have fostered sulfophilic 598 community development on the California slope, and similar experimental approaches (i.e.,

599	using standardized colonization substrates) have been used to assess regional variations in the				
600	biodiversity of fouling assemblages in shallow-water communities (e.g., Ruiz et al. 2000).				
601					
602	Conclusions				
603					
604	Whale carcasses are end members in the spectrum of marine detritus, constituting the				
605	largest, most energy-rich organic particles in the ocean. Most great-whale carcasses sink				
606	essentially intact to the deep-sea floor, where they are recycled by a succession of scavenger,				
607	enrichment-opportunist, and sulfophilic assemblages. Although the flux of organic carbon in				
608	whale falls is small compared to total detrital flux, the massive energy concentrated in a whale				
609	fall can support a diverse deep-sea community (~370 species in the northeast Pacific) for				
610	decades, including a significant number of potential whale-fall specialists (\geq 32 species). The				
611	ecosystem impacts of detrital whales in epipelagic, shelf, and intertidal ecosystems is poorly				
612	known but appears to be small, although some highly mobile intertidal scavengers (e.g., polar				
613	bears) could obtain important nutritional inputs from whale carrion.				
614					
615	Commercial whaling has drastically reduced the flux of whale detritus to all marine				
616	ecosystems. In intertidal habitats, this may have caused population declines in some scavenging				
617	species (e.g., the California condor) dependent on whale carrion. At the deep-sea floor, whaling				
618	led to substantial habitat loss to whale-fall communities and likely caused the first anthropogenic				
619	extinctions of marine invertebrates in the 1800's in the North Atlantic. Extinctions of whale-fall				
620	specialists are probably ongoing, and to date are likely to have been most severe in North				

Atlantic, intermediate in Southern Ocean, and least intense in northeast Pacific whale-fallcommunities.

- 623
- 624

ACKNOWLEDGEMENTS

625 I especially thank Jim Estes for conceiving and organizing the fascinating and important

626 symposium on Whales, Whaling and Marine Ecosystems. I also warmly thank the many people

627 who have assisted at sea and on land during our whale-fall studies. The whale-fall work has

been generously supported by the National Undersea Research Center Alaska (now the West

629 Coast & Polar Regions Undersea Research Center), the U.S. National Science Foundation, the

630 National Geographic Society, the British Broadcasting Corporation, and the University of

631 Hawaii Research Council. This is contribution no. XXXX from the School of Ocean and Earth

632 Science and Technology, University of Hawaii at Manoa.

LITERATURE CITED

- Allison, P. A., C.R. Smith, H. Kukert, J.W. Deming, and B. A. Bennett. 1991. Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin. Paleobiology 17: 78-89.
- Ashley, C. W. 1926. The Yankee Whaler. Boston: Houghton Mifflin.
- Baco, A. R. and C. R. Smith. 2003. High biodiversity levels on deep-sea whale skeletons. Marine Ecology Progress Series 260: 109-114.
- Baco, A. R., C.R. Smith, A.S. Peek, G.K. Roderick, and R.C. Vrijenhoek. 1999. The Phylogenetic relationships of whale-fall vesicomyid clams based on mitochondrial COI DNA sequences. Marine Ecology Progress Series 182: 137-147.
- Baco-Taylor, A. R. 2002. Food-web structure, succession and phylogenetics on deep-sea whale skeletons. PhD thesis, University of Hawai`i.
- Bennett, B. A., C. R. Smith, B. Glaser, and H.L. Maybaum. 1994. Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep Northeast Pacific Ocean.Marine Ecology Progress Series 108: 205-223.
- Best, P. B. 1993. Increase rates of severely depleted stocks of baleen whales. ICES Jurnal of Marine Science. 50: 169-186.
- Britton, J. C., and B. Morton. 1994. Marine carrion and scavengers. Oceanography and Marine Biology: An Annual Review 32: 369-434.
- Brooks, T. M., S. L. Pimm, and J. O. Oyugi. 1999. Time lage between deforestation and bird extinction in tropical forests. Conservation Biology **13**: 1140-1150.
- Butman, C. A., J.T. Carlton, and S. R. Palumbi. 1995. Whaling effects on deep-sea biodiversity. Conservation Biology 9: 462-464.

