Cycle platform: Cycle-PO4 validation and biochemistry

Cycle-in-situ wet chemical analysis platform

- High resolution in-situ mooring for novel observations
 - Yaquina Bay is dominated by import of production (blooms) from coastal ocean. Using in-situ sensors it is possible to witness-in-situ (bay) production.

Concept:
- Cycle-PO4 has been validated and field tested extensively.
- High resolution in-situ sensor data allows for detailed observations.
- The Yaquina River drainage basin is a source of nitrate, but not phosphate.
- There is no detectable source of phosphate due to resuspension of sediments in Yaquina Bay.

Upwelled Nutrients drive productivity

- High tide PO4 = Low tide PO4 in red, and for NO3 in blue. FR > 50 in black.
- Nitrate (magenta) in blue. FR *50 in black.
- Associated production increase suggests a small bloom utilized NH4 over NO3.

NH4 in Yaquina Bay from intertidal mffitiids

- Nitrate (magenta) in blue. FR *50 in black.
- NH4 decreases relative to NO3 when PO4 comes into system.

Extensive validation and field testing

- After comparing 6 different labs, many (15+) instruments, 828772. Microfluidic research was done at Oregon State University: Koch, C.R. dissertation, 2009, Oregon State University, 16:1; upwelling axis; aspect ratio of Cycle platform, reagents and optics modified.
- Extensive validation and field testing - SBE, ECO, ISUS, CYCLE - based software.
- Reagent stability - Sensitivity in low power and mini instruments - Complex automated operations - Ultimate application: cell identification + challenges controlling and lysing whole cells.

Cycle-PO4 Publications

- Access to Cycle platform, reagents and optics modified.
- Initial Cycle platform: Cycle-PO4

Concept phase: Cycle-Fe

Concept:
- Use Cycle platform
- A dimethyl-g-phenyleneediamine (DPD) method
- Absorption based detection
- Trace metal-clean instrument

Concept phase: Total Phosphorus and Nitrogen (TPTN)

Concept:
- Use commercial PO4 and optical NO3 sensor for TP and TN detection of digested sample
- 80-60 min sampling interval

Acknowledgements

- NSF for their support of the Yaquina Bay CBOR system. This material is based in part upon work supported by the National Science Foundation under Grant Number OCE-0838699 and IGERT Grant No. DGE-0545903. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This funding is provided through the NERRP program. This work is also supported by EPA WH505 Grant No. R-828772. Microfluidic research was done at Oregon State University: Koch, C.R. Ph.D. dissertation, 2009, Oregon State University. Scholars’ Award: http://cbr.washington.edu/dart/deptnews/2010/IGERT/

Microfluidic instrument for in-situ wet chemistry

Concept:
- Mini/low power sensor for autonomous platforms and tight spots

High resolution in-situ mooring for novel observations

- Yaquina Bay is dominated by import of production (blooms) from coastal ocean. Using in-situ sensors it is possible to witness-in-situ (bay) production.

Upwelled Nutrients drive productivity

- High tide PO4 = Low tide PO4 in red, and for NO3 in blue. FR > 50 in black.
- Nitrate (magenta) in blue. FR *50 in black.
- NH4 decreases relative to NO3 when PO4 comes into system.

Period observed where NH4 apparently used over NO3

- Nitrate (magenta) in blue. FR *50 in black.
- NH4 decreases relative to NO3 when PO4 comes into system.

NH4 in Yaquina Bay from intertidal mffitiids

- Nitrate (magenta) in blue. FR *50 in black.
- NH4 decreases relative to NO3 when PO4 comes into system.

Extensive validation and field testing

- After comparing 6 different labs, many (15+) instruments, 828772. Microfluidic research was done at Oregon State University: Koch, C.R. dissertation, 2009, Oregon State University, 16:1; upwelling axis; aspect ratio of Cycle platform, reagents and optics modified.
- Extensive validation and field testing - SBE, ECO, ISUS, CYCLE - based software.
- Reagent stability - Sensitivity in low power and mini instruments - Complex automated operations - Ultimate application: cell identification + challenges controlling and lysing whole cells.

Cycle-PO4 Publications

- Access to Cycle platform, reagents and optics modified.
- Initial Cycle platform: Cycle-PO4

Concept phase: Cycle-Fe

Concept:
- Use Cycle platform
- A dimethyl-g-phenyleneediamine (DPD) method
- Absorption based detection
- Trace metal-clean instrument

Concept phase: Total Phosphorus and Nitrogen (TPTN)

Concept:
- Use commercial PO4 and optical NO3 sensor for TP and TN detection of digested sample
- 80-60 min sampling interval

Acknowledgements

- NSF for their support of the Yaquina Bay CBOR system. This material is based in part upon work supported by the National Science Foundation under Grant Number OCE-0838699 and IGERT Grant No. DGE-0545903. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This funding is provided through the NERRP program. This work is also supported by EPA WH505 Grant No. R-828772. Microfluidic research was done at Oregon State University: Koch, C.R. Ph.D. dissertation, 2009, Oregon State University. Scholars’ Award: http://cbr.washington.edu/dart/deptnews/2010/IGERT/