- Butman, C. A., J.T. Carlton, and S. R. Palumbi. 1996. Whales don't fall like snow: reply to Jelmert. Conservation Biology 10: 655-657.
- Coan, E.V., P. V. Scott, and F. R. Bernard. 2000. Bivalve shells of western North America: Marine bivalve mollusks from Arctic Alaska to Baja California. Santa Barbara Museum of Natural History Monographs No. 2: 1-764.
- Columbini, L., and L. Chelazzi. 2003. Influence of marine allochthonous input on sandy beach communities. Oceanography and Marine Biology: An Annual Review **41**: 115-160.
- Committee on Biological Diversity in Marine Systems 1995. Understanding marine biodiversity: a research agenda for the nation. Washington, D.C.: National Academy Press.
- Corkeron, P.J., and R.C. Conner. 1999. Whyd do baleen whales migrate? Marine Mammal Science **15**: 1228-1245.
- Cornaby, B.W. 1974. Carrion reduction by animals in contrasting environments. Biotropica 6: 51-63.
- Dahlgren, T. G., Glover, A. G. & Smith, C. R. 2004. Fauna of whale falls: systematics and ecology of a new polychaetes (Annelida: Chrysopetalidae) from the deep Pacific Ocean.Deep-Sea Research, 51: 1873-1887.
- Dell, R. K. 1987. Mollusca of the Family Mytilidae (Bivalvia) associated with organic remains from deep water off New Zealand, with revisions of the genera *Adipicola* Dautzenborg, 1927 and *Idasola* Iredale, 1915. National Museum of New Zealand Records 3: 17-36.
- Dell, R. K. 1995. New species and records of deep-water mollusca from off New Zealand. National Museum of New Zealand Records 2: 1-26.
- Deming, J., A.L. Reysenbach, S.A. Macko, and C.R. Smith. 1997. The microbial diversity at a whale fall on the seafloor: bone-colonizing mats and animal-associated symbionts.

Microscopy Research and Technique 37: 162-170.

- Desbruyeres, D., and L. Laubier. 1988. Exploitation d'une source de matière organique concentrée dans l'océan profound: intervention d'une annelide polychete nouvelle. Comptes Rendus de L'Academie des Sciences **307**: 329-335.
- Distel, D. L., A. R. Baco, E. Chuang, W. Morril, C. Cavanaugh, and C.R. Smith. 2000. Do mussels take wooden steps to deep-sea vents? Nature **403**: 725-726.
- Gaskin, D. E. 1982. Ecology of whales and dolphins. Portsmouth: Heinemann Educational Books.
- Gibbs, P. E. 1987. A new species of *Phascolosoma* (Sipuncula) associated with a decaying whale's skull trawled at 880 m depth in the southwest Pacific. New Zealand Journal of Zoology 14: 135- 137.
- Goedert, J. L., R.L. Squires, and L.G. Barnes. 1995. Paleoecology of whale-fall habitats from deep-water Oligocene rocks, Olympic Peninsula, Washington state. Palaeogeography, Palaeoclimatology, Palaeoecology 118: 151-158.
- Grassle, J. F. and L. Morse-Porteous. 1987. Macrofaunal colonization of disturbed deep-sea environments and the structure of deep-sea benthic communities. Deep-Sea Research I **34**: 1911-1950.
- Guinet, C., L.G. Barrett-Lennard, and B. Loyer. 2000. Co-ordinated attack behavior and prey sharing by killer whales at Crozet Archipelago: Strategies for feeding on negatively-buoyant prey. Marine Mammal Science **16**: 829-834.
- Hessler, R. R., Ingram, C. L., Yayanos, A. A. & Burnett, B. R. 1978. Scavenging amphipods from the floor of the Philippine Trench. Deep-Sea Research I **25**: 1029-1047.

Isaacs, J. D., and R. A. Schwartzlose. 1975. Active animals of the deep-sea floor. Scientific

American **233**: 85-91.

- IWC. 1993. Report of he special meeting of the Scientific Committee on the assessment of gray whales. Reports of the International Whaling Commission 43: 241-253.
- Jelmert, A, and D.O. Oppen-Bernsten. 1996. Whaling and deep-sea biodiversity. Conservation Biology **10**: 653-654.
- Jones, E. G., M.A. Collins, P.M. Bagley, S. Addison, and I.G. Priede. 1998. The fate of cetacean carcasses in the deep sea: observations on consumption rates and succession of scavenging species in the abyssal Northeast Atlantic Ocean. Proceedings of the Royal Society of London Series B-Biological Sciences 265: 1119-1127.
- Jones, M. L., S.L. Swartz, and S. Leatherwood. 1984. The Gray Whale *Eschrictius robustus*. San Diego: Academic Press.
- Katona, S., and H. Whitehead, H. 1988. Are cetacea ecologically important? Oceanography and Marine Biology: An Annual Review 26: 553-568.
- Kitazato, H., and Y. Shirayama. 1996. Rapid creatio: 734-742.n of a reduced environment and an early stage of a chemosynthetic community on cattle bones at the deep-sea bottom in Sagami Bay, central Japan. Vie et Milieu 46: 1-5.
- Levin, L. A., G.R. Plaia, and C.L. Huggett, C. L. 1994. The Influence of natural organic enhancement on life histories and community structure of bathyal polychaetes. In: Reproduction, larval biology and recruitment of the deep-sea benthos, C. Young & K. Eckelbarger (eds). New York: Columbia University Press, p. 261-283.
- Lockyer, C. 1976. Body weights of some species of large whales. International Council for the Exploration of the Sea/ Journal of Marine Science **36**: 259-273.

Marshall, B. A. 1987. Osteopeltidae (Mollusca: Gastropoda): a new family of limpets associated

with whale bone in the deep sea. Journal of Molluscan Studies 53: 121-127.

- Marshall, B. A. 1994. Deep-sea gastropods from the New Zealand region associated with recent whale bones and an Eocene turtle. Nautilus **108**: 1-8.
- Moore, S.E., J. M. Grebmeier, and J. R. Davies. 2003. Gray whale distribution relative to forage habitat in the northern Bering Sea: current conditions and restropsective summary. Canadian Journal of Zoology 81
- McLean, J. H. 1992. Cocculiniform limpets (Cocculinidae and Pyropeltidae) living on whale bone in the deep sea off California. Journal of Molluscan Studies **58**: 401-414.
- Naganuma, R., H. Wada, K. Fujioka, K. 1996. Biological community and sediment fatty acids associated with the deep-sea whale skeleton at the Torishima seamount. Journal of Oceanography **52**: 1-15.
- Naganuma, T., M. Hattori, K. Akimoto, J. Hashimoto, H. Momma, and C. J. Meisel. 2001. Apparent microfloral response to organic degradation on bathyal seafloor: an analysis based on sediment fatty acids. P.S. Z. N. Marine Ecology 22: 1-16.
- Ney-Nilfe, M. and M. Mangel. 2000. Habitat loss and changes in the speciea-area relationship. Conservation Biology **14:** 893-898.
- Pearson, T. H., R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: an Annual Review 16: 229-311.
- Pettibone, M. H. 1993. Polynoid polychaetes associated with a whole skeleton in the bathyal Santa Catalina Basin. Proceedings of the Biological Society of Washington **106**, 678-688.
- Pimm, S. L. and R. Askins. 1995. Forest losses predict bird extinctions in eastern North America. Proceedings of the National Academy of Sciences (U.S.A.) 92: 9343–9347.

- Rouse, G. W., S. K. Goffredi, and R. Vrijenhoek. 2004. *Osedax*: bone-eating marine worms with dwarf males. Science (NY) **305**: 668-671.
- Robineau, D. and V. de Buffrénil, V. 1993. Nouvelles données sur la masse du squelette chez les grands cétacés (Mammalia, Cetacea). Canadian Journal of Zoology **71**: 828-834.
- Roman, J., and S.R. Palumbi. 2003. Whale before whaling on the North Atlantic. Science **301**: 508-510.
- Rose, M.D., and G.A. Polis 1998. The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology **79**: 998-1007.
- Rugh, D.J., M. Muto, S.E. Moore and D. P. DeMaster. 1999 Status review of the eastern North Pacific stock of gray whales. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-103, 93 pp.
- Ruiz, G.M., P. Fofonoff, J.T. Carlton, M.J. Wonham and A.H. Hines. 2000. Invasions of Coastal marine Communities in North America: Apparent Patterns, Processes, and Biases. Annual Review of Ecology and Systematics 31: 481-531.
- Schafer, W. 1972. Ecology and Palaeoecology of marine environments. 1972. University of Chicago Press.
- Schuller, D., D. Kadko, and C. R. Smith. 2004. Use of ²¹⁰Pb/²²⁶Ra disequilibria in the dating of deep-sea whale falls. Earth and Planetary Science Letters, in press.
- Sibuet, M. and K. Olu. 1998. Biogeography, biodiversity, and fluid dependence of deep-sea cold seep communities at active and passive margins. Deep-Sea Research II **45**: 517-567.
- Silber, M.W. Newcomer, and M. Perez-Cortes. 1990. Killer whales (*Orcinus orca*) attack and kill a Bryde's whale (*Balaenoptera edeni*) Canadian Journal of Zoology **68**: 1603-1606.
- Smith, C. R. 1992. Whale falls: chemosynthesis on the deep-sea floor. Oceanus 36: 74-78.

- Smith, C.R. and A.R. Baco. 1998. Phylogenetic and functional affinities between whale-fall, seep, and vent communities. Cahiers de Biologie Marine **39**: 345-346.
- Smith, C.R. and A. R. Baco. 2003. The ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology: an Annual Review **41**: 311-354.
- Smith, C.R., Baco, A. R. & Glover, A. 2002. Faunal succession on replicate deep-sea whale falls: time scales and vent-seep affinities. Cahier de Marine Biologie **43**: 293-297.
- Smith, C. R. and A.W.J. Demopoulos. The deep Pacific Ocean floor. In: *Ecosystems of the World Volume 28: Ecosystems of the Deep Ocean*, P. A. Tyler, ed., Elsevier, Amsterdam, pp. 179 218.
- Smith, C. R., H. Kukert, R. A. Wheatcroft, P.A. Jumars, J.W. Deming. 1989. Vent fauna on whale remains. Nature **34**: 27-128.
- Snelgrove, P. V. R., J.F. Grassle, and R.F. Petrecca. 1994. Macrofaunal response to artificial enrichments and depressions in a deep-sea habitat. Journal of Marine Research **52**: 345-369.
- Snelgrove, P.V.R. and C. R. Smith. 2002. A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. Oceanography and Marine Biology: an Annual Review **40**: 311-342.
- Springer, A.M., J. A. Estes, G.B. van Vliet, T. M. Williams, D. F. Doak, E. M. Daner, K.A. Forney, and B. Pfister. 2003. Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling? Proceedings of the National Academy of Sciences (U.S.A.) 100: 12223-12228.
- Squires, R. L., J.L. Goedert, J. L. and L.G. Barnes. 1991. Whale carcasses. Nature **349**: 574 only.

- Stockton, W. L. T.E. DeLaca. 1982. Food falls in the deep sea: occurrence, quality, and significance. Deep-Sea Research I 29, 157-169.
- Tonnenssen, J. N., and A.O. Johnson. 1982. The history of modern whaling. University of California Press, Berkeley.
- Tunnicliffe, V., A.G. McArthur, and D. McHugh. 1998. A biogeographical perspective of deepsea hydrothermal vent fauna. Advances in Marine Biology **34**: 353-442.
- Turner, R.D. 1973. Wood-boring bivalves, opportunistic species in the deep sea. Science **180**: 1377-1379.
- Turner, R. D. 1977. Wood, mollusks, and deep-sea food chains. Bulletin of the American Malacology Union 213: 13-19.
- Van Dover, C. L. 2000. The ecology of deep-sea hydrothermal vents. Princeton: Princeton University Press.
- Wada, H., T. Naganuma, K. Fujioka, H. Ditazato, K. Kawamura, K., and Y. Akazawa. 1994.
 The discovery of the Torishima whale bone animal community and its meaning the results of revisit dives by the "Shinkai 6500". Japan Marine Science & Technology Center/ Deep-Sea Research 10: 38-47.
- Warén, A. 1989. New and little known Mollusca from Iceland. Sarsia 74: 1-28.
- Warén, A. 1993. New and little known Mollusca from Iceland and Scandinavia. Part 2. Sarsia78: 159-201.
- Warén, A. 1996. New and little known Mollusca from Iceland and Scandinavia. Part 3. Sarsia81: 197-245.
- Weston, D. P. 1990. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Marine Ecology Progress Series **61**: 233-244.

- Whitehead, H. 2002. Estimates of the current global population size and historical trajectory for sperm whales. Marine Ecology Progress Series **242**: 295-304.
- Williams, A.B., C. R. Smith, and A.R. Baco. 2000. New species of *Paralomis* (Decapoda, Anomura, Lithodidae) from sunken a whale carcass in the San Clemente Basin of southern California. Journal of Crustacean Biology **20**: 282-285.
- Zmarzly, D. L., Stebbins, T. D., Pasko, D., Duggan, R. M. & Barwick, K. L. 1994. Spatial patterns and temporal succession in soft-bottom macroinvertebrate assemblages surrounding an ocean outfall on the southern San Diego shelf: relation to anthropogenic and natural event. Marine Biology **118**: 293-307.

FIGURE LEGENDS

Figure 1. Photographs of whale falls at the seafloor on the California slope illustrating three successional stages. (A) A \sim 35 t gray-whale carcass on the seafloor for 1.5 months at 1675 m in the Santa Cruz Basin in the *mobile-scavenger stage*. Dozens of hagfish (*Eptatretus deani*), each ~30-cm long, are feeding on the white carcass. Large bite marks formed by sleeper sharks (Somniosus pacificus) are also visible. (B-D) The Santa Cruz carcass after 18 m on the seafloor, now in the *enrichment-opportunist stage*. The whale soft tissue has been almost completely removed by scavengers, exposing vertebrae and ribs. The sediments around the skeleton (B) are colonized by a dense assemblage of gastropods, juvenile bivalves, cumacean crustaceans, and dorvilleid polychaetes (visible as white dots). The organic-rich bones (including the scapula (C) and ribs (D)) harbor high densities of polychaetes, including a new species of chrysopetalid (Vigntorniella n. sp.) that forms grass-like patches (C) and hanging curtains (D) on some areas of the skeleton. For scale, the polychaetes are 1-2 cm long. (E-F) The 21-m long skeleton of a balaenopterid at 1240 m in the Santa Catalina Basin illustrating the *sulfophilic stage*. This skeleton has been at the seafloor for several decades. Visible on the bones *in situ* are (E) white bacterial mats covering the ends of vertebrae, and the shells of vesicomyid clams (~10 cm long). (F) A bone recovered from the carcass harboring large numbers of the mussel Idas washingtonia nestled into bone crevices to exploit effluxing hydrogen sulfide (for scale, mussels are 0.5-0.8 cm long).

Figure 2. Macrofaunal community patterns around implanted whale falls in the San Diego Trough (t = 4 mo) and the Santa Cruz Basin (t = 18 mo) during the *enrichment-opportunist stage.* **Top:** Sediment macrofaunal densities around experimentally implanted whale falls in the San Diego Trough at 4 months, and in the Santa Cruz Basin at 18 months. Means \pm one standard error are given. **Bottom:** Macrofaunal species diversity versus distance for the Santa Cruz Basin carcass.

Figure 3. Annual catches of great whales in the southern hemisphere and in the northern North Pacific by whalers, between 1910 and 1985. Data are from the International Whaling Commission, compiled by Eric Danner in 2003.

Figure 4. *Top:* "Population" trajectories for living sperm whales (*Physeter macrocephalus*), and the number of sperm-whale falls in various successional stages (mobile scavenger stage, enrichment opportunist stage, and sulfophilic stage) at the deep-sea floor since 1800. Living sperm whale trajectory is from Whitehead (2002). The estimates of the number of whale-fall communities in the various successional stages depend on the following assumptions: (1) A natural sperm-whale mortality rate of 0.05 y⁻¹; (2) 90% of discarded carcasses and 50% of carcasses resulting from natural mortality sink to the deep-sea floor; (3) persistence times of 1 yr, 4 yr and 40 yr for the mobile-scavenger stage, enrichment-opportunist stage, and sulfophilic stage, respectively (Smith and Baco, 2003; Schuler et al., in press). *Bottom:* Similar trajectories, based on the similar assumptions, for gray whales (*Eschrichtius robustus*) in the northeast Pacific. The trajectory for living gray whales is a combination of data from IWC (1993) and Rugh et al, in preparation (as communicated by J. Breiwick, 2003).

Figure 1

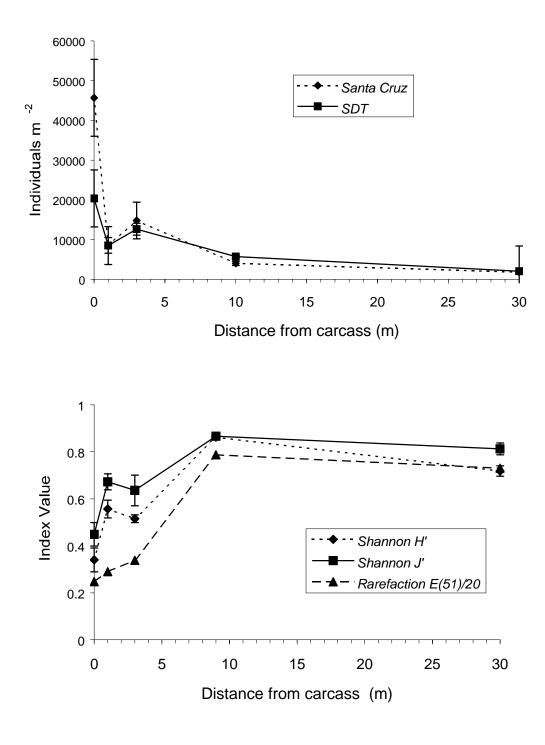


Figure 2

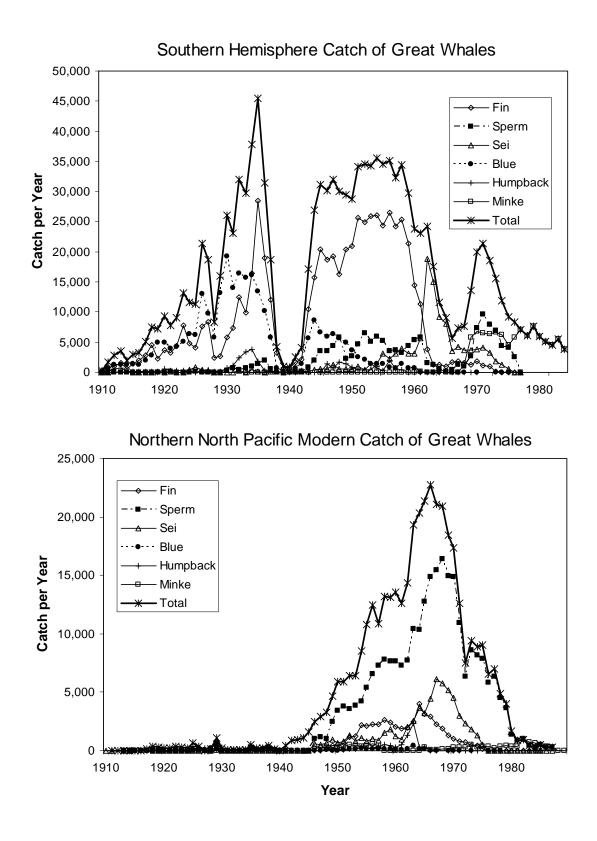


Figure 3

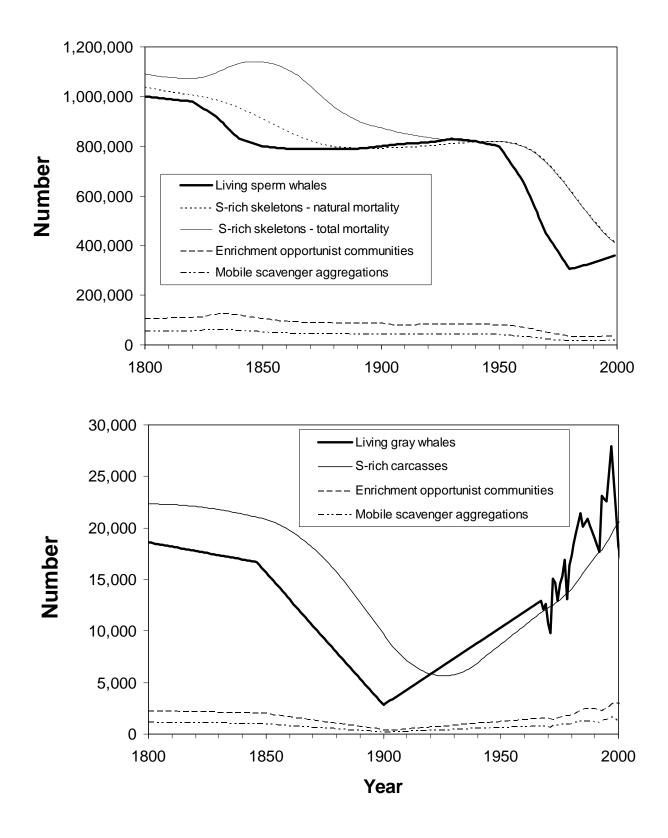


Figure 4

Table 1. Species (n = 32) first recorded at large whale falls. The 28 species marked as "known only at whale falls" have been found in no other habitat. Where available, estimated population sizes on whale falls are given. Note that more than half of these species have been collected from southern California whale falls, suggesting that whale-fall habitats in other regions may be grossly undersampled. (Modified from Smith and Baco, 2003).

HigherTaxon	Species	Known only at whale falls	Estimated pop. Size	Location	Reference
Mollusca					
Archaegastropoda	Pyropelta wakefieldi	Χ	>100	California	McLean 1992
	Cocculina craigsmithi		300-1100	California	McLean 1992
	Paracocculina cervae			New Zealand	Marshall 1994
	Osteopelta praeceps	Χ	>200	New Zealand	Marshall 1994
	Osteopelta ceticola			Iceland	Warén 1989
	Osteopelta mirabilis	X		New Zealand	Marshall 1987
	Protolira thorvaldsoni			Iceland	Warén 1996
Gastropoda	Bruciella laevigata	Χ		New Zealand	Marshall 1994
	Bruciella pruinosa	Χ		New Zealand	Marshall 1994
	Xylodiscula osteophila	Χ		New Zealand	Marshall 1994
	Hyalogyrina n.sp.			California	McLean and Warén pers. comm.
Bivalvia					
Bathymodiolinae	Adipicola pelagica	X		South Atlantic	Dell 1987
	Myrina (Adipicola)			Japan, HI	Dell 1987
	pacifica	X		1 /	
	Adipicola (Idas) arcuatilis			New Zealand	Dell 1995
	Adipicola osseocola			New Zealand	Dell 1995
	Idas pelagica	X		North Atlantic	Warén 1993
	Idas ghisottii			North Atlantic	Warén 1993

Vesicomyid Thyasiridae	New species? <i>Axinodon</i> sp. nov.	X X		California California	Baco et al. 1999 P. Scott pers. comm.
Aplacophora Arthropoda	New genus	Х		California	Scheltema in prep.
Anomura	Paralomis manningi	X		California	Williams et al. 2000
Annelida					
Polychaeta					
Polynoidae	Harmathoe craigsmithi	X		California	Pettibone 1993
	Peinaleopolynoe santacatalina	X		California	Pettibone 1993
Chrysopetalidae	Vigtorniella flokati	Χ	1000 - 100,000	California	Smith et al. 2002,
					Dahlgren et al., 2004
Ampharetidae	New genus	X	>10	California	B. Hilbig pers. comm.
	Asabellides sp. nov.	X	>10	California	B. Hilbig pers. comm.
	Anobothrus sp. nov.	Χ		California	B. Hilbig pers. comm.
Siboglinidae	Osedax frankpressi	Χ	>1,000	California	Rouse et al., 2004
	Osedax rubiplumus	Χ	>1,000	California	Rouse et al., 2004
	Osedax, 3 sp. nov.	Χ	> 1,000	California	Pers. obs.
	Osedax, sp. nov.	Χ	>1,000	Sweden	Dahlgren and Glover,
					pers. comm.; pers. obs.
Dorvilleidae [*]	Palpiphitime sp. nov.	Χ	>10,000	California	B. Hilbig pers. comm.
	Dorvilleid sp. nov.	Χ		California	B. Hilbig pers. comm.
Sipuncula	Phascolosoma saprophagicum	X	>20 - >200	New Zealand	Gibbs 1987

* In addition to *Palpiphitime* sp. nov. and Dorvilleid sp. nov., an estimated 38 unidentified species of dorvilleids, with population sizes ranging from 10's to 1000's of individuals per whale fall, have been collected from whale falls in the Santa Catalina Basin, San Diego Trough, San Clemente Basin and Santa Cruz Basin (Baco and Smith 2003, and unpublished data). Many of these species are likely to be new to science.

Table 2. Macrofaunal species that appear to be overwhelming more abundant on whale skeletons than in any other known habitat. Estimated population sizes on whale skeletons, and the total number of specimens collected in other habitats, are indicated for each species. Data from Bennett et al. (1994), Smith et al. (1998), Baco-Taylor (2002), Smith et al. (2002), Smith and Baco (2003), Baco and Smith (2003), Poehls et al. (in preparation), and McLean (personal communication). Table modified from Smith and Baco (2003).

Species	Population Size on Whale Skeletons	Number Collected in Other Habitat(s)
Bivalvia Idas washingtonia	>10,000 - >20,000	1 - 10 (wood, vents, seeps)
Gastropoda		
Cocculina craigsmithi	300 - 1100	1 - 10 (vents)
Pyropelta corymba	>1000	1 - 10 (vents)
Pyropelta musaica	>250	1 - 10 (vents)
Crustacea Ilyarachna profunda	500 - 1800	1 – 90 (sediments, seeps)